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Timothy M. McCormick and Nandini Trivedi
Department of Physics, The Ohio State University, Columbus, OH 43210, USA

We obtain the band structure of a particle moving in a magnetic spin texture, classified by its
chirality and structure factor, in the presence of spin-orbit coupling. This rich interplay leads to a
variety of novel topological phases characterized by the Berry curvature and their associated Chern
numbers. We suggest methods of experimentally exploring these topological phases by Hall drift
measurements of the Chern number and Berry phase interferometry to map the Berry curvature.

I. INTRODUCTION

Strong spin-orbit coupling lies at the heart of a vari-
ety of novel electronic phenomena, including topological
band insulators (TBI) [1, 2] and Weyl semimetals [3]. In
a TBI the electronic band structure is topologically dis-
tinct from that of a trivial insulator. The presence of
zero energy edge modes, similar to the chiral boundary
states of the quantum Hall effect, is a direct consequence
of the topological order which defines a TBI. The predic-
tion [4–7] and subsequent experimental verification [8–10]
of novel topological phases in a variety of materials has
spawned a vast new field of topological quantum matter.

Recent developments in ultracold atomic gases allow
spin-orbit coupling to be tuned using Raman processes
[11–13], expanding this frontier beyond electronic sys-
tems. Cold atom systems are already an excellent venue
for the exploration of many-body physics [14] and the
ability to simulate spin-orbit coupling promises to allow a
detailed study of the interplay of spin-orbit coupling and
strong interactions. Recent theoretical predictions [15–
17] suggest that, on a lattice, the Bose-Hubbard model
with spin-orbit coupling gives rise to a rich collection of
effective magnetic Hamiltonians in the strongly interact-
ing limit that support a plethora of novel magnetic states,
such as ferromagnets, antiferromagnets, spirals, and chi-
ral textures.

It is well known that systems with broken time-reversal
symmetry exhibit off-diagonal Hall conductivity [18], and
this transverse conductivity is nonzero in magnetic ma-
terials even in the absence of an external magnetic field
[19]. The study of the anomalous Hall effect has been
extended to a quantum geometrical viewpoint, with the
Berry phase of the wavefunction taking a central role
in this phenomena. The quantum anomalous Hall effect
(QAH), a quantized version of the anomalous Hall effect,
exhibits edge states which carry a quantized transverse
conductivity, similar to the quantum Hall effect but with-
out the requirement of an externally applied magnetic
field. The origin of the QAH effect lies in an exchange
interaction between a spinful itinerant particle and local-
ized magnetic moments rather than from Landau levels
due to the orbital effects of an external magnetic field.
Although the QAH effect offers the promise of low dissi-
pation transport without the need for an external mag-
netic field, there are few experimentally accessible sys-

tems which offer the combination of topologically non-
trivial insulating behavior and magnetic structure. De-
spite these challenges, the QAH effect has been observed
in thin films of Cr-doped Bi2Te3, a magnetic topological
insulator [20].

In this paper we propose a method for realizing the
QAH effect in cold atom systems featuring itinerant par-
ticles with spin-orbit coupling moving in a chiral spin tex-
ture. We begin with a tight-binding model with Rashba
spin-orbit coupling and a Hund’s coupling to a fixed mag-
netic texture. After deriving an effective Hamiltonian
for the system in the adiabatic approximation where the
itinerant spin is always parallel to the local texture, we
investigate some consequences of this effective Hamilto-
nian for ferromagnetic, antiferromagnetic spiral and chi-
ral textures. We show that chiral textures lead to a topo-
logically nontrivial band structure for the itinerant parti-
cles. By changing the strength of the spin-orbit coupling
for the itinerant particle, we find the system undergoes
a variety of topological phase transitions between vari-
ous quantum anomalous Hall states. Finally, we propose
that our results can be experimentally verified using Hall
drift experiments and Berry phase interferometry.

II. MODEL

A. Hamiltonian

We consider a single particle with two internal degrees
of freedom, denoted ↑ and ↓, on a two dimensional square
lattice interacting with a localized spin texture through
Hund’s coupling. We describe our system by the follow-
ing Hamiltonian:

Hfull = −t
∑
〈i,j〉

(Ψ†iRijΨj + h.c.)− JH
∑
i

Si · c†ia(~σi)abcib,

(1)

where Ψ†i = (c†i↑, c
†
i↓) is a spinor of creation operators

and the matrix Rij ≡ exp[iA · (ri − rj)]. We see that
on-diagonal elements of Rij describe spin-preserving hop-
ping, while a non-Abelian gauge field A = (ασy, βσx, 0)
leads to off-diagonal elements which describe spin flip
hopping. We set β = −α in order to obtain the lattice
analog of Rashba spin-orbit coupling which we use for the
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remainder of this paper. We also take the lattice spac-
ing to be unity such that for i, j which are neighbors,
|ri−rj | = 1. The spin ~σi of the itinerant particle couples
to the local spin texture denoted by Si with a coupling
strength JH > 0.

We assume that the time scale of the itinerant parti-
cle’s evolution is much shorter than that of the texture
and so we consider the localized spins to be fixed in the
spirit of the Born-Oppenheimer approximation. This can
be accomplished in a cold atom system by creating the
texture with a heavy species of strongly interacting par-
ticles and allowing them to strongly couple with a lighter
species of particles. The single particle approximation
can be accomplished experimentally by taking the inter-
actions between light particles to be exceedingly weak.

B. Local Projection

In the limit of JH/t � 1, the coupling to the texture
will split the spectrum into two bands and the low en-
ergy behavior of the system will be governed entirely by
the lower band which is aligned locally with the spin tex-
ture. As long as the exchange coupling JH between the
itinerant and the local particles is large on the scale of t,
which directly determines the time scale of the hopping,
the spin of the itinerant particle will remain adiabatically
aligned with those of the local texture.

Because of this local alignment, we introduce operators

representing the local orientation of the spin f†iσ which
creates a spin aligned with the local spin Si at site i.
In the usual manner, we can write these in terms of the
creation and annhilation operators for spins aligned with
the global z-direction. We obtain the following unitary
transformation[

f†j↑
f†j↓

]
=

[
gc(θj , φj) gs(θj , φj)
g∗s (θj , φj) −g∗c (θj , φj)

][
c†j↑
c†j↓

]
, (2)

where gc(θj , φj) gives the component of the projection
parallel to the global axis and gs(θj , φj) gives the com-
ponent of the projection antiparallel to the global axis.
The orientation of the local spin at a site j is described
by the polar and azimuthal angles (θj , φj) with respect
to the global z-axis.

With Eq. (2), we can write the Hamiltonian in terms
of the local spin creation and annihilation operators. For
JH/t � 1, we can now project out the space where
the spins are locally aligned with the texture by keep-
ing only the terms in the Hamiltonian which are of the

form f†i↑fj↑.

The Hamiltonian now takes the form:

Hproj = −
∑
i,~δ

(
t′
i,i+~δ

cos(α) + t′′
i,i+~δ

sin(α)
)
f†i↑fi+~δ↑ (3)

where ~δ ∈ {±x̂,±ŷ} is a nearest neighbor of the site i.

FIG. 1. (Color Online) A schematic illustration of the hopping
processes which lead to the matrix elements t′ (top) and t′′

(bottom). The black arrows represent the fixed texture at
a site i and its neighbor i + δ. The faded red arrows show
how a particle hops and then projects along the local texture
and the dashed blue arrow represents the hopping. Due to
the nature of the spin-orbit coupling, the hopping amplitudes
now depend on the direction of the hopping as well as the
orientation of the spin texture at each site.

The hopping amplitudes t′
i,i+~δ

and t′′
i,i+~δ

now encapsulate

the information about the spin texture, the spin-orbit

coupling and the direction ~δ of the nearest neighbor. The
explicit forms of the modified hopping matrix elements
t′ and t′′ are given in Appendix A.

Embedded in this Hamiltonian is a real space vector
potential which arises from the combination of the spin
texture and Rashba spin-orbit coupling.

C. Characterization of Spin Textures

We fix a given spin texture a priori by choosing a set of
spin configurations {θi, φi}. In order to study the inter-
play of spin-orbit coupling and coupling to a real-space
spin texture, we investigate the effects of ferromagnetic,
antiferromagnetic, spiral and chiral spin textures. Exam-
ples of some of these textures are shown in Fig. 2(a-d).

These textures can be broadly characterized by their
magnetic structure factor

S(k) = |
∑
j

eik·rjSj |, (4)

which is simply the Fourier transform of the local spin
texture. In quantum materials it can be measured by
neutron diffraction and in cold atom systems it can be
accessed by Bragg spectroscopy[21]. We show S(k) in
Fig. 2(e-h) in the first Brillouin zone for a variety of
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textures on a 12 site by 12 site lattice.
We also characterize a spin texture by its chirality. On

a lattice, we define the local scalar chirality at a site i as

χi =
1

8π

(
Si · (Si+x̂ × Si+ŷ) + Si · (Si−x̂ × Si−ŷ)

)
. (5)

We will refer to χ =
∑
i χi as simply the chirality for

a given texture. This quantity will obviously be zero for
collinear or coplanar spin textures, such as ferromagnetic,
antiferromagnetic and spiral textures. We call textures
for which χ 6= 0 as chiral textures. The chirality is a
topological invariant of the texture.

Ferromagnet : We consider ferromagnetic (Fig. 2a)
textures oriented along the z axis. The magnetic struc-
ture factor exhibits a peak at k = [0, 0] as shown in Fig.
2e.

Antiferromagnet : In the antiferromagnetic phase (Fig.
2b), spins point alternately along the ±z axis. The mag-
netic structure factor has a maximum at k = [π, π] as
shown in Fig. 2f.

Spiral : Spiral phases are composed of spins which cant
with constant angle in one direction and which do not
vary in an orthogonal direction. For simplicity, we con-
sider spiral textures for which the spiral is oriented in
either the x or y directions, rather than at an arbitrary
angle. For a commensurate spiral oriented in the x (y) di-
rection that winds with a period of L sites, the structure
factor has a peak at [±2π/L, 0] ([0,±2π/L]) as shown
in Fig. 2c. We call the angle ψ = 2π/L between adja-
cent spins the canting angle. We note that since spiral
textures are coplanar, they have zero chirality. A spiral
texture with a 4x1 unit cell is shown in Fig. 2g.

Meron: A non-coplanar texture in which the center
spin in a unit cell is aligned with the z axis and spins at
the edge of the unit cell take a polar angle of π/2 with
respect to the z axis. Mapping the orientation of spins in
a unit cell to their location on the unit sphere, one finds
that the sphere is half covered. Merons have χ = 1/2. A
superlattice of 3x3 merons is shown in Fig. 2d and its
structure factor is shown in Fig. 2h.

Skyrmion: Skyrmions are non-coplanar textures where
the center spin in a unit cell is aligned with the z axis
and spins at the edge of the unit cell are aligned with
the −z axis. Mapping the orientation of spins in a unit
cell to their location on the unit sphere, one finds the
sphere to be fully covered. Skyrmions have χ = 1 and
they can be considered as a composite object composed
of two merons.

III. RESULTS

We have exactly diagonalized the above single parti-
cle Hamiltonian for several spin textures at a variety of
spin-orbit couplings. After obtaining the single parti-
cle spectrum, a wide variety of quantities can be inves-
tigated. We derive effective Hamiltonians in the case of

ferromagnetic, antiferromagnetic, spiral and meron tex-
tures. We then characterize the topological nature of the
bulk band structure by calculating the Berry curvature
and the Chern number for each band.

A. Projected Hamiltonian in Simple Textures

For a purely ferromagnetic texture, t′′
i,i+~δ

is zero for all

i and t′
i,i+~δ

is unity for all i. It is clear that by projecting

into the locally aligned basis, systems with ferromagnetic
textures are similar to a free particle for closed boundary
conditions or the familiar particle in a box for those with
open boundary conditions. Spin-orbit coupling leads to
a modulated effective hopping strength

EFM(k) = −t cos(α)[cos(kx) + cos(ky)] (6)

shown in the left panel of Fig. 3.
Due to the opposite orientation of neighboring spins in

the antiferromagnetic texture, it is clear that t′i,j is identi-
cally zero for all values of spin-orbit coupling α. Without
spin-orbit coupling, this system is trivial, since the local
projection destroys hopping amplitudes between oppo-
sitely aligned spins. The spin-flip terms in the Hamilto-
nian in Eq. (1) dominate the contribution to the hopping
elements in projected hopping elements in Eq. (3) and
lead to an effective Hamiltonian for the antiferromagnetic
texture

HAF = −2t sin(α)
∑
k

Φ†k↑HAF(k)Φk↑. (7)

Here Φ†k↑ = (f†k↑A, f
†
k↑B) where the f†kσ’s are defined as

the Fourier transform of the operators defined in Eq.(2)
and the A or B refers to the two sublattices of the anti-
ferromagnetic texture. The kernel HAF(k) in Eq. (7) is
given by

HAF(k) = sin(kx)τx + sin(ky)τy (8)

where ~τ are the pseudo spin Pauli matrices associated
with the A and B sublattices. We find the energy disper-
sion shown in the right panel of Fig. 3 to be

E±AF(k) = ±2t sin(α)
√

sin2(kx) + sin2(ky). (9)

This spectrum is identical to that of the Hamiltonian for
a free particle with Rashba spin-orbit coupling and no
spin-preserving hopping. Here we find Dirac cones at the
time-reversal invariant momenta. We note that since we
do not obtain a gapped band structure, we cannot define
a topological invariant for the antiferromagnetic case.

For a spiral texture, we pick the direction of the spiral
canting to be in the x-direction without loss of gener-
ality. Motivated by recent theoretical predictions [15],
we investigate specifically the case of L = 4 spiral. For
this texture, the band structure does not have a sim-
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FIG. 2. (Color Online) (a-d) The real space spin configurations for several spin textures: (a) a ferromagnetic texture, (b) an
antiferromagnetic texture, (c) 4x1 spirals on a 12x12 lattice, (d) 3x3 merons on a 12x12 lattice. (e-h) The spin structure factors
for several textures on a 12 by 12 site lattice: (e) a ferromagnetic texture, (f) an antiferromagnetic texture, (g) spirals with a
4x1 unit cell in the y direction, (h) sixteen 3x3 merons

FIG. 3. (Color Online) (Left) The energy E in units of the hopping matrix element t for a particle in a ferromagnetic texture
is identical to that of a free particle with a cos(α) modulated bandwidth. (Right) The bands (in units of the hopping matrix
element t) for an antiferromagnetic texture are identical to that of the Rashba portion of the Hamiltonian in Eq. (1) with
spin-preserving hopping with a sin(α). There are Dirac cones at the time-reversal invariant momenta for the antiferromagnetic
bands.

ple closed analytic form. Notably, both t′ and t′′ are
non-zero, leading to a nontrivial dependence of the dis-
persion on α. In Fig. 4, we show the band structures
for α = 0, π/4 and π/2 across the reduced Brillouin zone
{−π ≤ ky < π, −π/4 ≤ kx < π/4}. We draw particular
attention to the flat bands at zero energy for α = π/4
where commensuration of spin-orbit coupling and the an-
gle of the spiral lead to destructive interference which

eliminates hopping along the direction of the spiral.

B. Chern Numbers and Berry Curvature

The band structure of a periodic system determined
by a Bloch Hamiltonian H(k) can be characterized by
the Chern number [22–24]. The Chern number for the
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FIG. 4. (Color Online) The energy E in units of the hopping matrix element t in the reduced Brillouin zone for a 4x1 spiral
texture with α = 0 (left), α = π/4 (middle) and α = π/2 (right). We note the presence of zero energy bands for α = π/4.

nth Bloch band is defined as

cn =
1

2π

∫
d2k · ∇k ×An(k) (10)

where the Berry connection An(k) is defined in terms of
the wavefunction of the nth band |n(k)〉 as [25]

An(k) = 〈n(k)| i∇k |n(k)〉 . (11)

The Hall conductivity is given by

σxy =
e2

h

∑
n

cn, (12)

where the summation index n runs over the filled bands.

The presence of a spin texture in the Hamiltonian in
Eq. (1) explicitly breaks time-reversal symmetry in gen-
eral and so the Chern number cn of the nth band of Hproj

in Eq. (3) will not be zero in general. A square spin
texture with sides of length L in a system with periodic
boundary conditions is described by a Bloch Hamiltonian
which can be represented as an L2 dimensional matrix in
momentum space. Due to the numerical nature of our ex-
act diagonalization, we can diagonalize our system only
on a discrete mesh of points kl within the Brillouin zone.

Following Fukui, Hatsugai and Suzuki [26], we intro-
duce a U(1) link variable

Un,µ(kl) = 〈n(kl)|n(kl + µ̂)〉/|〈n(kl)|n(kl + µ̂)〉| (13)

and a lattice field F analogous to the continuum Berry
curvature ∇k ×An(k):

Fn(kl) = ln

(
Un,x(kl)Un,y(kl + x̂)

Un,x(kl + ŷ)Un,y(kl)

)
, (14)

where we choose F (kl) to lie within the principal branch
of the logarithm. In the logarithm in F (kl), the U(1)
gauge field is summed around a single plaquette starting
at the momentum kl. Lastly, we take the lattice Chern

number to be

c̃n =
1

2πi

∑
l

Fn(kl) (15)

where l = 1, ..., L2. In addition to providing a robust
method of calculating the Chern number for a modestly
sized mesh of points in momentum space, the lattice field
Fn is manifestly gauge invariant.

In Fig. 5a, we show the sum of the Chern numbers for
the lowest two bands

n2 = c̃1 + c̃2 (16)

as a function of spin-orbit coupling calculated for a parti-
cle in a 3x3 meron texture. In Fig. 5(b,c,d), we show the
energy dispersion E(k) along the principal axes of sym-
metry in the Brillouin zone for various values of spin-
orbit coupling. We see that tuning the spin-orbit cou-
pling causes the Chern number n2 to change, signaling a
topological phase transition. Each time n2 changes the
gap between the second band and the third band closes.
For a range of α there exists a global gap between the
second and third bands and in such cases the chemical
potential can be placed within the global band gap giv-
ing n2 that is proportional to the Hall conductivity σxy.
Recent experiments have shown that the Chern number
can be measured in cold atomic gases[27] by using the
transverse deflection of an atomic cloud in reponse to an
optical dipole force.

Rather than considering only the Chern number, which
gives us information about the presence of a band cross-
ing, we can consider the momentum-resolved quantity
Fn across the Brillouin zone. Peaks in this quan-
tity reveal the locations of crossings of bands in mo-
mentum space. These can be experimentally detected
by Aharonov-Bohm interferometry in momentum space.
Recent experiments[28] have shown that the Berry phase
of two Bose Einstein condensates traversing separate
paths in the Brillouin zone can be measured with high
momentum resolution. The topological phase transi-
tions that we predict can be measured by performing
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FIG. 5. (Color Online) (a) Sum of Chern numbers n2 as a function of α for the lowest two bands of a system with unit cells of
3 by 3 merons. These lowest two bands are well separated from the others except for 0.5 < α < 0.67 and 1.2 < α < 1.4 and so,
excluding these regions, the Chern number can be interpreted as the Hall conductivity. Spin-orbit coupling has a non-trivial
effect on the topological nature of the bands for a fixed texture. (b,c,d) Energy in units of the hopping amplitude t for 3 by 3
merons, along the principal axes of symmetry Γ → X →M → Γ in the Brillouin zone. (b) α = 0, (c) α = 0.16π, (d) α = 0.5π.
(e) A diagram of the Brillouin zone. The red arrows show the path shown in the horizontal axis of (b-d) above. (f,g,h) Berry
Curvature F2 for the second band of a 3 by 3 meron system for (f) α = 0, (g) α = 0.16π and (h) α = π/2. Peaks in the Berry
curvature identify values of k which contribute to the Chern number.

momentum-space Aharonov-Bohm interferometry of two
BECs sent along paths in the Brillouin zone which en-
close the associated Berry curvature.

In Fig. 5(f,g,h), we show the lattice Berry curvature
F2 of the second band for several values of spin-orbit cou-
pling. For α = 0 (Fig 5f), we see one a very large negative
contribution to the Berry curvature at k = (π, π), arising
from an isolated band crossing that acts like a monopole
of Berry curvature. For α = 0.16π (Fig 5g), rather than
a monopole, we see a ring of Berry curvature through
a portion of the Brillouin zone, indicating a band cross-
ing that occurs for a locus of momenta points. When
α = π/2 (Fig 5h) we see a positive peak in the Berry
curvature for k = (0, 0) and four other near the corners
of the Brillouin zone.

IV. CONCLUSIONS AND DISCUSSION

We have shown that the properties of particles moving
in spin textures can be further modified by spin-orbit cou-
pling in several important ways. In simple textures, such
as ferromagnets and antiferromagnets, the spin-orbit cou-
pling can be used to control the bandwidth of the particle

while keeping the other properties of the band structure
invariant. We have shown that for a 3x3 meron tex-
ture the Chern number is nontrivial for the lowest two
bands. Above these two bands either a local gap or a
global gap exists for nearly all values of α signaling a
wide range of Chern metal and Chern insulator states.
By simply changing the value of spin-orbit coupling of
the itinerant particle, the Chern number gets modified,
signaling transitions between topologically distinct quan-
tum anomalous Hall states.

Recent work in quantum materials has focused on
the engineering of skyrmion textures[29–34], on the cur-
rent driven motion of these textures[35], and on the
emergence of a finite anomalous Hall conductivity of s-
electrons coupled to chiral magnetic textures of localized
d-electrons[36]. We emphasize that our model predicts a
quantum anomalous Hall effect whose Chern number is
tunable by simply changing the strength of Rashba spin-
orbit coupling of the itinerant particle, a quantity which
is very accessible in cold atom experiments[13, 37]. We
have shown that multiple signatures of these topolog-
ical phase transitions are experimentally accessible via
Bohm-Aharonov interferometry and Hall drift experi-
ments. Although the problem of realizing magnetic tex-
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tures is a relatively new one, there has been much theo-
retical [38–41] and experimental [41–45] progress and the
prospect of realizing the magnetic textures in this paper
is hopeful.

For Rb atoms in an optical lattice with lattice spacing
π/|k| ∼ 426nm, the tunneling rate can be tuned from
zero to several kHz [39, 46]. The lattice depth sets the
scale of each tunneling amplitude t. For the tunneling
rates above, the lattice depth is 10 to 20 times the re-
coil energy ER = ~2k2/2m which sets the characteris-
tic energy scale of the particles. The onsite interaction
of the local particles can be tuned substantially larger
using Feshbach resonances[47]. In order for the parti-
cles comprising the texture to be sufficiently localized,
they should be deep in the Mott insulating phase, cor-
responding to UL/tL & 10. Here UL and tL denote the
onsite interaction and tunneling energy respectively for
the localized particles. For the single particle picture de-
scribed above to be valid, the interactions UI between
itinerant particles must be weak such that UI/tI ∼ 0,
where the subscript I now denotes the itinerant particle.
The Hund’s coupling JH between the itinerant and lo-

cal particles is governed by scattering between the two
species [48] and can be tuned to reach the JH/t � 1
limit.

Rather than fixing a texture a priori, in future calcu-
lations we will use Monte Carlo simulations to generate
thermally fluctuating magnetic textures to explore the
effect of temperature on the Berry curvature and the
robustness of the Chern number. Another aspect that
could be important is the influence of the kinetic motion
of the itinerant particle on the magnetic texture itself.
Cold atoms also provide an exceptional setting for the
study of strongly correlated particles and the associated
fractional quantum Hall physics on a lattice without the
inclusion of an external magnetic field. We have demon-
strated that tuning between various quantum anomalous
Hall states is possible by varying the spin-orbit coupling
of the itinerant particle and it is possible that this tun-
ability will allow for a controlled way of exploring the
transitions between various fractional quantum anoma-
lous Hall states.
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V. APPENDIX A: DETAILS OF THE
PROJECTED HOPPING ELEMENTS

In this appendix, we show the explicit form of the ef-
fective hopping amplitudes t′ and t′′. In the limit of
JH/t � 1, the coupling to the texture will split the
spectrum into two bands and the low energy behavior
of the system will be governed entirely by the lower band
which is aligned locally with the spin texture. Because
of this local alignment, we introduce operators represent-

ing the local orientation of the spin f†iσ which creates a
spin aligned with the local spin Si at site i. In the usual
manner, we can write these in terms of the creation and
annhilation operators for spins aligned with the global
z-direction. We obtain the following unitary transforma-
tion[

f†j↑
f†j↓

]
=

[
gc(θj , φj) gs(θj , φj)
g∗s (θj , φj) −g∗c (θj , φj)

][
c†j↑
c†j↓

]
, (17)

where gc(θj , φj) gives the component of the projection
parallel to the global axis and gs(θj , φj) gives the com-
ponent of the projection antiparallel to the global axis.

The orientation of the local spin at a site j is described
by the polar angle θj and azimuthal angle φj with re-
spect to the global z-axis. In Eq. (17) the elements of
the rotation matrix are given by

gc(θj , φj) = cos(θj/2)e−iφj/2 (18)

and

gs(θj , φj) = sin(θj/2)eiφj/2. (19)

In order to derive the projected hopping Hamiltonian in
Eq. (3), we rewrite all operators in Eq. (1) in terms
of the local operators given in Eq. (17) and keep only

terms of the form f†i fj . We find that the term t′
i,i+~δ

originates from the hopping without spin-orbit coupling
in the global frame and is found to be

t′i,j = t
(
gc(θi, φi)g

∗
c (θj , φj) + gs(θi, φi)g

∗
s (θj , φj)

)
= t
(

cos(θi/2) cos(θj/2)e−i(φi−φj)/2

+ sin(θi/2) sin(θj/2)ei(φi−φj)/2
)

(20)

for any neighbor j. The spin-orbit coupling in the global
frame results in the other hopping amplitude t′′

i,i+~δ
which

is found to be

t′′i,j=i+ŷ = −it
(
gs(θi, φi)g

∗
c (θj , φj)+gc(θi, φi)g

∗
s (θj , φj)

)
= −it

(
sin(θi/2) cos(θj/2)ei(φi+φj)/2

+ cos(θi/2) sin(θj/2)e−i(φi+φj)/2
)

(21)

for hops up,

t′′i,j=i−ŷ = it
(
gs(θi, φi)g

∗
c (θj , φj) + gc(θi, φi)g

∗
s (θj , φj)

)
= it

(
sin(θi/2) cos(θj/2)ei(φi+φj)/2

+ cos(θi/2) sin(θj/2)e−i(φi+φj)/2
)

(22)

for hops down,

t′′i,j=i+x̂ = t
(
gs(θi, φi)g

∗
c (θj , φj)− gc(θi, φi)g∗s (θj , φj)

)
= t
(

sin(θi/2) cos(θj/2)ei(φi+φj)/2

− cos(θi/2) sin(θj/2)e−i(φi+φj)/2
)

(23)

for hops right, and

t′′i,j=i−x̂ = −t
(
gs(θi, φi)g

∗
c (θj , φj)−gc(θi, φi)g∗s (θj , φj)

)
= t
(

cos(θi/2) sin(θj/2)e−i(φi+φj)/2

− sin(θi/2) cos(θj/2)ei(φi+φj)/2
)

(24)

for hops left.


