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Abstract 

We use a few-cycle, carrier-envelope-phase (CEP) stabilized laser system to generate high 

harmonic emission in argon, neon and carbon dioxide.  The high harmonic spectra consist 

of discrete harmonic orders whose positions shift as a function of the CEP.  Near the 

cutoff harmonic, the peaks are separated by two photon orders, and can correspond to 

either even or odd harmonics of the driving laser frequency, depending on the value of the 

CEP.  In the plateau region, harmonic orders are separated by only one photon order.  

We develop a simple model which predicts the observed behavior.  We use the observed 

dependence of the harmonic peaks as a function of CEP as a method to measure the 

statistical CEP fluctuations of the laser system.  The measured RMS fluctuation of 0.17 

radians agrees with optical measurements.  The high harmonic approach to measuring 

CEP stability has the advantage that it is less sensitive to laser intensity fluctuations than 

are optical methods. 
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I. INTRODUCTION 

High-harmonic generation was first seen as the emission a spectrum composed of a series 

of odd multiples of the fundamental laser frequency.  As laser pulse durations became 

shorter, it was realized that the rule of strict odd harmonic orders was not obeyed.  Here 

we will record experimentally the positions of the harmonic orders produced by intense 

few-cycle laser pulses as the carrier-envelope-phase of the laser is varied.  Using a simple 

model, we will attribute the positions of the various orders to spectral interference 

between adjacent attosecond pulses. 

 

High-harmonic generation [1–3] is used as a probe to observe attosecond dynamics in 

atoms and molecules [4].  The amplitude, phase and polarization of a high-harmonic 

spectrum include information on electronic [5–8] and structural dynamics of 

molecules [9,10] from which the harmonics are emitted.  The attosecond electron 

dynamics can be mapped onto a continuum harmonic spectrum in a single, isolated 

attosecond pulse [11]. The high-harmonics are generated by the interaction between 

gas-phase atoms or molecules and an intense driving laser pulse.  Based on the 

three-step model [12], at every half optical cycle of the driving laser pulse, part of the 

bound electronic wavefunction is released to the ionization continuum by tunnel 

ionization.  The electron is accelerated by the laser field and re-collides with the parent 

ion within one optical cycle after tunnel ionization, leading to a single attosecond 

emission [1].  Since this three-step process occurs twice during every optical cycle, a train 

of single attosecond pulses is generated in a multiple-cycle, linearly polarized driving laser 

pulse.  In the long pulse limit, each attosecond pulse has the same amplitude, and there 

is an one-to-one mapping between the emitted photon energy and the emission time, 

when only the short trajectory is selected [11,13].  However, for laser pulses that are only 

a few optical cycles in duration, the phase and amplitude of the attosecond pulses depend 

on the instantaneous intensity and the carrier-envelope phase (CEP) of the driving laser 

field [14–17], which makes the high-harmonic spectrum more complicated. 

 

In this work we study, theoretically and experimentally, the CEP dependence of the 

high-harmonic spectra generated from atoms and molecules in the few-cycle pulse regime.  

Using a linearly or a time-dependent polarized CEP stabilized few-cycle pulse, we measure 
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the CEP dependence of the high-harmonic spectra in CO2, neon and argon gases.  To 

analyze the observed spectra, we simulate the high-harmonic spectra as a function of CEP 

values using the strong field approximation (SFA) [18].  By comparing the observed 

spectra with the calculated spectra, the following information can be obtained: (a) the 

number of single attosecond emissions that contribute to the total high-harmonic 

spectrum in a given harmonic range, and (b) the phase difference between the adjacent 

single attosecond pulses.  We confirm that the characteristic peak separation observed in 

the middle range of the high-harmonic spectra from CO2 can be accounted for by the 

interaction between the three attosecond pulses, without considering other effects such 

as dynamical interference, chirp of the driving laser pulse or the propagation (phase 

matching) effects.  For neon and argon, we employ a time-dependent polarized pulse 

technique  [15,17] to reduce the number of attosecond pulses while keeping the same 

driving laser pulse duration. We demonstrate that the spectral features of CO2 and neon 

can be simulated by using a suitable pulse duration. 

 

II. EXPERIMENTAL SETUP 

FIG. 1 illustrates the experimental set-up.  We generate CEP-stabilized laser pulses from a 

multi-pass Ti:Sapphire amplifier (single-stage Dragon system from KMLabs, 800 nm, 1 kHz, 

35 fs). The Ti:Sapphire crystal is cooled down to 45K with a specially designed 

vibration-isolated cryo-cell system.  The typical output pulse energy is about 1.85 mJ per 

pulse.  The CEP of the oscillator laser pulse is measured with an f-to-2f interferometer 

(Menlo Systems, XPS-800) and stabilized by adjusting the length of the cavity in the 

Ti:Sapphire oscillator with a feedback loop.  We measure the CEP value of the amplified 

pulses with a single-shot f-to-2f interferometer (Menlo Systems, APS-800). To compensate 

for the slow CEP drift during the amplification process, we adjust the grating separation in 

the pulse compressor with a piezoelectric device [17].  The output pulse is compressed to 

about 5 fs by using a hollow-core fiber compressor and a set of chirped mirrors  [19].  

We use a 1 m long hollow core glass capillary with 250 micron inner diameter, filled with 

argon gas to broaden the pulse spectrum by self-phase modulation.  A pressure gradient 

with low pressure at the input end and high pressure at the output end is employed to 

avoid ionization of the gas at the entrance of the capillary.  We compensate the group 

velocity dispersion of the laser pulse with a set of chirped mirrors (Femtolasers GSM014) 

to reduce the pulse duration down to about 5 fs.  The pulse duration is measured with a 
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home-built SPIDER [20]. For the experiments in which polarization gating was employed, a 

crystalline quartz plate with a thickness of 0.2 mm and a quarter wave plate were inserted 

into the beam path [15].   

 

The laser beam is focused with a 500 mm focal length spherical mirror into a vacuum 

chamber.  Harmonics are generated in a pulsed gas jet that is placed slightly before the 

laser focus.  The length of the gas in the direction of laser propagation was about 0.5 mm, 

and the agreement with single-atom high harmonics generation (HHG) calculations 

confirms that good phase matching was achieved  [21].  In order to capture the 

harmonic spectrum generated by a single driving laser pulse from the 1 kHz laser pulse 

train, we reduce the repetition rate of the pulsed gas jet down to 50 Hz and as low as 10 

Hz for some experiments.  The high harmonic emission is spectrally dispersed by a 

flat-field XUV grating spectrometer (Hitachi, model 001-226).  The dispersed spectrum is 

detected by an imaging micro-channel plate (BURLE MCP) and captured by a CCD camera.  

We integrate the harmonics emission in the direction perpendicular to the dispersion axis 

to generate the high-harmonic spectrum. 

 

III. EXPERIMENTAL RESULTS 

FIG. 2(a) shows the measured high-harmonic spectra of CO2 as a function of CEP values 

generated by a linearly polarized pulse with peak intensity 3.0 x 1014 W/cm2 and pulse 

duration of ~5.5 fs.  The CEP is varied in the –π to π range in 0.17 π increments using the 

APS 800 software control.  We accumulate 20 spectra for each CEP value.  For harmonic 

orders below 21, the position of the harmonics is almost independent of the CEP, while the 

spectral intensity modulates slightly as the CEP changes.  For harmonic orders 21-27, the 

adjacent harmonics are separated by approximately one photon order of the driving laser 

field, ~1.55 eV, instead of the usual two photons for odd harmonics.  For harmonic orders 

greater than 31, the adjacent harmonic peaks are separated by two photons.  A similar 

one photon separation in the middle range of the spectrum is also observed in 

CEP-dependent high-harmonic spectrum of N2 (not shown).   

 

FIG. 2(b) shows the CEP dependence of the high-harmonic spectra in neon gas generated 

by a polarization-gated pulse.  The harmonic peaks shift as a function of CEP values and 

the spectral intensity modulates with a π period of the CEP value significantly more than 
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that of CO2.  This modulation period is due to the fact that the amplitude of the driving 

electric field is repeated with this period.  The observed spectrum of neon is similar to 

the photoelectron spectrum reported in ref. [22].  In our case, the spectrum is confined in 

the range from harmonic order 35 (~55 eV) to harmonic order 51 (~80 eV), though the 

spectrum is measured without a spectral filter.  The adjacent harmonic peaks are 

separated by approximately two harmonic orders. Like in the case of CO2, the position of 

the low harmonics is not affected by the CEP. 

 

Figure 2(c) shows the CEP dependence of the high-harmonic spectra in argon produced 

using the same time-dependent polarization pulse as in neon.  As has been reported in 

Ref. [21], the intensity of the harmonics is minimized around 51 eV.  The photon energy 

of the harmonic peaks observed below harmonic 29 is independent of the CEP value while 

in the range from harmonic 41 to 49, the photon energy of the harmonic peaks shifts as a 

function of CEP and the intensity is slightly modulated.  

 

We now want to investigate why the positions of the harmonic orders are affected by the 

CEP.  For a long laser pulse, with many optical cycles, by symmetry the harmonic orders 

must correspond to odd multiples of the laser frequency [23].  When the laser pulse is 

composed of only a few optical cycles, this symmetry breaks down.  The position of the 

harmonic orders can then differ from exactly odd harmonics of the laser frequency, and 

can depend on the exact shape of the laser pulse. 

 

IV. SFA MODEL 

We model the experimental results using a simple strong field approximation (SFA) 

model [18] using the implementation suggested in  [24]. The laser field is described by a 

carrier frequency with a Gaussian envelope to give the desired full width at half magnitude 

(FWHM) duration, i.e.  

 

)cos()/)2ln2(exp()( 0
22

0 φωτ −−= ttEtE p .               (1) 

 

Here E0 is the peak laser electric field, t is time, τp is the FWHM pulse duration,  ߱଴  is the 

laser angular frequency corresponding to a wavelength of 800 nm, and ߶ is the carrier 
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envelope phase (CEP or CE Phase).  It was ensured that the vector potential at the end of 

the pulse was zero, i.e. the integral of the electric field was zero.  The peak intensity was 

chosen to be 2.1x1014 W/cm2 and the ionization potential was 13.77 eV.  A flat 

recombination dipole matrix element was used, i.e. ݀ሺ߱ሻ ൌ 1.  The SFA calculation 

produced the electric field vs time of the XUV emission.  This field was 

Fourier-transformed to produce the high harmonic power spectrum.  The CEP was varied 

for each laser condition, resulting in a two-dimensional plot of the high harmonic 

spectrum versus CEP. 

 

FIG. 3 shows the calculated harmonic spectra for FWHM pulse durations τp of (a) 11 fs, (b) 

7.0 fs, (c) 5.0 fs, and (d) 3.5 fs, respectively. For τp = 11 fs, the harmonic spectra are almost 

independent of the CEP value in the low and middle harmonic spectral ranges. In the 

cut-off region, the harmonic peaks shift slightly as a function of CEP and sub-peaks appear 

between the odd harmonics. For τp= 7.0 fs, the location of the harmonic peaks varies with 

the CEP value in both middle and cut-off ranges. In the middle spectral range the 

harmonic peaks are separated by approximately one harmonic order at certain CEP values, 

and by approximately two harmonic orders in the cut-off range.  These spectral features 

are consistent with the observed high-harmonic spectra of CO2 shown in FIG. 2(a).  The 

calculations also show that for the longer pulse durations, there are additional peaks 

between the usual odd harmonic orders for the higher photon ranges.  For the shorter 

pulse durations, these additional peaks disappear, leading to emission with the usual 

2-photon spacing.  However, the positions of the peaks shift as the CEP value is varied.  

This behavior is consistent with that shown numerically for the case of short pulses 

produced by polarization gating  [25], and with that shown analytically  [26]. 

 

We characterize the CEP dependence of the positions of the harmonic orders around 

harmonic 35 by the slope ݀ݍ/݀߶, where ݍ ൌ  ߱/߱଴ is the harmonic order and ߶ is the 

CEP.  This slope increases for shorter pulse durations: at 11 fs there is little evidence of 

shifting peaks, at 7 fs it is dݍ/݀߶ ൌ െ1/ߨ, at 5 fs it is ݀ݍ/݀߶ ൌ െ2/ߨ, and at 3.5 fs it is ݀ݍ/݀߶ ൌ െ4/ߨ.  The experimental results in FIG. 2 show a slope of ݀ݍ/݀߶ ൌ െ2/ߨ, 

which corresponds to the SFA calculations for τp = 5 fs. For the calculation at τp = 3.5 fs, the 

spectral intensity of the harmonic peaks is modulated significantly as a function of CEP 

values, as is observed experimentally in FIG. 2(b). This modulation is mainly caused by the 
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fact that the tunnel ionization probability depends on the CEP values. 

 

V. ANALYTIC MODEL 

To further understand the behavior predicted by the SFA calculations in FIG. 3, we 

illustrate the relationship between the spectral phase and the photon energy shift of the 

harmonic peak using a simple analytic model. Using this simple approach, we are able to 

qualitatively understand the CEP dependence of the spectra in FIG. 2.   

 

We first consider the case of a very short driving laser field, where only two single 

attosecond emissions contribute to the total high-harmonic spectra.  To make it more 

clear, we assume that the two attosecond pulses are identical except for a time delay and 

a phase shift.  At a small photon energy range centered around the XUV frequency ߱, the 

total radiating dipole moment, ܦሺݐሻ, is given by the sum of the two attosecond pulses, 

labeled 1 and 2, each represented by d(t), 

ሻݐሺܦ  ൌ ݀ሺݐሻ ൅ ݀ሺݐ െ ଴ܶሻexp ሺ݅ሺߨ ൅  ଵଶሻሻ.                 (2)ߠ

 

Here ଴ܶ ൌ  ଴ is half of the optical period of the 800 nm laser field.  The second pulse߱/ߨ

is delayed in time by T0 and inverted in sign (by the ߨ phase shift).  Here ߠଵଶ is an 

additional phase difference between the two single attosecond pulses at that energy, in 

addition to the delay and sign inversion. The spectral amplitude, ܦሺ߱ሻ, is given by the 

Fourier transform of ܦሺݐሻ, 

ሺ߱ሻܦ  ൌ ׬ ሻݐሺܦ expሺെ݅߱ݐሻ ݐ݀ ൌ ݀ሺ߱ሻሾ1 ൅ exp ሺ݅ሺߨ ൅ ߱ ଴ܶ ൅  ଵଶሻሻ ሿ.     (3)ߠ

 

Here ݀ሺ߱ሻ is the Fourier transform of the single attosecond pulse represented by d(t). 

The power spectrum is the absolute square of ܦሺ߱ሻ, 

 ܵሺ߱ሻ ൌ ሺ߱ሻ|ଶܦ| ൌ 2|݀ሺ߱ሻ|ଶሾ1 ൅ cosሺߨ ൅ ߱ ଴ܶ ൅  ଵଶሻሿ           (4)ߠ

 

The term in square brackets modulates the spectrum of the single attosecond pulse, with 

peaks appearing when ߨ ൅ ߱ ଴ܶ ൅ ଵଶߠ ൌ  where n is an integer.  For example, when ,ߨ2݊

the relative phase between the two attosecond pulses is ߠଵଶ ൌ 0, this relation becomes 
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߱ ൌ ሺ2݊ ൅ 1ሻ߱଴, i.e. odd harmonics of the driving laser frequency. When ߠ ൌ  the ,ߨ

relation becomes ߱ ൌ 2݊߱଴, i.e. even harmonics.  In general, the spectral peaks occur 

at ఠఠబ ൌ 2݊ െ 1 െ  (5)                           .ߨ/ଵଶߠ

Thus, any additional phase difference between attosecond pulses can shift the positions of 

the harmonic orders in the spectrum.  Here ߠଵଶ is actually a function of ߱, and it is 

non-zero if the alternate half-cycles of the laser pulse are not identical.  This occurs when 

the amplitudes of the half-cycles are different.  For a short pulse, it can be seen that 

changing the CEP will cause the amplitudes of half-cycles to differ, and hence will lead to a 

shift in the high harmonic peaks. 

 

When three single attosecond emissions, labeled 1, 2 and 3, contribute to the total 

high-harmonic spectra, the total dipole moment is given by 

ሺ߱ሻܦ  ൌ ݀ሺ߱ሻሾ1 ൅ exp൫݅ሺߨ ൅ ߱ ଴ܶ ൅ ଵଶሻ൯ߠ ൅ expሺ݅ሺ2ߨ ൅ 2߱ ଴ܶ ൅  ଵଷሻሻ ሿ     (6)ߠ

 

where ߠଵଶ and ߠଵଷ are the phase differences from the phase of the first single emission. 

By squaring the factor in square brackets as before, and looking for what frequencies 

correspond to peaks in the spectrum, we find interferences between all three terms: ఠఠబ ൌ 2݊ െ 1 െ  (7)                           ߨ/ଵଶߠ

ఠఠబ ൌ ݊ െ  (8)                             ߨଵଷ/2ߠ

ఠఠబ ൌ 2݊ െ 1 െ  (9)                           ߨ/ଶଷߠ

The two terms, Eq. 7 and Eq. 9, can correspond to either even or odd harmonics.  This 

can cause the harmonic peaks to be separated by approximately one harmonic number as 

seen in FIG. 3(b).  The term in Eq. 8 can been seen to be the average of Eqs. 7 and 9, and 

so gives a peak between the other two peaks. 

 

This simple model illustrates the three regimes of CEP dependence observed in FIG. 2 and 

FIG. 3.  For the lower harmonic orders which are produced even at the lowest intensity 
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part of the pulse temporal envelope, there is no CEP dependence on the position of the 

peaks, because many half-cycles contribute to the emission and there is little difference 

between adjacent half-cycles (ߠ is small).  In the middle part of the spectrum, only a few 

half-cycles contribute, resulting in a mixture of even, odd, and shifted harmonic orders.  

Near the cutoff, only the highest intensity part of the pulse contributes, and for a short 

pulse duration this means only two attosecond pulses contribute to the signal.  This 

produces odd harmonics only, that are shifted linearly by the phase difference between 

them. 

 

We now calculate the actual phases of each single attosecond pulse using a realistic laser 

field.  In this model, we include three single attosecond pulses generated around the 

center of the laser pulse envelope. In Appendix A, we illustrate schematically the electric 

field of the driving laser pulse and the electron trajectories that will be considered (Fig. 

A-1). The phase accumulated during each trajectory with canonical momentum p is the 

Volkov phase, calculated as ܵሺݐ, ,ᇱݐ ሻ݌ ൌ ׬ ൫௣ା஺ሺఛሻ൯మଶ ݀߬ ൅ ݐ௣ሺܫ െ ᇱሻ௧௧ᇱݐ .                   (10) 

 

This Volkov phase includes both the phase of continuum electron and the phase of the 

bound wave function.  It does not include the emission time term, since we are only 

interested in differences and the emission time cancels. 

 

Using Eq. 10, we calculate the spectral phase of three single emissions labeled as 1, 2, 3 

and the phase difference between the adjacent single emissions as a function of the CEP 

values. FIG. 4 shows the results of the calculation for the (a) 35th and (b) 27th harmonics.  

The circle (or square) data points in FIG. 4 show the phase difference between the 1st and 

2nd attosecond emissions, referred to as ߠଵଶ (or the difference between the 2nd and 3rd 

single emissions, ߠଶଷ ), respectively. For FIG. 4(a), since only two single attosecond 

emissions contribute to the total harmonic emission except for the small range around CEP 

of 0 (see also Fig. A-3 in Appendix A), only a single phase difference, either ߠଵଶ or ߠଶଷ, 

contributes to the harmonic peak in the spectrum. On the other hand, for FIG. 4(b), since 

three trajectories contribute to the total harmonic emission, both phase difference 

terms ߠଵଶ and ߠଶଷ lead to the harmonic peaks in the spectra which are separated by one 
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harmonic order. In FIG. 4, we also plot the phase difference between the 1st and 3rd single 

emissions, ߠଵଷ/2, as triangle data points for each harmonic order.  

 

Next, we focus on the slope ݀ݍ/݀߶, i.e. how quickly the harmonic peaks shift as the CEP 

is varied. We need two pieces of information to do this – the dependence of the CEP on 

the Volkov phase S (Eq. 10), and the dependence of the predicted peak frequencies on the 

attosecond pulse phase differences ߠଵଶ etc. (Eqs. 5,7-9).  FIG. 4 determines the slope ݀ߠଵଶ/݀߶, and Eqs. 5,7-9 determine the slope ݀ߠ݀/ݍଵଶ. The product of these two slopes 

gives us the desired ݀ݍ/݀߶. The square (or circle) data points in FIG. 5 show the CEP as a 

function of the harmonic order, converted from ߠଵଶ (or ߠଶଷ) for (a) 35th and (b) 27th 

harmonic order, respectively. As expected, for the 35th order, the two peaks are separated 

by approximately two harmonic orders while for the 27th order, they are separated by 

approximately one harmonic order. For reference, we plot the solid line in FIG. 5 with a 

slope of ݀2 - = ߶݀/ݍ/π for (a), and with a slope of ݀1 - = ߶݀/ݍ/π for (b), respectively. 

The calculated data points deviate slightly from a linear slope.  In fact, the slope varies 

with the harmonic order and it becomes steeper as the harmonic order increases.  The 

details of the calculation are described in Appendix A.   

 

VI. MEASUREMENT OF CEP USING HIGH HARMONICS SPECTRA 

We have shown above that the positions of the high harmonic peaks shift as the laser 

pulse CEP value is varied.  We now show that we can use this relationship to measure the 

CEP value of each laser pulse. Stability of CEP in the driving laser pulse is crucial for 

attosecond pulse generation and measurements  [1,4]. The CEP value has been measured 

with methods such as single-shot f-to-2f interferometry  [14] or stereo ATI [27].  In this 

study, we use the CEP-dependent harmonic spectra to estimate the CEP stability of the 

driving laser pulse.  We reduce the repetition rate of the HHG so that the CCD camera can 

record single-shot HHG spectra.  To do this, we employ a pulsed gas jet whose pulse 

duration is shorter than the 1 ms period of the laser pulses [28], so that harmonics are 

produced by only a single laser pulse.  The pulsed valve repetition rate is set to 10 Hz, 

slow enough to read out each spectrum with the CCD camera. 

 

Figure 6 shows the observed photon energy of the harmonic peaks as a function of the 

CEP values in two regions of the spectra.  The data points are taken from FIG. 2(a).  The 
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data deviates lightly from a linear relationship between the photon energy and the CEP 

value, which is seen in the calculated spectra in FIG. 3(b) and FIG. 5 as well. It is clearly 

visible that the two adjacent harmonic peaks are separated by two harmonic orders in the 

cut-off region but by only one harmonic order in the middle range of the spectrum.  The 

slope in the cut-off region is 0.46 radians per harmonic order. The positions of the peaks 

are quite insensitive to the laser intensity; according to an SFA calculation, a േ10% change in the laser intensity changes the peak position by 0.09߱ in both regions; 

this is much smaller than the size of the symbols shown in Figure 6. 

 

Using this relationship between CEP value and the shift of the harmonic peak, we can 

estimate the single-shot CEP stability of the driving laser pulses. We fit the data points 

using a linear least squares method. Using the slope, we convert the observed photon 

energy peak to CEP values. Figure 7(a) shows the high harmonic spectra of CO2 measured 

for each single laser shot while the APS 800 software stabilized the CEP value.  The 

intensity of the spectra is represented by color-coding.  Figure 7(b) shows the spectrum 

for one of the laser shots.  In Fig. 7(c), we plot the CEP value converted from the 

observed harmonic spectra for each laser shot.  Figure 7(d) shows the distribution of CEP 

values over the measured single shot spectra.  The root-mean-square of the CEP 

deviation is 0.17 radian.  This value is slightly smaller than that measured by our 

single-shot, f-to-2f optical interferometer, which is 0.19 radian.   

 

VII. CONCLUSION 

In summary, we have demonstrated that the CEP dependence of the high harmonic 

spectra in CO2, neon and argon can be analyzed by simple SFA calculations.  We have 

confirmed that the physical origin of the extra peaks that appear in the middle range of 

the CO2 spectrum can be explained by the spectral interference between three individual 

attosecond pulses. Finally, we conjecture that the CEP dependence of the harmonic 

spectra can possibly be sensitive to a spectral phase jump at a certain energy which may 

occur in the re-combination process, e.g. the Cooper minimum in argon, because the 

spectral positions as a function of CEP can be related to the energy difference between 

two adjacent harmonics. 
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APPENDIX A 

In this Appendix, we describe the details of calculation for Fig. 4.  We calculate the Volkov 

phase (Eq. 10) of three single attosecond emissions as a function of carrier-envelope phase 

(CEP).  In Fig. 8, we illustrate the electric field of a driving laser pulse at CEP = 0 and the 

electron trajectories that are considered.  Near each peak of the laser field, the electron 

is released into the ionization continuum by tunnel ionization.  The electron re-collision 

with the parent ion generates a single attosecond emission.  This process occurs twice 

within one optical cycle in the driving laser pulse.  Spectral interference between the 

different half-cycle emissions determines the positions of the peaks seen in the HHG 

spectra (see text). We consider three single attosecond emissions around the center of the 

electric field that are labeled as 1, 2 and 3.  

 

First, we calculate the Volkov phase of each single emission as a function of CEP using Eq. 

10. Fig. 9 plots the calculated phases as a function of harmonic order at CEP of (a) 0 and 

(b) - π��, respectively.  In the cut-off range, two single emissions contribute to the total 

harmonic spectra while in the middle range three single emissions contribute to the total 

emission.  As expected, the Volkov phase depends on the value of CEP.  

 

We select two harmonic orders, i.e. 27th and 35th and calculate the CEP dependence of the 

Volkov phases for each attosecond emission.  Fig. 10 plots the calculated Volkov phases 

for attosecond emissions labeled as 1, 2, and 3, i.e., ߠଵ, ߠଶ, and ߠଷ, as a function of CEP 

for (a) 35th and (b) 27th harmonic order, respectively.    

 
For 35th harmonic order, two attosecond emissions contribute to the harmonic spectrum 

except for the value around CEP of 0, while for 27th harmonic order, three emissions 

contribute to the harmonic spectrum for all values of the CEP.  For each harmonic order, 

we take the phase difference between the first and the second (ߠଵଶ), the second and the 

third (ߠଶଷ) and the first and the third (ߠଵଷ) as a function of CEP.  The results are plotted in 
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Fig. 4 in the main text.  
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FIG. 1. (Color online) Schematic diagram of the experimental set-up. A KMLabs Dragon 

femtosecond laser system is employed.  The carrier-envelope-phase stabilized amplified 

laser pulses are passed through an argon gas filled hollow core fiber of 250 micron inside 

diameter to broaden the spectrum.  The pulses are then compressed by a set of chirped 

mirrors to duration of about 5 fs.  The CEP is measured after the pulse compression using 

a Menlo Systems APS 800.  The compressed pulses are focused into a pulsed gas jet 

inside a vacuum chamber to generate the high harmonic emission that is detected with an 

XUV spectrometer. 
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FIG. 2. (Color online) The experimentally measured high-harmonic spectra as a function of 

the carrier-envelope phase of the driving laser field for three different gases.  (a) CO2 gas 

and a linearly polarized pulses with a duration of 5.5 fs and an intensity of 3.0x1014 W/cm2.  

(b) Ne gas and polarization gating to reduce the pulse duration below 5 fs. (c) Ar gas and 

the same polarization gating technique as in (b).   
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FIG. 3. (Color online) Calculated high-harmonic spectra as a function of the 

carrier-envelope phase of the driving laser field.  The strong field approximation (SFA) 

model is used to calculate the spectrum at each CEP value.  The peak laser intensity is 

2.1x1014 W/cm2 at a wavelength of 800 nm.  The recombination dipole moment is set to 

unity and the ionization potential is 13.77 eV.  Full width at half maximum intensity 

(FWHM) of pulse durations are (a) 11 fs, (b) 7 fs, (c) 5 fs, and (d) 3.5 fs.  The left column 

shows the dependence of the spectra on the CEP value.  The middle column shows the 

time-frequency dependence for CEP=0 (relative to a cosine field).  The right column 

shows the time-frequency dependence for CEP = π/2.   



18 
 

 

 

 

FIG. 4.  (Color online) The calculated phase difference between the two adjacent single 

attosecond emissions in two energy regions, (a) 35th and (b) 27th harmonic order.  The 

square (or circle) data points represent the phase difference between the 1st and the 2nd 

single emissions, ࣂ૚૛, (or the 2nd and the 3rd single emissions, ࣂ૛૜), respectively (see 

text). The triangle data points are plots of ࣂ૚૜/2.  The solid lines are plots of the linear 

relationship between the CE phase and the phase difference with a slope of (a) ࣘࢊ/ࣂࢊ = 

2 and (b) ࣘࢊ/ࣂࢊ ൌ 1, respectively. 
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FIG. 5. (Color online) The simple analytic model presented in the text predicts the position 

of the harmonic orders as a function of the CEP.  Here the harmonic order positions are 

derived from the phase differences between adjacent attosecond pulses  ࣂ૚૛ (square) and ࣂ૛૜ (circle), for (a) 35th and (b) 27th harmonic orders, respectively. As a reference, we plot 

the solid line with a slope of 2 - = ࣘࢊ/ࢗࢊ/π for (a), and with a slope of 1 - = ࣘࢊ/ࢗࢊ/π 

for (b). 
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FIG. 6. (Color online) The position of the experimentally observed high harmonic peaks 

(circle and square data points) as a function of the value of CEP in the (a) plateau and (b) 

cut-off range of high harmonic spectra of CO2.  The data points are obtained from the 

individual spectra shown in FIG. 2(a).  The CEP causes the location of the peaks to shift. 

The straight lines are a least squares fit to the data.  The positions of the peaks are quite 

insensitive to the laser intensity; according to an SFA calculation a േ૚૙% change in the 

laser intensity changes the position by 0.09 ࣓ in both regions. 
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FIG. 7.  (Color online) (a) The high-harmonic spectrum of CO2 experimentally measured 

for individual laser shots.  This provides a measure of the CEP stability of the laser system 

based on the HHG measurement rather than an optical measurement.  The intensity is 

represented by color coding. (b) The high-harmonic spectrum corresponding to the first 

shot.  (c) The value of CEP evaluated from the spectrum at each shot.  (d) The statistics 

of the value of CEP. 
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FIG. 8. (Color online) A schematic illustration of the electric field of a driving 

laser pulse at CEP = 0 and the electron trajectories that are considered.  
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FIG. 9. (Color online) The calculated spectral phase (Volkov phase) of each single 

attosecond emission as a function of the harmonic number at a pulse duration of 

7.0 fs and a CEP of (a) 0 and (b) - π��, respectively.  The numbers in the figures 

correspond to the half-cycles noted in Fig. 8 schematically.  
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FIG. 10. (Color online) The calculated Volkov phases as a function of CEP for each 

single attosecond emission for (a) 35th and (b) 27th harmonic order, respectively.  

The square data points are the plots of the Volkov phase of the first emission (ߠଵ), 

the circles are the second (ߠଶ), and the triangles are the third emissions (ߠଷ), 

respectively.   

 

 


