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The electron angular distribution after atomic photoionization by the fundamental frequency and
its second harmonic is analyzed for a case when the frequency of the fundamental scans the region
of an intermediate atomic state. The angular distribution and its left-right asymmetry, due to
the two-pathway interference between nonresonant one-photon and resonant two-photon ionization,
sharply change as function of the photon energy. The phenomenon is exemplified by both solving the
time-dependent Schrödinger equation on a numerical space-time grid and by applying perturbation
theory for ionization of the hydrogen atom in the region of the 1s-2p transition for femtosecond
pulses as well as an infinitely long exposure to the radiation. Parameterizations for the asymmetry
and the anisotropy coefficients, obtained within perturbation theory, reveal general characteristics
of observable quantities as functions of the parameters of the radiation beam.

PACS numbers: 32.80.Rm, 32.80.Fb, 32.80.Qk, 32.90.+a

I. INTRODUCTION

Two-pathway interference is one of the key phenom-
ena of quantum physics discussed in various aspects since
the early days of quantum mechanics. The phenomenon
manifests itself when the final state of a system can be
reached by two independent paths from the same initial
state. Then the probability to find the system in the final
state is the squared magnitude of the sum of the tran-
sition amplitudes related to each of the paths. In addi-
tion to the absolute values of the amplitudes, this prob-
ability contains an interference term. Manipulating the
two-pathway quantum interference is one of the practical
methods to realize so-called “coherent control” of quan-
tum phenomena [1–3], which is usually implemented by
coherent light sources.

Two-pathway coherent control of photoionization and
photodissociation has attracted much attention during
the past two decades, from both experiment and theory
alike. In studies controlling the total yield of the reaction
products, which is one of the important goals of photo-
chemistry, an ionization scheme employing the first and
third harmonics (ω+ 3ω) is appropriate, as well as other
schemes with either both odd or both even numbers of
photons participating in the two pathways (see, for exam-
ple, refs. [4–9]). On the other hand, interference between
the absorption amplitudes for even and odd numbers of
photons, e.g., in ω + 2ω photoionization, does not con-
tribute to the total yields. In this case, however, an effect
appears in angle-resolved observations [10–12]. Coherent
control via the two-pathway interference was reviewed,
for example, in [3, 13–15].

The recent commissioning of X-ray free-electron lasers
(XFELs) and achievements in high-harmonic generation
(HHG) have opened a new avenue in these investigations,
extending them to the extreme ultraviolet (XUV) and
X-ray wavelength regimes as well as femtosecond (fs)

and attosecond (as) time domains. The present study
was initially stimulated by the fact that radiation from
XFELs usually contains a small fraction of the second
harmonic. The latter is sometimes difficult to filter out,
but it can strongly influence experimental data on the
various parameters for two-photon ionization. Despite
the relatively small intensity of the second harmonic, ion-
ization by photons with frequency 2ω (second harmonic,
first-order process) may compete with, or even dominate,
two-photon ionization by photons with frequency ω (fun-
damental, second-order process) [16], thereby causing un-
certainty and potential ambiguity in the interpretation of
the results. Consequently, it is important to study the
interplay between the two ionization paths for particular
experimental conditions. This interference may also be
used to one’s advantage in measuring the phase between
the second harmonic and the fundamental. This is an
important characteristic of an XFEL beam, but at the
moment it can only be estimated by theoretical simula-
tions of the laser pulse generation.

Consider atomic ionization processes in a linearly po-
larized bichromatic field, i.e., an electric field of the form

E(t) = F (t) [cos(ωt+ φ1) + η cos(2ωt+ φ2)] (1)

with frequencies ω (fundamental radiation) and 2ω (sec-
ond harmonic). We take the same envelope function F (t)
for both the fundamental and the second harmonic, while
the ratio of the amplitudes is specified by the real pa-
rameter η (η > 0). The corresponding carrier-envelope
phases (CEPs) are denoted by φ1 and φ2, respectively.
In making the dipole approximation, we neglect any spa-
tial dependence of the field. Equation (1) implies that
pulses of the fundamental and the second harmonic are
not shifted in time, but potential effects of a time delay
will also be briefly considered below.

Ionization by the field (1) from the same initial atomic
state possesses interesting features due to the fact that



2

the final states of the processes induced by the two field
components are orthogonal: they lead to photoelectron
partial waves with opposite parities. While interfer-
ence between one-photon and two-photon ionization may
be observed in the photoelectron angular distributions
(PADs; see [11, 12, 17–19] and many more works), it
vanishes in the angle-integrated cross section unless an
external electric field is applied [20, 21]. For a linearly
polarized bichromatic radiation beam, the interference
manifests itself in the asymmetry of the PAD with re-
spect to the plane perpendicular to the electric field of
the radiation; see Fig. 1 (a). [We choose the Z-axis of the
coordinate system along the polarization direction.] The
origin of this “left-right” asymmetry is a nonzero time-
average cube of the electric field,

〈
E3
〉
6= 0, while the time

average of the field itself vanishes, i.e., 〈E〉 = 0 [22, 23].
The asymmetry exhibits sinusoidal modulations as func-
tion of the relative phase between the harmonics. Values
as large as 4:1 for emission in opposite directions were
observed in experiments [12] on photoionization of the
Rb 5s 2S1/2 state.

It is important to note that the above considerations
refer to the “multiphoton regime” of ionization, i.e.,
to comparatively weak fields with a Keldysh parameter
γ2 = 2ω2U/I � 1 (here U is the ionization threshold and
I is the peak intensity of the radiation in atomic units)
and for pulses that contain many optical cycles. We as-
sume that these conditions are fulfilled. Stronger fields
and shorter pulses may lead to left-right asymmetries al-
ready for one-color ionization (see, for example, [24]).

An interesting open question concerns the potential
effects of an intermediate state in the two-photon ioniza-
tion path on the interference between the ω+ 2ω ioniza-
tion ways, specifically to what extent such a state may
influence the PADs. To our knowledge this discussion is
currently still missing in the literature, although an in-
termediate resonance was used by Yin et al. [25] in their
observation of two-path coherent control in a bound-free
transition for the molecular NO system.

In the present manuscript we investigate this very
point theoretically. We consider the prototype of photo-
ionization of the hydrogen atom from its 1s ground state
for photon energies near the excitation energy of the
2p state (0.375 a.u., corresponding to a wavelength of
121.6 nm), as shown schematically in Fig. 1(b). Studying
atomic hydrogen avoids the difficulties associated with
the description of a many-electron target and hence al-
lows us to concentrate on the properties of the ionization
process by the bichromatic field.

This paper is organized as follows. In the next section
we present the theory of the PADs for ω+ 2ω ionization,
considering the general aspects and concentrating on the
formalism of perturbation theory applied to ionization of
an s-electron. Parametric formulas for the anisotropy pa-
rameters and asymmetry in the PADs are derived for the
region of the intermediate state in the two-photon ioniza-
tion branch. Section III presents numerical results for the
hydrogen atom, which were obtained by direct numeri-

FIG. 1: (Color online) Geometry (a) and level scheme (b) of
the ω+2ω process. The quantization (Z) axis is chosen along
the linearly polarized laser field.

cal solution of the time-dependent Schrödinger equation
(TDSE) and within nonstationary perturbation theory
(PT). The results are analyzed and the possibility of per-
forming a “complete experiment”, in which all transitions
amplitudes are determined, is discussed. We finish with
a brief summary.

II. THEORY

Within the dipole approximation and for an isotropic
target, the PAD possesses axial symmetry about the po-
larization direction and is given by (for example, [26])

dW

dΩ
=
W0

4π

[
1 +

K∑
k=1

βkPk(cos θ)

]
. (2)

Here θ is the electron emission direction with respect to
the electric field of the linearly polarized radiation, while
W0 is the angle-integrated ionization probability. The
βk denote the anisotropy parameters, expressed in terms
of the photoionization amplitudes. For one-photon ion-
ization alone, only k = 2 contributes; for two-photon
ionization k = 2, 4. Any asymmetry with respect to
θ = 90◦ is described by contributions from odd-rank
Legendre polynomials, Pk(cos θ) (k odd). For a com-
bination of one-photon and two-photon ionization paths,
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specifically, contributions from k = 1, 2, 3, 4 should be
accounted for. The odd polynomials appear due to coher-
ent creation of photoelectron partial waves with opposite
parities by the fundamental and the second harmonic of
the radiation [12, 18].

In order to quantify the interference in the PADs, we
introduce the angle-differential asymmetry

A(θ) =
I(θ)− I(180◦ − θ)
I(θ) + I(180◦ − θ)

, (3)

where I(θ) is the intensity of the electron flux at the an-
gle θ. In particular, A(0◦) corresponds to the differential
left-right asymmetry. It can be expressed in terms of the
anisotropy parameters βk from Eq. (2) as

A(0◦) =

∑
k=1,3,... βk

1 +
∑
k=2,4,... βk

. (4)

The differential asymmetry is a function of the pulse pa-
rameters, such as the energy and intensity of the radia-
tion, the envelope of the pulse, the relative contribution
of the second harmonic, the carrier-envelope phases of
the fundamental and the second harmonic, and the time
delay between the fundamental and the second-harmonic
pulses. The asymmetry (4), as well as the parameters
βk, generally vary within the photoelectron line.

In this paper we consider pulses (1) with a sin2 enve-
lope, covering an integer number N (N � 1) of optical
cycles: F (t) = F0 sin2 Ωt (Ω = ω/2N , 0 ≤ t ≤ NT )
and F (t) = 0 otherwise. Here T = 2π/ω is the optical
period while F0 is the field amplitude of the first har-
monic (c.f. Eq. (1)). For N � 1 only the relative phase
φ = φ2−φ1 is essential in Eq. (1), but not the individual
carrier-envelope phases φ1 or φ2. We set φ1 = 0 below.

We used two methods to calculate the photoelectron
spectra and the asymmetry parameters βk. In the first
approach, we solved the TDSE as described in detail
in [27]. The code was recently modified to run efficiently
on parallel architectures such as those provided by mod-
ern supercomputers like STAMPEDE [28]. Starting from
the 1s state of atomic hydrogen, we propagate the initial
wavefunction in time to the end of the pulse (tend = NT )
and then project the resulting wave packet on the sta-
tionary continuum states of the Coulomb field to find
the partial-wave ionization amplitudes. The latter are
combined to give the photoelectron spectrum and the
anisotropy parameters βk. The accuracy of the code has
been checked many times over the years [29–31]. We are
confident in the numerical correctness of its predictions,
basically within the thickness of the lines for any of the
physically significant parameters.

In the second method, the amplitudes were obtained
within first-order and second-order time-dependent per-
turbation theory (PT). While the accuracy of the TDSE
calculations for hydrogen are limited only by the numer-
ics of the chosen space-time grid, the PT predictions are
approximate already due to the original formulation. On
the other hand, the calculation is much less laborious.

The results should, of course, only be used within the
domain of the PT’s applicability. As we will illustrate
below, they are particularly useful for analytically study-
ing the dependence of the predictions on a wealth of laser
parameters.

After ionization by a single photon of the second har-
monic, the 1s bound electron becomes a p-photoelectron,
while it becomes either an s- or d-electron (via interme-
diate real or virtual p-states) in two-photon absorption
of the fundamental. In first and second order, the ioniza-
tion amplitudes from the 1s state are expressed in terms
of the matrix elements

U (1) ≡ 〈Ep | Û (1) | 1s〉

= −i〈Ep|D̂|1s〉
∫ NT

0

ei(E−E1s)t
′
E(t′)dt′

= −iD(1)
Ep,1s T

(1) (5)

and

U
(2)
l ≡ 〈El | Û (2) | 1s〉

= i2
∫∑
En

〈El | D̂ |Enp〉〈Enp | D̂ | 1s〉

×
∫ NT

0

ei(E−En)t
′
E(t′)

∫ t′

0

ei(En−E1s)t
′′
E(t′′)dt′′dt′

= −
∫∑
En

D
(2)
El,1s(En)T

(2)
En

(l = 0, 2), (6)

respectively. The time dependence is only contained here

in the factors T (1)(t) and T
(2)
En

(t), while the radial dipole
matrix elements in (5) and (6) are given by

D
(1)
Ep,1s = i e−iϕp

1√
3

∫ ∞
0

PEp(r)rP1s(r)dr (7)

and (for linearly polarized radiation)

D
(2)
El,1s(En) = il e−iϕl

1√
2l + 1

(10, 10 | l0)
2

×
∫ ∞
0

PEl(r)rPEnp(r)dr

∫ ∞
0

PEnp(r)rP1s(r)dr. (8)

Here P1s(r) and PEnp(r) are the radial electron functions
of the ground state 1s and the intermediate states Enp
with the energy En, respectively; PEl(r) and ϕl are the
Coulomb function and the Coulomb phase of the contin-
uum electron with the orbital momentum l and energy E;
(j1m1, j2m2 | jm) is a Clebsch-Gordan coefficient. The
matrix elements (7) and (8) are smooth functions of the
photoelectron energy.

The time-dependent factor in Eq. (5) is of the form

T (1) = F0

∫ NT

0

sin2(Ωt′) cos(2ωt′ + φ)ei(E−E1s)t
′
dt′ .

(9)
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In the rotating-wave approximation, which is well satis-
fied when N � 1, the phase φ in Eq. (9) can be decoupled
and just becomes a factor e−iφ.

The time-dependent factor of the second-order ampli-
tude (6) is of the form

T
(2)
En

= F 2
0

∫ NT

0

sin2(Ωt′) cos(ωt′)ei(E−En)t
′

×
∫ t′

0

sin2(Ωt′′) cos(ωt′′)ei(En−E1s)t
′′
dt′′dt′ . (10)

Using standard techniques (see, for example, [32]), one
obtains the following expressions for the anisotropy pa-
rameters:

β2 = 2W−10

[√
5<
(
U

(2)
d U (2)

s

∗)
+η2

∣∣∣U (1)
∣∣∣2+

5

7

∣∣∣U (2)
d

∣∣∣2] ; (11)

β4 =
18

7
W−10

∣∣∣U (2)
d

∣∣∣2 ; (12)

β1 = 2
√

3 ηW−10 <
[(
U (2)
s +

2√
5
U

(2)
d

)
U (1)∗

]
; (13)

β3 = 6

√
3

5
ηW−10 <

(
U

(2)
d U (1)∗

)
. (14)

Here

W0 = η2
∣∣∣U (1)

∣∣∣2 +
∣∣∣U (2)
s

∣∣∣2 +
∣∣∣U (2)
d

∣∣∣2 (15)

and <[X] denotes the real part of the complex quan-
tity X. Substituting Eqs. (11)−(15) into Eq. (4), we
obtain

A(0◦) =
β1 + β3

1 + β2 + β4

=
2
√

3 η<
[(
U

(2)
s +

√
5U

(2)
d

)
U (1)∗

]
3 η2

∣∣U (1)
∣∣2 +

∣∣U (2)
s +

√
5U

(2)
d

∣∣2 . (16)

Finally, the (dimensionless) probability for ionizing the
hydrogen atom during the entire pulse is

∫
W0dE.

When evaluating U
(2)
l numerically according to

Eqs. (6), (8), and (10), we included nine intermediate
discrete Enp states (n = 2, 3, . . . , 10) in Eq. (6). Fur-
ther increasing the number of intermediate states to 15
did not change the predicted anisotropy parameters for
photon energies in the region of the 1s − 2p transition
within the thickness of the lines.

Finally, we applied perturbation theory with infinitely
long “pulses” of constant amplitude F ′0. To calculate the
corresponding matrix elements, we assumed an adiabatic
switch-on/off of the field. Taking afterwards the integrals
over time in Eqs. (9) and (10), and considering the limit
NT →∞ we obtain the ionization rate

dW

dt
= 2πW0 δ(E − E1s − 2ω) , (17)

where U (1) and U
(2)
l are reduced to

U (1) = i
F ′0
2
e−iφD

(1)
Ep,1s , (18)

U
(2)
l = i

F ′20
4

∫∑
En

D
(2)
El,1s(En)

En − E1s − ω + i0
. (19)

Note that we omitted here some terms that are negligi-
ble in our spectral region of interest. To calculate the
second-order amplitude (19) we applied the variationally
stable procedure [33–35] with the same set of Slater or-
bitals used in [34] for two-photon ionization. As a check,
we reproduced the exact analytical [36] partial cross sec-
tions and angular anisotropy parameters for two-photon
ionization of atomic hydrogen with an accuracy of four
significant digits. We intend to use this approach also in
our future studies with many-electron targets, where the
exact electron wave functions are not known.

When taking the limit NT →∞ one should be careful
regarding the mutual normalization of the first-order and
second-order amplitudes, which depend on the intensity
of the incident radiation beam through different powers
of F0. To normalize the amplitudes to the same number
of incoming photons, we impose the condition

∫ NT

0

(F (t) cosωt)2 dt =

∫ NT

0

(F ′0 cosωt)2 dt. (20)

This yields the following relationship between the field
amplitudes: F ′0 =

√
3/8F0.

Equations (16)-(19) can be used to show that, within
the model just containing the single 2p intermediate
state, the left-right asymmetry for the infinite pulse takes
the remarkably simple parametric form

A(0◦) =
2ε

ε2 + 1
cos(φ+ φ0), (21)

where

ε =
∆ω
1
2Γω

, (22)

Γω =
F ′0√
3η

∣∣∣∣∣D(2)
s +

√
5D

(2)
d

D(1)

∣∣∣∣∣ , (23)

φ0 = arg
[(
D(2)
s +

√
5D

(2)
d

)
D(1)∗

]
. (24)

Here ∆ω = ω − (E2p − E1s), Er = 2E2p − E1s is the
photoelectron energy in the resonance (Er = 0.250 a.u.),

and we abbreviated D
(2)
s = D

(2)
Ers,1s

(E2p), D
(2)
d =

D
(2)
Erd,1s

(E2p), and D(1) = D
(1)
Erp,1s

, respectively. The val-

ues of D
(2)
s , D

(2)
d , and D(1) are constants.

The anisotropy parameters (11)-(14) for the infinite
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pulse may also be reduced to simple parametric forms:

β2 = 2

(
1− B2

ε2 + 1

)
, (25)

β4 =
B4

ε2 + 1
, (26)

β1 =
B1 ε

ε2 + 1
cos(φ+ φ1) , (27)

β3 =
B3 ε

ε2 + 1
cos(φ+ φ3) , (28)

where

ε =
∆ω
1
2Γβ

, (29)

Γβ =
F ′0
η

√∣∣D(2)
s

∣∣2 +
∣∣D(2)

d

∣∣2
|D(1)|2

, (30)

B2 = C−1
[

2

7

∣∣D(2)
d

∣∣2 +
∣∣D(2)

s

∣∣2
−
√

5<
(
D

(2)
d D(2)

s

∗)]
, (31)

B4 =
18

7
C−1

∣∣D(2)
d

∣∣2 , (32)

B1 = −2
√

3C−
1
2

∣∣∣∣D(2)
s +

2√
5
D

(2)
d

∣∣∣∣ , (33)

B3 = −6
√

3√
5
C−

1
2

∣∣D(2)
d

∣∣ , (34)

φ1 = arg

[(
D(2)
s +

2√
5
D

(2)
d

)
D(1)∗

]
, (35)

φ3 = arg
(
D

(2)
d D(1)∗) , (36)

C =
∣∣D(2)

s

∣∣2 +
∣∣D(2)

d

∣∣2 . (37)

Although Eqs. (21)-(37) are only valid in a restricted do-
main of pulse parameters, these analytical results provide
a foundation for the qualitative understanding of the fea-
tures associated with ω+ 2ω ionization in the vicinity of
an intermediate resonance.

Within the above model, the width of the resonant
structure Γω (23) in the left-right asymmetry and the
width Γβ (30), which is the same for all anisotropy pa-
rameters βk (k = 1, 2, 3, 4), are independent of the rel-
ative phase of the harmonics φ and of the interference
between the first-order and second-order ionization am-
plitudes. The latter interference only enters through the
phase offsets φ0, φ1, and φ3. The widths Γω and Γβ
increase linearly with the amplitude of the electric field
and are inversely proportional to η. Some useful relations

FIG. 2: TDSE results for the population of the H(2p)
state as function of time for different peak intensities (in-
dicated near the curves) and N = 40. Main plot: reso-
nance carrier frequency (ω = 0.375 a.u.); inset: wing of the
resonance (ω = 0.390 a.u.).

between the parameters are:

B2
3 =

42

5
B4 , (38)(

B1

B3

)2

=
2(4B2 − 9)

17B4
− 3

7
, (39)

φ0 = φ1 +
3√
5
φ3 , (40)(

Γω
Γβ

)2

= 1 +
1

3
(2B2 +B4) . (41)

These, and others, may help in determining different dy-
namical parameters of the process.

III. RESULTS AND DISCUSSION

Detailed calculations solving the TDSE were per-
formed for pulses with peak intensities of 1012 W/cm2

and 1013 W/cm2 for N = 40. The latter corresponds
to an entire pulse duration of approximately 17 fs (or a
FWHM of the intensity of 6 fs). For different photon
frequencies the pulse durations change slightly, but this
is not important in our analysis within a narrow range
near the resonant 1s− 2p transition.

For the cases considered in the present work, the elec-
tric field strength is much weaker than an atomic unit
and, moreover, the Keldysh parameter γ � 1 indicates
that the multiphoton regime of ionization is realized. At
the same time, since the photon frequency is near the
1s − 2p resonance, the applicability of the lowest-order
perturbation theory is questionable. To analyze this in
more detail, we present in Fig. 2 the population of the
excited 2p state as function of time calculated in the
TDSE approach for 40-cycle pulses with different peak
intensities and two carrier frequencies: on-resonance and
slightly off-resonance. Recall that the principal condition
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FIG. 3: (Color online) Theoretical results for η = 0.225. (a) Ionization probability integrated over the main photoelectron line
(see text for details) as function of the photon energy, TDSE (N = 40). Left-right asymmetry A(0◦) and anisotropy parameters
βk, averaged over the main photoelectron line, as function of the photon energy for different relative phases between the
fundamental and the second harmonic: (b) A(0◦), 1012 W/cm2, TDSE (N = 40); (c) A(0◦), 1012 W/cm2, PT (N = 40 and
infinite pulse); (d) A(0◦), 1013 W/cm2, TDSE (N = 40); (e) β2, β4, 1012 W/cm2, PT (N = 40 and infinite pulse); (f) β1,
1012 W/cm2, PT (N = 40 and infinite pulse), φ = 0◦, 90◦, 135◦; (g) same as (f) for β3; (h) β1, β2, β3, β4, 1013 W/cm2, TDSE
(N = 40), φ = 0◦. The dotted curves in the PT panels are for the infinite pulse. In the panels (b), (c), (d), (f) and (g), a
common notation for the curves is adopted.

for the applicability of PT is a small population proba-
bility of all target states except for the initial state. For
the pulses in this study, the atoms are predominantly
distributed between the ground 1s and the excited 2p

states, while all other atomic states are negligibly pop-
ulated. At the resonant energy, for example, the total
ionization probability reaches only 0.0004 and 0.01 for
pulses with N = 40 at intensities of I = 1012 W/cm2
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and I = 1013 W/cm2, respectively. The corresponding
populations of the 2s state, which can be reached by a
two-photon 2ω−ω transition via the continuum, are less
than 0.0004 and 0.02, respectively.

It is clear from Fig. 2 that PT should fail for the
relatively high peak intensity of 1013 W/cm2, while
it should be appropriate for the low peak inten-
sity of 1011 W/cm2. At intermediate intensities of
5 · 1011 W/cm2 and 1012 W/cm2, PT might work qual-
itatively close to the resonance photon energy but much
better on the wings of the resonance. The Rabi period
of the 1s−2p transition for the monochromatic radiation
with an intensity of 1013 W/cm2 is 500 a.u. The popula-
tion of the 2p state, therefore, oscillates with a period of
250 a.u. This explains why we already see part of a Rabi
oscillation in the corresponding curve in Fig. 2. The fig-
ure also illustrates the transition to the adiabatic regime
of excitation of the 2p state for larger detuning. In that
case the 2p population follows the pulse envelope (see the
inset).

Figure 3(a) shows contributions from ionization by the
fundamental with peak intensities of 1012 W/cm2 and
1013 W/cm2 and its second harmonic as function of the
photon energy in the region of the H 1s→ 2p excitation.
The curves in Fig. 3(a) present the ionization probability
P =

∫
P (E) dE, where P (E) is the probability density

of the ionization as function of the photoelectron energy
and the integral is taken over the main photoelectron
line. The value of η = 0.225 in these calculations corre-
sponds to 5% of the second-harmonic intensity relative to
the intensity of the fundamental. For this value of η, the
intensity of the main photoelectron line generated by the
fundamental and that of the second harmonic are practi-
cally equal for I = 1012 W/cm2 at the resonance energy.
This provides a good opportunity to reveal the effects of
the intermediate state, since one can expect the maxi-
mum interference effect in the PAD for photon energies
near the resonance.

In the angle-integrated photoelectron spectra (see
Fig. 3 (a)), contributions from the fundamental and the
second harmonic are incoherent, since the interference
terms vanish. For photon energies away from the reso-
nance the two-photon contribution quickly drops down.
For I = 1013 W/cm2, PT up to second order (not even
shown) fails completely. This is expected, since the rela-
tive probability of two-photon ionization with respect to
one-photon ionization should increase in PT by a factor
of 100 when the intensity is increased by a factor of 10.
This is much larger than the TDSE predictions presented
in Fig. 3(a).

Figures 3(e)-(h) show the anisotropy parameters,
which are averaged over the main photoelectron line,
βk = P−1

∫
βk(E)P (E) dE, and Figs. 3(b)-(d) show the

left-right asymmetry calculated with the averaged pa-
rameters βk. Sharp variations of the anisotropy parame-
ters βk in the PADs (2) and the left-right asymmetry (3)
when scanning the photon energy ω through the reso-
nance are exhibited in Figs. 3 (b)-(h) for four values of the

relative phase φ between the harmonics. Since changing
φ by 180◦ leads to a sign reversal of the asymmetry, we
only present curves for φ ≤ 180◦ (φ = 0◦, 45◦, 90◦, 135◦).
For arbitrary but fixed ω, the asymmetry, as well as the
anisotropy parameters βk for odd k, vanish after averag-
ing over φ in the interval 0 ≤ φ ≤ 360◦ .

The asymmetries A(0◦) obtained for similar pulses in
the TDSE and PT calculations for 1012 W/cm2 are close
to each other (see Figs. 3 (b) and (c)). This allows us to
use the PT results for this intensity to reveal the main
features of the PADs as function of such parameters as
ω, η, φ, and N . Such an endeavor would be very labori-
ous by solving the TDSE for all the cases.

In the perturbative regime, the left-right asymmetry
exhibited in Figs. 3 (b) and (c) and the anisotropy param-
eters in the PAD shown in Figs. 3 (e)-(g) exhibit Fano-
like profiles as function of the photon energy. For the
infinite pulse within PT and an isolated resonance, it fol-
lows from Eqs. (21), (27), and (28) that A(0◦), β1, and β3
cross zero at the resonant photon energy (ε = ε = 0), in-
dependent of the relative phase φ between the harmonics
and the values of the dipole matrix elements. This is con-
firmed by numerical calculations according to Eqs. (11)–
(16) for the infinite pulse (see Figs. 3 (c),(f),(g)). Con-
tributions from other intermediate states do not notice-
ably shift the values of A(0◦), β1, and β3 from zero at
the resonant photon energy. As the photon energy de-
viates from the resonance, contributions from other in-
termediate states are no longer negligible. As seen in
Figs. 3 (c),(f),(g), this contribution causes nonzero values
of A(0◦), β1, and β3 far from the resonance. This is in
contradiction with the simple forms given by Eqs. (21),
(27), and (28). The sign of the above three parame-
ters depends on the sign of cos(φ + φk) (k = 0, 1, 3)
and, consequently, on the interference between the first-
order and second-order ionization amplitudes at the reso-
nance photoelectron energy Er, as well as on the relative
phase φ between the first and the second harmonics.

Only four curves are presented in Fig. 3(e), because
in the perturbative regime the anisotropy parameters β2
(see Eqs. (11) and (25)) and β4 (see Eqs. (12) and (26))
are independent of the relative phase φ between the har-
monics. [Small variations of β2 and β4 with φ, due to de-
viations from the rotating-wave approximation, are not
seen in the figure.] According to Eqs. (25) and (26),
the resonances in β2 and β4 for the infinite pulse are
symmetric with respect to the resonance photon energy.
The asymmetry in the corresponding curves shown in
Fig. 3 (e) is related to contributions to the two-photon
amplitude from other intermediate states (including the
continuum) [37, 38]. The latter are taken into account in
our numerical calculation.

For the pulse of finite time duration, the profiles of the
left-right asymmetry as function of the photon energy
become broader and can also change the shape substan-
tially. Furthermore, the zero of the left-right asymmetry
on the energy scale is shifted differently depending on
the relative phase φ between the harmonics. Such exam-
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FIG. 4: (Color online) Left-right asymmetry A(0◦), aver-
aged over the main photoelectron line, as obtained in PT
for 1012 W/cm2 as function of the photon energy and relative
contribution of the second harmonic for φ = 0◦. The contour
plot is for N = 40; cuts along the ω (a) and η (b) axes are
compared to results for an infinite (∞) pulse.

ples are presented in Fig 3 (c). The TDSE calculations
also illustrate that a further broadening of the resonance
structure occurs with increasing intensity (Fig. 3 (d)) in
the domain where PT is already not appropriate.

Figure 4 presents the left-right asymmetry as func-
tion of the photon energy and the relative intensity
(0 ≤ η ≤ 1) of the second harmonic. The results for the
contour plot (upper panel) were obtained by PT calcu-

lations for I = 1012 W/cm2 with N = 40 and φ = 0◦.
They are compared with the results for the infinite pulse
on the cuts of the contour plot along the axis of the pho-
ton energy ω and the parameter η in Figs. 4 (a) and 4 (b),
respectively.

To understand the general tendencies in the left-right
asymmetry seen in Fig. 4, we rewrite Eq. (21) in the form

A(0◦) =
2η̃

η̃2 + 1
cos(φ+ φ0) , (42)

η̃ =
η

1
2Γη

, (43)

Γη =
F ′0√

3|∆ω|

∣∣∣∣∣D(2)
s +

√
5D

(2)
d

D(1)

∣∣∣∣∣ , (44)

where the phase offset φ0 is defined by Eq. (24). The (ap-
proximate) inverse proportionality of the widths Γω and
Γη to η and ∆ω, respectively (see Eqs. (23) and (44) for
infinite pulses), is very well seen in the contour plot as a
hyperbolic area. The asymmetry A(0◦) does not change
sign as function of η (η ≥ 0). It starts from zero at η = 0,
and after reaching a maximum it approaches zero again
when η → ∞. These results make sense, since the two
limiting cases correspond to pure one-photon and two-
photon ionization, respectively, i.e., to cases for which the
parity of the photoelectron wave function is well-defined.
This tendency is clearly visible in Fig. 4(b). Our cal-
culations also revealed that the details of the behavior
of A(0◦) depend on the pulse duration. For the reso-
nance value ωr = 0.375 a.u. and an infinite pulse, two-
photon resonant ionization so strongly dominates one-
photon ionization that the left-right asymmetry vanishes
(Fig. 4 (b)), independent of the value of η in the interval
considered. For the finite pulse with carrier frequency ωr,
its spectrum covers the interval around ωr. Here one-
photon ionization starts to contribute significantly and
the asymmetry acquires large magnitudes, with the de-
tails depending on the value of η.

Figure 5 illustrates a strong φ-dependence of the pa-
rameters βk in the PAD (2) for odd k and of asymmetry
A(0◦) for the resonant photon energy of 0.375 a.u. Note
that all parameters βk for k > 4, appearing in the TDSE
calculations, are negligible. For even k the parameters
βk are independent of the interference between the one-
photon and two-photon ionization channel and, therefore,
are also independent of φ.

The asymmetry generally decreases with increasing
time delay τ between the fundamental and second-
harmonic pulses. It vanishes when the pulses do not over-
lap in time (see the inset in Fig. 5). The φ-dependence
of the type seen in Eqs. (21) and (42) is valid for the left-
right asymmetry and the parameters βk (k odd) within
PT for pulses with finite time duration, but the phase
offsets are different and depend on the pulse parameters.
Although the asymmetry A(0◦) calculated by either solv-
ing the TDSE or in PT (N = 40) for I = 1012 W/cm2

differ only slightly, the TDSE and PT curves for the βk
parameters may deviate stronger from each other (e.g.,
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FIG. 5: (Color online) Asymmetry parameters βk and asym-
metry A(0◦) for the resonance photon energy of 0.375 a.u. and
η = 0.225 as function of the relative phase between the har-
monics (N = 40, 1012 W/cm2). The results were calculated
in PT (curves with dots) and by solving the TDSE (curves
without dots). The parameters are averaged over the photo-
electron line. The inset shows the asymmetry A(0◦) for dif-
ferent time delays τ between the fundamental and the second
harmonic pulses, calculated by solving the TDSE. Value of τ
measured in multiples of optical cycles are indicated for each
curve.

β1 in Fig. 5). This is the consequence of the PT no longer
being quantitatively valid for I = 1012 W/cm2.

An interesting point concerns the information that can
be extracted from the various parameters measured in
ω + 2ω ionization. This depends, of course, on what pa-
rameters of the radiation beam are known and controlled.
When the relative phase φ between the fundamental and
the second harmonic is known, the relative phases be-
tween the one-photon s− p and two-photon s− s, s− d
amplitudes can be measured [17, 39], provided perturba-
tion theory can be employed in the theoretical treatment
of one-photon and two-photon ionization, and lasers with
appropriate (circular/linear) polarizations are used.

Turning to XFELs, where the phase and polarization
control of the radiation beam is much more difficult than
with optical lasers, let us consider linearly polarized radi-
ation with an unknown (but fixed within a narrow photon
energy interval) relative phase φ between the harmon-
ics. Suppose A(0◦), β1, β2, β3, and β4 can be measured
as functions of the photon energy in the region of an
isolated 2p-resonance at low intensity (≈ 1011 W/cm2),
when PT can be applied and the pulse is long enough
to use Eqs. (21)-(41). Then a recipe to measure the
phase φ between the fundamental and the second har-
monic could look as follows. The strategy is to find

cos(φ + φ0), cos(φ + φ1), and cos(φ + φ3) (i.e., φ + φ0,
φ+ φ1, φ+ φ3 except for the signs) from the experimen-
tal data and then use Eq. (40) to extract φ. The value
of cos(φ + φ0) follows directly from the measurement of
A(0◦) according to Eq. (21). The products B1 cos(φ+φ1)
and B3 cos(φ + φ3) follow from the measurements of β1
(27) and β3 (28), respectively. The value of β4 (26) gives
B4 and, hence, B3 via Eq. (38). Finally, the photon-
energy dependence of A(0◦) and βk yields the ratio (41).
This gives us additionally the parameters B2 and B1 via
Eq. (39). Note that the results of this procedure, within
the model, are independent of the pulse intensity and the
relative contribution of the second harmonic η. Having
the above information, one can find the relative phase φ

and also the ratio of the amplitudes D
(2)
s and D

(2)
d of the

two channels for two-photon ionization, as well as the ra-
tio of the one-photon and two-photon amplitudes. This
constitutes a “complete experiment” within the parame-
terization used to describe the process [40].

IV. SUMMARY

Keeping in mind applications to photoprocesses with
XFELs, we theoretically studied interference effects in
two-pathway ionization by the fundamental (two-photon
ionization) and its second harmonic (one-photon ioniza-
tion) near an intermediate atomic resonance. As a proto-
type example, ionization from the 1s ground state of hy-
drogen atom was analyzed in the vicinity of the 1s − 2p
transition. Within perturbation theory, parameteriza-
tions were derived for the anisotropy parameters in the
photoelectron angular distribution and for the left-right
asymmetry in the region of the isolated intermediate res-
onance. General features of these observable quantities
were revealed as functions of the photon energy, the rela-
tive contribution of the second harmonic, and the relative
phase between the fundamental and its second harmonic.
Particular prescriptions were formulated regarding the
extraction of the maximal dynamical information on the
photoionization process via photoelectron angular distri-
butions in tight control of the XFEL beam parameters.
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