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We determine and analyze the quantum phases and time delays in photoionization and photore-
combination of valence 3p and 3s electrons of argon using the Kohn-Sham local density functional
approach. The time-dependent local density approximation (TDLDA) is used to account for the
electron correlation. Resulting attosecond Wigner-Smith time delays show excellent agreements with
two recent independent experiments on argon that measured the relative 3s− 3p time delay in pho-
toionization [Physical Review Letters 106, 143002 (2011)] and the delay in 3p photorecombination
[Physical Review Letters 112, 153002 (2014)].
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I. INTRODUCTION

Technological advances in producing the isolated at-
tosecond pulse [1, 2] and attosecond pulse trains [3, 4]
have facilitated pump-probe experiments to resolve the
photoionization (PI) process in real time [5–9]. In at-
tosecond streaking measurements, following the ioniza-
tion by an extreme ultraviolet (XUV) pump pulse, pho-
toelectrons are boosted by the infrared (IR)-probe vec-
tor potential to different final momenta as a function
of pump-probe time delay, which are then mapped into
a spectrogram. Theoretical modeling of such spectro-
grams extracts the time delay associated with PI. For
instance, the relative time delay between photoelectrons
emitted from 2s and 2p orbitals of atomic neon [5] as well
as between photoelectrons from conduction and valence
bands in bulk metals have been measured using streak-
ing methods [8, 9]. Introducing a coincidence technique
of photoelectron detection, multiple streaking traces can
be determined in a single experiment for emissions from
various atomic orbitals or from different gas species in a
mixed sample [10]. In the interferometric measurements,
namely RABITT (reconstruction of attosecond beating
by interference of two-photon transitions) [3], photoelec-
trons emitted by odd harmonics of an XUV pulse train
subsequently absorb or emit an IR photon. This produces
even harmonic sidebands in the spectrogram. The ion-
ization time delay is then obtained by the ratio of the dif-
ference of the measured phases at consecutive sidebands
and the harmonic separation. Important recent measure-
ments using RABITT technique include relative delay
between argon 3s and 3p photoemission [6, 7] as well as
between emissions from various noble gas atoms [11].
The additional delay introduced by the IR probe
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pulse via the so called continuum-continuum coupling
or Coulomb-laser coupling can be calculated separately
and subtracted from the measured result, yielding the
Wigner-Smith delay associated with PI [12–14]. This is
because, the phase-frequency difference approach men-
tioned above approximates the energy differential of the
phase of the PI amplitude which defines the Wigner-
Smith delay [15, 16]. This delay is the excess time, posi-
tive or negative, spent by the electron to reach the contin-
uum in addition to the time it would take in the absence
of interactions between the continuum electron and the
target. Therefore, attosecond time delay is an important
probe of dynamical correlation effects in PI processes.
Several theoretical methods employed to explain experi-
mental 3s−3p relative delay in argon were only partially
successful to reproduce measurements [6, 7, 17–20], with
the exception of multi-configurational Hartree-Fock that
had a better success [21].
Recently, the phase and the group delay associated

with photorecombination (PR) of argon 3p electron at
energies that include the 3p Cooper minimum have been
measured using the combination of high-harmonic gener-
ation (HHG) and RABITT methods [22]. Observations
of the Cooper minima in HHG spectra of various atoms
and molecules have been a subject of recent work [23–28].
The presence of such minima in HHG spectra indicates
that the structure of the sample can be probed despite
the presence of a strong IR pulse during recombination.
The assumption of time-reversal symmetry between PR
and PI forms the basis of the principle of detailed bal-
ance [29]. This leads to a one-to-one correspondence be-
tween PR and PI [30, 31] which permits the retrieval of
structural and dynamical information of the sample from
HHG spectra.
The purpose of the present paper is to provide a de-

tailed theoretical analysis of the phase and Wigner-Smith
time delay associated with PI and PR processes. We re-
port the calculation of these phases and delays for argon
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using the time-dependent local density approximation
(TDLDA) method, and show that the results success-
fully describe recent PI [6, 7] and PR [22] measurements.
The argon atom is one of the most studied system for
HHG and attosecond pulse generation, and has a 3s and
a 3p Cooper minimum at, respectively, 42 eV and 48 eV
photon energy in the PI cross section [32, 33] (the lat-
ter yields a 53±3-eV minimum in the HHG spectra [23–
25]). Our study spotlights the importance of the second
dipole-allowed channel at energies near the Cooper min-
imum of a given channel with same initial orbital and,
in general, stresses the adequacy of TDLDA method to
interpret RABITT measurements. Results also add reli-
ability to recent TDLDA predictions [19, 34, 35] of the
PI time delay in fullerene materials.
This paper is structured as follows. Section II in-

cludes three subsections: A) the description of PI and PR
within the independent particle model – the local den-
sity approximation (LDA); B) the essentials of TDLDA,
which incorporates important electron-electron correla-
tions; and C) an alternative discussion about the electron
correlation in PI and PR via the interchannel coupling
formalism by Fano. Section III discusses numerical re-
sults and their comparisons with recent measurements.
Conclusions are presented in Sec. IV.

II. THEORETICAL PERSPECTIVES

A. Independent particle model

Choosing the photon polarization along z-axis, the PI
and PR dipole transition amplitudes in a single channel
approximation, which omits electron correlations, are:

dPI = 〈ψ−kl′ |z|φnl〉, (1a)

and

dPR = 〈φnl|z|ψ+
kl′〉. (1b)

Here, k is the momentum of the continuum electron and
z is the one-body dipole operator. φnl is the bound wave-
function of the target and ψkl′ with +(−) represents out-
going (incoming) spherical continuum wavefunction as

ψ±kl′(r) = (8π)
3

2

∑

m

e±iηl′Rkl′ (r)Yl′m(Ωr)Y
∗

l′m(Ωk) (2)

with l′ = l±1. In Eq. (2), the scattering phase ηl′(k) con-
tains contributions from both short-range and Coulomb
potentials, and Rkl′ is the radial continuum wave. Since
(ψ+)∗ = ψ−, it follows from Eqs. (1) that dPI = dPR, sat-
isfying the time-reversal symmetry between PI and PR.
We calculate amplitudes d [Eqs. (1)] using the inde-

pendent particle LDA method [36–38]. Here the LDA
potential, using the single-particle density ρ(r),

VLDA(r) = −
z

r
+

∫

dr′
ρ(r′)

|r− r′| + VXC[ρ(r)] (3)

uses Leeuwen-Baerends (LB) exchange-correlation func-
tional (VXC) [39], which provides accurate asymptotic
description of the ground state potential. LDA self-
consistently includes an average interaction with the
ionic core, and obtains the ground and continuum single-
electron states for various angular momenta in a mean-
field approximation. Thus, LDA is akin to the Hartree-
Fock method, albeit an approximation to the (non-local)
exchange in a local frame.

We note the following in our LDA results. The absolute
value of the amplitude, |d|, of PI and PR dipole channels,
3p↔ kd, show minima at an energy of about 37 eV, be-
low the energy of the regular 3p Cooper minimum. In
Fig. 2(a), such a minimum in 3p→ kd LDA cross section
is seen, but no minimum is found in 3s → kp. Eqs. (1)
include LDA radial matrix elements, 〈Rkd,ks|z|R3p〉 and
〈R3p|z|Rkd,ks〉, respectively, for PI and PR. The scatter-
ing phase [η in Eq. (2)] of PI and PR does not have any
structure at these energies. As the radial matrix element
associated with 3p → kd transition changes its sign, the
total phase corresponding to the total matrix element
has a sharp and discontinuous phase-jump at the Cooper
minimum, which is at a lower energy compared to the
experimentally observed minimum. Note that only scat-
tering phase is considered at the mean-field approxima-
tion and our LDA results (not shown) are consistent with
the Hartree-Fock results for argon PI [18, 40]. We show
below that when the electron correlation is included via
the complex induced potential in TDDLA [see Eq. (4)],
the position of the Cooper minimum in the cross-section
and the variation of the total phase of the radial matrix
element at the Cooper minimum reproduce the measured
results.

B. Time-dependent local density approximation

The time-dependent local density approximation
(TDLDA), used here to calculate the full transition am-
plitude, includes many-electron effects and utilizes the
advanced, G+ (for PI), and retarded, G− (for PR),
Green’s functions [37, 41, 42]. In a linear response frame,
as TDLDA, the PI and PR amplitudes formally read as

DPI = 〈ψ−kl′ |δV ∗+ + z|φnl〉 = dPI + 〈δV ∗+〉, (4a)

and

DPR = 〈φnl|z + δV−|ψ+
kl′〉 = dPR + 〈δV−〉. (4b)

Here, δV± are complex induced potentials which account
for electron correlations. In TDLDA, (z + δV±) are pro-
portional to the induced frequency-dependent changes in
the electron density [43]. This change is

δρ±(r
′;ω) =

∫

χ±(r, r
′;ω)zdr, (5)
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where the full susceptibility χ builds the dynamical corre-
lation from the independent particle LDA susceptibilities

χ0
±(r, r

′;ω) =

occ
∑

nl

φ∗nl(r)φnl(r
′) G(±)(r, r′; ǫnl + ω)

+

occ
∑

nl

φnl(r)φ
∗

nl(r
′) G(±)∗(r, r′; ǫnl − ω)(6)

via the matrix equation χ = χ0[1−(∂V/∂ρ)χ0]−1 involv-
ing the variation of the ground-state potential V with
respect to the ground-state density ρ. The radial com-
ponents of the full Green’s functions in Eq. (6) are con-
structed with the regular (fL)and irregular (gL) solutions
of the homogeneous radial equation

(

1

r2
∂

∂r
r2
∂

∂r
− L(L+ 1)

r2
− VLDA + E

)

fL(gL)(r;E) = 0

(7)
as

G±L (r, r
′;E) =

2fL(r<;E)h
(±)
L (r>;E)

Wronskian[fL, hL]
(8)

where h
(±)
L = gL ± i fL are complex conjugate combina-

tions. Obviously, the latter fact, along with Eqs. (5-8),
demonstrates that δV ∗+ = δV−, thus confirming DPI =
DPR. Note that TDLDA thus includes the dynamical
correlation by improving upon the mean-field LDA ba-
sis.The numerical results presented in this paper are ob-
tained using TDLDA method only.
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FIG. 1. (Color online). Schematics of total photoamplitudes
for transitions of the 3p electron. Vertical arrows are single
channel matrix elements for 3p and 3s [Eqs. (1)], while curved
arrows represent the coupling via the interchannel matrix el-
ements 〈1/r12〉 [see text after Eq. (10)]. The detector on each
panel identifies the channel being observed in this two-channel
interaction model.

C. Electron correlations via interchannel coupling

Before discussing our numerical results, we present
Fano formalism of interchannel coupling, which is used
to interpret the results.
For photon energies of current interest, the dominant

correlation emerges between valence 3p and 3s chan-
nels, since argon inner electrons are too deeply bound.
An elegant way to interpret the dynamical correlation is
through the coupling between independent particle chan-
nels as described by Fano [44]. For instance, in the first
order perturbation theory, to approximate the “exact”
continuum wavefunction of the 3p → kd channel, cou-
pled to the degenerate 3s→ kp (perturbing) channel, we
obtain for the corrected wavefunction:

|Ψ−kd(E)〉 = |ψ−kd〉+ lim
λ→0

∫

dE′
〈ψ̃−kd| 1

r12
|ψ̃−k′p〉

E − E′ + iλ
|ψ−k′p〉

≈ |ψ−kd〉+ c〈ψ̃−kd|
1

r12
|ψ̃−k′p〉|ψ−kp〉. (9)

Here, ψ̃ are two-electron wavefunctions that include both
bound and continuum states of an independent particle
channel, and c is a complex number which includes the
contributions of pole and principal value terms, both ac-
cumulated near E′ = E. In the second step above, we
approximate the energy integral by the leading contribu-
tion at E′ = E = k2/2 for simplicity. Using Eq. (9) in
the form (1a), the correlation-corrected PI amplitude can
be written as

D3p→kd = 〈Ψ−kd|z|φ3p〉 = d3p→kd+c〈ψ̃−kp|
1

r12
|ψ̃−kd〉d3s→kp,

(10)
in which the complex interchannel coupling matrix ele-

ment, 〈1/r12〉, with a two-body operator embodies the
fraction of the independent particle 3s → kp strength
that transfers, via correlation, to the observed 3p → kd
channel. Note, since both bound as well as continuum
wavefunctions constitute ψ̃, this correlation incorporates
the continuum-continuum interaction between the “de-
tected” d and “perturbing” p photoelectrons augmented
by the strong 3p-3s bound state overlap. In specific, the
correlation is expected to dominate the Cooper-minimum
region where the strength of the observing channel is
small. Fig. 1(a) is a phenomenological representation
of Eq. (10) for the detection of 3p electrons where the
vertical arrows denote independent particle PIs and the
curved arrow is 3s-to-3p correlation contribution.
The corresponding time-reversed photoamplitude with

interchannel coupling, plugging the outgoing version of
Eq. (9) in the form (1b), can likewise be found as

D3p←kd = 〈φ3p|z|Ψ+
kd〉 = d3p←kd+c

∗〈ψ̃+
kd|

1

r12
|ψ̃+

kp〉d3s←kp,

(11)
which is sketched in Fig. 1(b) and can be shown to ex-
actly equal to its time-forward counterpart, Eq. (10),
since (ψ+)∗ = ψ− and dPI = dPR. Obviously, Eq. (11) or
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Fig. 1(b) is the 3p← kd PR process correlation-modified
by its coupling with 3s ← kp. One can likewise show
the equality of PI versus PR amplitudes by choosing to
observe the 3s channel that couples to a 3p channel.
Note that the correlation expressed in the wavefunc-

tion via the interchannel coupling in Eq. (9) effec-
tively reincarnates in the operator δV in Eqs. (4). In
fact, 〈δV 〉 corresponds to the correlation contribution in
Eq. (10) [45].

III. RESULTS, DISCUSSIONS AND

COMPARISONS WITH MEASUREMENTS

The total, 3p, and 3s PI cross sections for argon, ob-
tained within TDLDA, are in very good agreement with
the measurements [32, 33] as shown previously by us [19].
The PR cross sections are derivable directly from PI re-
sults by incorporating the principle of detailed balance.
The TDLDA phase (Γ) of the amplitude D is the sum
of the LDA phase (l′ π2 + η) [Eq. (2)] and the phase (the
correlation phase) of the complex radial matrix element
embedded in D. These phases for channels involving 3p
and 3s electrons are shown in Fig. 2(b). At energies di-
rectly above the ionization thresholds, η is dominated by
the Coulomb phase. The phases of 3s→ kp and 3p→ kd
exhibit rapid variations at their respective Cooper min-
ima at 42 and 48 eV. These minima are also seen in the
TDLDA cross sections for PI in Fig. 2(a). Evidently, the
correlation blue-shifts the 3p Cooper minimum from its
LDA position (37 eV). The correlation now also intro-
duces a phase variation at the zero of Re(D), since D is
now complex due to the complex δV in Eq. (4a). In the
Fano formalism, the non-trivial origin of this complex D
is the interchannel coupling matrix element in Eq. (10).
Further, for the 3s ionization, one rewrites Eq. (10)

for 3s→ kp modified by the coupling with 3p→ kd; this
entails d’s on r.h.s. to interchange and the interchannel
coupling matrix element to conjugate. Two important
consequences emerge: (i) The coupling term now directly
inserts a minimum in TDLDA 3s channel (Fig. 2(b)) via
the LDA amplitude (d) of 3p→ kd that has a minimum
and is stronger enough than the 3s channel to dramat-
ically modify it through the interchannel coupling; (ii)
The complex conjugation of interchannel coupling matrix
element explains why there are opposite variations in 3p
and 3s phases at their respective minima in Fig. 2(b).
Similar relative trend is also found by random-phase ap-
proximation with exchange [18]. The upshift (positive
delay, as will be shown below) of 3s phase points a slower
emergence of the 3s electron, while the downshift of 3p
suggests the opposite.
Until recently, there was an ambiguity about the direc-

tion of relative variations between 3p and 3s phases at
their Cooper minima. Schoun et al. have measured the
variation of argon 3p phase for the PR process across the
Cooper minima for the first time [22]. The correlation
phase in the previous calculation was not correct [19]. In

the present calculation, this error has been rectified by
using the correct sign of the imaginary part of the over-
all term. Note further in Fig. 2(b) that the 3p → ks
phase is large and rather monotonic as a function of en-
ergy, since no Cooper minimum exists in this channel. A
crucial consequence of this fact will be recognized in the
following.
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FIG. 2. (Color online). (a) LDA and TDLDA cross sections
for 3p → kd and 3s → kp photoionization channels. (b)
TDLDA phases for 3p → kd, ks channels. Structures between
25 to 30 eV in 3p curves are from 3s excitations Rydberg
resonances. (c) Branching strength ratios (see Eq. (14)) are
used in weighted-averaging the phases of two dipole channels
of 3p electrons.

In streaking experiments, one measures the delay as-
sociated with the angle-resolved phase of the full 3p am-
plitude of emissions at a solid angle Ωk [46]. Ignoring the
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FIG. 3. (Color online). (a) TDLDA 3s phase and total 3p
phase calculated using Eq. (13) (solid green line) and Eq. (14)
(dotted green line). (b) TDLDA relative 3s−3pWigner-Smith
and “finite difference” time delays, and their comparison with
the measured relative delays by RABITT method (solid cir-
cles, Ref. [7]; open squares, Ref. [6]).

phase of the spherical harmonics, this can be written as,

Γ3p(Ωk) = arg[|D3p→kd(Ωk)| exp(iΓ3p→kd)

+|D3p→ks(Ωk)| exp(iΓ3p→ks)]. (12)

In a non-angle-resolved measurement such as RABITT,
the total amplitude is close to the direct sum of the
dipole matrix elements |D|’s over Ωk in the above equa-
tion. Since for a given channel

∫

dΩk|D3p→kd(s)(Ωk)|2 ∼
σ3p→kd(s), we approximate the integrals overs |D|’s by
the square root of respective channel cross sections. The
TDLDA 3p phase is thus calculated by

Γ3p = arg[
√
σ3p→kd exp(iΓ3p→kd)

+
√
σ3p→ks exp(iΓ3p→ks)]. (13)

In effect, instead of summing the angle-dependent moduli
of each channel amplitude, the square root of the sum of
their squares is used. Even though the scheme thus ne-
glects the cross terms (interference) among emissions in
different directions (by choosing only the self terms), we
show that the results explain the measured data obtained
in RABITT techniques very well.

Now, we model Eq. (13) in an approximate form to
develop some insights as:

Γ3p ≈
√
σ3p→kd

S
Γ3p→kd +

√
σ3p→ks

S
Γ3p→ks, (14)

where S =
√
σ3p→kd +

√
σ3p→kd. Although, in general,

Eq. (14) may have a limited range of validity, but as
demonstrated in Fig. 3a, Eqs. (13) and (14) agree numer-
ically within about a 90% accuracy for σ’s and Γ’s over
the current energy range. The advantage of the form (14)
is that it explicitly shows the energy-dependent fractions,
the branching strengths, of channel-phases in Γ3p. Fig-
ure 2(c) presents these branching strengths in Eq. (14)
which show the influence of the 3p Cooper minimum.
Note that the branching strengths should be identical for
PI and PR, since the coefficients from detailed balance
cancel out in the ratio. The total 3p phase, thus averaged,
is presented in Fig. 3(a) which shows an energy gradient
similar to that of the 3s phase in the range from above
the 3s Coulomb region near its threshold up to the 3p
Cooper minimum. Why does this happen in spite of the
opposite variations in 3p and 3s phases near their minima
in Fig. 2(b)? This is because while the 3p → kd chan-
nel is generally strong, it gets very weak near its Cooper
minimum so the 3p → ks phase, having a characteristic
higher value, dominates (see Eq. (14)). Indeed, as evident
in Fig. 2(c), while the 3p→ kd channel dominates below
40 eV of photon energy, both channels become compara-
ble around 42 eV. With higher energy, this trend contin-
ues and enables 3p → ks to eventually contribute about
90% of the total strength right at the Cooper minimum.
Past the minimum, however, the 3p→ kd channel recov-
ers and regains its dominance above 55 eV. This reversal
of relative strengths at the minimum has an important
consequence which we point out below. The following
results use Eq. (13) for the 3p phase.
The energy-derivative of 3s and 3p phases, their

Wigner-Smith time delays, is performed to calculate
the relative time delay between 3s and 3p photo elec-
trons. Figure 3(b) presents the calculated relative delay
in TDLDA and its comparison with the measurements
[6, 7]. TDLDA and the measured delays are in very good
agreements, remarkably even at the highest energy, clos-
est to the 3s Cooper minimum, in the experiment. In
fact the TDLDA result describes the most recent mea-
surements [7] almost perfectly. Small relative delays at
all three measured energies are the consequence of simi-
lar energy-gradients of the 3s and the total 3p phases in
Fig. 3(a). The RABITT measurement used IR probe
pulse of 1.55-eV (800-nm) energy to extract the time
delay from measured phases (Γ) in a finite difference
approach: τ(E) = [Γ(E + ω) − Γ(E − ω)]/2ω. In or-
der to mimic this experimental procedure, we also apply
finite-differencing of our TDLDA phases (Fig. 3(a)) using
1.55-eV half-steps. Resulting “finite difference” delay is
presented in Fig. 3(b) that retains the quality of agree-
ment with the data points. It is further seen that the
TDLDA predicts structures from the 3p Cooper mini-
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FIG. 4. (Color online). (a) Total 3p TDLDA phase, an ad-
mixture of 3p → kd, ks phases using Eq. (14) with 3p → ks
shifted down by 2π, is compared with measured phases for 3p
photorecombination [22], but shifted upward by 4 rad. (b)
The same as in (a) but for 3p Wigner-Smith time delay. Ex-
perimental results are red-shifted by 5 eV in both the cases
(open triangles, 1.3 µm; stars, 2 µm).

mum at higher energies which can be accessed by the
attosecond interferometric metrology.

In the following, we compare our TDLDA phase for the
two 3p channels with the recently measured absolute 3p
phase and associated time delay across the 3p Cooper
minimum in the PR process [22]. Figure 4(a) shows
that 3p → kd TDLDA phase qualitatively matches with
the measured phase, albeit a sharper energy-variation for
TDLDA while the measurement shows a softer behavior.
We adopt the similar scheme as used in [22] to soften

the total 3p phase using the s-wave phase. This required
the folding of 3p → ks phase onto the range of 0 − 2π
rad (Fig. 4(a)) before applying Eq. (13). The result pro-
vided a softer variation of the total 3p phase around the
minimum which then falls in a very good agreement with
the measurement [22], as seen in Fig. 4(a). Note that
the experimental phase was red-shifted by 5 eV. It was
also needed to shift the measured data up by 4 radian
for comparison. This is because since the actual observ-
able measured is the derivative of the phase, there is an
arbitrary constant shift of the total phase. Respective
Wigner-Smith delays for 3p PR, TDLDA versus experi-
ment, are then compared in Fig. 4(b) that also exhibits
nice agreements. We have further calculated the finite
difference TDLDA delays with 1.3-µm and 2.0-µm half-
steps, which are experimental IR photon energies [22],
but obtained virtually the same results.

IV. CONCLUSIONS

To summarize, a detailed theoretical study of argon
valence photoionization and photorecombination spec-
tral phases and associated Wigner-Smith time delays has
been carried out within the TDLDA methodology. A
notion of interchannel coupling based on Fano formal-
ism to account for electron correlations is introduced to
aid the interpretation of the result and to support the
generally accepted consensus that PI is a time-reversal
process of PR. Numerical results for the phases reveal
structures at respective 3p and 3s Cooper minima with
opposite energy variations, resulting from the correlation
based on mutual couplings between 3p and 3s channels.
The relative 3s − 3p Wigner-Smith time delay is com-
puted and found in excellent agreement with recent RA-
BITT measurements. TDLDA absolute phase and delay
results for 3p transition are also found in very good ac-
cord with measured data using HHG+RABITT where,
however, the s-wave phase was required to be folded –
a fact that needs further investigation. As a final re-
mark, TDLDA calculations using explicit corrections for
electron self-interactions [43] with a different exchange-
correlation functional [47] produced qualitatively similar
results to those presented here.
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