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Abstract

Electron elastic-scattering phase shifts and cross sections as well as total cross sections of low-

frequency bremsstrahlung, its angular-asymmetry and polarization parameters upon low-energy

electron collision with endohedral fullerenes A@C60 are theoretically scrutinized versus the nature,

size and spin of the encapsulated atom A. This is achieved by choosing Ar, Xe, Ba, Cr, Mn, and

Eu as the case-study atoms A. The aim is to uncover the variety of effects which might occur

in the above processes rather than to make thorough predictions for one particular spectrum. To

that end, the study makes use of a simple model static-exchange approximation. There, both the

encapsulated atom A and C60 cage are regarded as non-polarizable targets and the C60 cage itself

is modeled by an attractive spherical annular-potential well. Calculated results identify the most

interesting and/or useful future measurements or more rigorous calculations to perform.

PACS numbers: 34.80.Bm, 34.80.Nz
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I. INTRODUCTION

Electron elastic scattering and bremsstrahlung (a process of emission of radiation upon

collision of electrons with matter) on quantum targets are important fundamental phenom-

ena of nature with significance to both the basic and applied sciences and technologies. Yet,

to date, the knowledge on these phenomena upon electron collision with such important

quantum targets as endohedral fullerenes A@C60 is largely lacking. Endohedral fullerenes,

(also referred to, interchangeably, as endohedral atoms or just fullerenes in the present paper)

are nano-structure formations where an atom A is encapsulated inside the hollow interior of

a C60 fullerene. They are relatively novel and important objects of intense modern studies.

In fact, the authors are aware of only one published work on the subject of low-energy elec-

tron elastic scattering off A@C60 [1]. Also, to the authors’ best knowledge, there seems to be

an absence of a study of low-frequency bremsstrahlung by low-energy electrons scattered off

A@C60 endohedral fullerenes. It is the ultimate aim of the present paper (a) to get a broader

insight into properties of low-energy electron elastic scattering off A@C60, (b) to provide the

initial insight into features of electron low-frequency bremsstrahlung on A@C60, and (c) to

explore to a greater extent how said properties and features might evolve with changing the

size, softness, and spin of the encapsulated atom. To meet this goal, the authors pick typical

representatives of atoms from the family of noble gases (Ar and Xe), 3d-transition-metals

(Cr and Mn), alkaline (Ba), and rare-earth (Eu) elements of the periodic table. As a result,

the basic features as well as characteristic similarities and discrepancies of electron elastic

scattering and low-frequency bremsstrahlung on various endohedral fullerenes A@C60 are

revealed, interpreted, and detailed within the framework of the model.

The interaction of radiation and charged particles with endohedral atoms is a complicated

multifaceted process. This is in view of a great variety of various effects that contribute to the

process. It is, therefore, both desirable and important to understand how each of the “facets”

contributes to, and results in this or that effect in, the processes of interest, rather than to get

only the cumulative result. In the present paper, we expose to light the impact of a “static

facet” on e+A@C60 elastic scattering and bremsstrahlung. This is achieved by considering

these processes in the framework of an approximation referred to as themodel static-exchange

approximation in the present paper. In this approximation, the C60 cage is modeled by an

attractive spherical annular-potential well Uc(r) of certain inner radius r0, width ∆, and
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depth U0. The C60 cage, thus, is regarded as a non-polarizable target. The encapsulated

atom A is positioned at the center of the potential Uc(r) and is regarded as a non-polarizable

target as well. The potential of A@C60 is defined as the sum of the potential Uc(r) and

non-local Hartree-Fock (HF) potential of the encapsulated atom A. The corresponding

HF equation is then solved in order to determine the wavefunctions and electron elastic-

scattering phase shifts upon e + A@C60 collision. Note that this approximation, where

the C60 is modeled by the the potential Uc(r) with the atom A being at the center of the

potential, has been used for the study of the interaction of photons and charged particles

with endohedral fullerenes A@C60 on numerous occasions to now, see, e.g., [1, 9, 14–17] (and

references therein). Also, the replacement of the C60 cage by the same potential Uc(r) was

employed in work [2] for the study of electron elastic scattering off empty C60 as well. In the

same work, the study of e + C60 scattering was paralleled by the calculation performed in

the framework of a sophisticated ab initio molecular-Hartree-Fock approximation combined

with the Schwinger multichannel scattering theory. The work [2] provided a thorough,

detailed comparison of calculated results for the e + C60 scattering phase shifts as well as

partial and total elastic-scattering cross sections obtained in the frameworks of these two

approximations. A reasonable qualitative, and even semi-quantitative, agreement between

some of the most prominent features of e + C60 elastic scattering, predicted by the two

calculations, was demonstrated. Such agreement speaks in favor of the overall usability of

the Uc-model-potential approximation to electron-fullerene collision.

In the present work, the electron collision energy ǫ is assumed to be sufficiently small

(ǫ ≤ 15 eV). At such energies, the electron wavelength λ > 3 Å. It, thus, exceeds noticeably

the bond length D ≈ 1.44 Å between the carbon atoms in C60. Correspondingly, the incom-

ing electrons will “see” the C60 cage as a homogeneous rather than “granular” cage. This

justifies the modeling of the C60 cage by a smooth potential, in general, such as the above

introduced potential Uc(r), in particular. Furthermore, in the present work, the emphasis

is on low-frequency bremsstrahlung, ω → 0. In the latter case, (a) the bremsstrahlung phe-

nomenon can easily be attacked in the framework of a low-frequency approximation [3] and

(b) the contribution of a tricky “polarization bremsstrahlung” amplitude [4–6] (and refer-

ences therein) can be safely excluded from the study. (The “polarization bremsstrahlung”

amplitude is the amplitude of the photon emission by a target during its dynamical polar-

ization by an incoming electron).
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Thus, the model static-exchange approximation employed in the present paper for the

study of both low-energy electron elastic scattering and low-frequency bremsstrahlung upon

e + A@C60 collision is overall reasonable. It has, however, obvious drawbacks such as the

omission of accounting for electron correlation in, and polarization by an incident electron of,

a e+A@C60 system. It also leaves out of consideration various molecular effects associated

with the g- and u-parity of molecular terms, LUMO and HOMO molecular orbitals, σ-

bound and π-unbound orbitals, etc. A thorough discussion of the impact of these molecular-

structure effects on electron elastic scattering off empty C60, resulting in the prediction of

resonances, in particular, π∗-shape resonances, neither of which can be accounted for in

the framework of the simple model static-exchange approximation, is performed in Ref. [2]

where the reader is refereed to for details. Obviously, the case of electron collision with a

“stuffed” C60, i.e., A@C60, is even more complicated than the case of e+C60 scattering; the

development of a a corresponding comprehensive theory is for future years. Therefore, in

order to understand, interpret, and appreciate the impacts of omitted effects on e+A@C60

elastic scattering and bremsstrahlung one does need to know how the processes develop

without accounting for such effects. The present study provides researchers exactly with

such knowledge. Moreover, the model static-exchange approximation allows one to uncover

characteristic properties of the investigated phenomena which do not depend on the actual

molecular structure of C60 cage. In a sense, the present work unveils some of the most

basic intrinsic properties of low-energy electron elastic scattering and electron low-frequency

bremsstrahlung off A@C60 fullerenes. It identifies the most interesting and/or useful future

measurements or more rigorous calculations to be performed in order to advance this field

of study.

Finally, the present study also has a significance which is independent of its direct appli-

cability to endohedral fullerenes. This is because it falls into a mainstream of intense modern

studies where numerous aspects of the structure and spectra of atoms under various kinds of

confinements are being attacked from many different angles by research teams world-wide.

This has resulted in a huge array of unraveled effects and data being accumulated in a large

number of publications to date, see reviews [7–12] (and references therein). There, one finds

a wealth of information on properties of single-electron, two-electron and many-electron

atoms confined by impenetrable spherical, spheroidal, as well as open boundary potentials

(e.g., see review papers in [10] by Aquino, p. 123; Laughlin, p. 203; Cruz, p. 255; Garza and
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Vargas, p. 241), oscillator potentials (e.g., Patil and Varshni [10], p. 1), potentials limited

by conoidal boundaries (Ley-Koo [10], p .79), Debye potentials (Sil, Canuto, and Mukherjee

[11], p. 115), fullerene-cage potentials (Dolmatov [11], p.13; Charkin et. al. [11], p.69, Amu-

sia et. al. [13]), potential with dihedral angles (Ley-Koo and Sun [12], p. 1), etc. Results

of the present study add new basic knowledge to the collection of atomic properties under

confinement as well.

II. THEORY

In the present work, the C60 cage is modeled by a spherical annular-potential well, Uc(r):

Uc(r) =







−U0, if r0 ≤ r ≤ r0 +∆

0 otherwise.
(1)

Here, r0, ∆, and U0 are the inner radius, thickness, and depth of the potential well, respec-

tively; their magnitudes are borrowed from Ref. [2]. Namely, ∆ = 2.9102 a0 (a0 being the

first Bohr radius of the hydrogen atom), r0 = Rc − (1/2)∆ = 5.262 a0 (Rc = 6.7173 a0

being the radius of the C60 skeleton), and U0 = 7.0725 eV (found by matching the electron

affinity EA = −2.65 eV of C60 with the assumption that the orbital momentum of the

2.65-eV-state is ℓ = 1). These values of the adjustable parameters are most consistent with

the corresponding observations.

Next, the wavefunctions ψnℓmℓms
(r, σ) = r−1Pnl(r)Ylmℓ

(θ, φ)χms
(σ) and binding energies

ǫnl of atomic electrons (n, ℓ, mℓ and ms is the standard set of quantum numbers of an

electron in a central field, σ is the electron spin coordinate) are the solutions of a system of

the “endohedral” HF equations [in atomic units (a. u. )]:

[

−
∆

2
−
Z

r
+ Uc(r)

]

ψi(x) +
Z
∑

j=1

∫ ψ∗
j (x

′)

|x− x′|

×[ψj(x
′)ψi(x)− ψi(x

′)ψj(x)]dx
′ = ǫiψi(x). (2)

Here, Z is the nuclear charge of the atom, x ≡ (r, σ), and the integration over x implies

both the integration over r and summation over σ. Eq. (2) differs from the ordinary HF

equation for a free atom by the presence of the Uc(r) potential in the equation. This

equation is first solved in order to calculate the electronic ground-state wavefunctions of

the encapsulated atom. Once the electronic ground-state wavefunctions are determined,

they are plugged back into Eq. (2) in place of the ψj(x
′) and ψj(x) functions in order
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to calculate the electronic wavefunctions of scattering-states ψi(x) and their radial parts

Pǫiℓi(r). Corresponding electron elastic-scattering phase shifts δℓ(k) are then determined by

referring to Pkℓ(r) at large r [18]:

Pkℓ(r) →

√

2

π
sin

(

kr −
πℓ

2
+ δℓ(k)

)

. (3)

Here, k is the electron’s wavenumber [k ≡ |k| = (2mǫ/h̄2)1/2, k and m being the electron’s

wavevector and mass, respectively], Pkℓ(r) is normalized to δ(k−k′), where k and k′ are the

wavenumbers of the incident and scattered electrons, respectively. The total electron elastic-

scattering cross section σel(ǫ) is then found in accordance with the well-known formula for

electron scattering by a central-potential field [18]:

σel(k) =
4π

k2

∞
∑

ℓ=0

(2ℓ+ 1) sin2 δℓ(k). (4)

A differential cross section dσ(ω) of bremsstrahlung into the frequency interval dω, the

direction of the photon momentum pph = h̄q into the solid angle dΩq, and the direction of

the momentum p′ = h̄k′ of a scattered electron into dΩk′ is defined as follows [19]:

dσ(ω) =
m2e2q3k′

(2π)4h̄3k

×

∣

∣

∣

∣

êq

∫

(ψ+
k )

∗rψ−
k′dr

∣

∣

∣

∣

2

dωdΩqdΩk′ . (5)

Here, h̄qc = h̄ω = h̄2k2

2m
− h̄2k′2

2m
, where c is the speed of light, e is the electronic charge, k′

is the wavevector of the scattered electron, êq is the unit vector of the photon polarization,

and ψ±
k are the wavefunctions of the incident and scattered electrons, respectively:

ψ±
k (r) =

(2π)3/2

k

∑

ℓ,µ

iℓ exp [±iδℓ(k)]

×Y ∗
ℓmℓ

(θk, φk)Yℓmℓ
(θr, φr)

Pkℓ(r)

r
. (6)

In the above equation, θk and φk are the spherical angles of the electron wavevector k,

whereas θr and φr are the spherical angles of the electron position vector r.

Let us position the origin of a rectangularXY Z-system of coordinates on the encapsulated

atom A. Let us assume that the momentum p = h̄k of an incident electron lies along the

Z-axis, pointing in its positive direction. Furthermore, in the final state of the system, let

us measure the directions of both the momentum pph = h̄q of an emitted photon and its

polarization vector êq. The vector êq will be determined relative to a (p,pph)-plane, being
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either parallel (eq‖) or perpendicular (eq⊥) to the plane. Then, with the help of Eq. (5),

one can determine the corresponding differential cross sections dσ⊥/dωdΩq and dσ‖/dωdΩq

into the unit intervals of ω and Ωq:

dσ⊥

dωdΩq

=
1

8π

dσ

dω

[

1−
1

2
β(ω)

]

, (7)

dσ‖

dωdΩq

=
1

8π

dσ

dω

{

1 +
1

2
β(ω)[1− 2P2(cos θ)]

}

. (8)

Here, P2(cos θ) is the Legendre polynomial of the second order, θ is the angle between the

Z axis and the photon momentum pph, dσ/dω is the bremsstrahlung angle-integrated cross

section (or, interchangeably, the spectral density of bremsstrahlung) [19], and β(ω) is the

angular-asymmetry parameter of bremsstrahlung:

dσ

dω
=
8π2

3

m2h̄4α3

e4
ω3

p′p3

×
∞
∑

ℓ=0

[

ℓD2
ℓ−1(p) + (ℓ+ 1)D2

ℓ+1(p)
]

, (9)

β(ω) =

[

∞
∑

ℓ=0

(

ℓD2
ℓ−1 + (ℓ+ 1)D2

ℓ+1

)

]−1

×
∞
∑

ℓ=0

(2ℓ+ 1)−1
[

(ℓ+ 1)(ℓ+ 2)D2
ℓ+1

+ℓ(ℓ− 1)D2
ℓ−1 − 6ℓ(ℓ+ 1)Dℓ+1Dℓ−1

× cos (δℓ+1 − δℓ−1)] . (10)

Here, α is the fine structure constant and Dℓ±1 is the bremsstrahlung dipole amplitude:

Dℓ±1 =
∫ ∞

0
Pk′,ℓ±1rPk,ℓ(r)dr. (11)

To determine the differential cross section dσ/dωdΩq of unpolarized bremsstrahlung, one

adds Eqs. (7) and (8) together and arrives at the known formula (see, e.g., [20]):

dσ

dωdΩq

=
1

4π

dσ

dω

[

1−
1

2
β(ω)P2(cos θ)

]

, (12)

where the parameter β(ω) is given by the same Eq. (10).

Next, the parameter of the degree of the bremsstrahlung’s polarization, ζ3 (known as the

Stokes third parameter), defined as the ratio of the difference between dσ⊥(ω)/dωdΩ and

dσ‖(ω)/dωdΩ to their sum, takes the following form:

ζ3(θ) =
β[1− P2(cos θ)]

2− βP2(cos θ)
. (13)

7



In the framework of the low-frequency bremsstrahlung approximation (ω → 0), utilized in

the present paper, ǫi ≈ ǫf (ǫi and ǫf are the initial and final electron energy, respectively). In

this case, the functions Pk,ℓ(r) and Pk′ℓ±1 in Eq. (11) can [3] be replaced by their asymptotic

forms, Eq. (3). Correspondingly, one readily obtains, see, e.g., [3, 20]:

Dℓ±1(ω)|ω→0 = ±
1

π

(

p

mω

)2

sin[δℓ(p)− δℓ±1(p)]. (14)

As was noted in the previous section, some of the encapsulated atoms of interest are

Cr, Mn, and Eu. Theses are high-spin atoms, owing to one or two semifilled subshells in

their ground-state configurations: Cr(...3d54s1, 7S) (with the two semifilled subshells 3d5

and 4s1), Mn(...3d54s2, 6S) (with the single semifilled subshell 3d5), and Eu(...4f76s2, 8S)

(with the single semifilled subshell 4f 7). Atoms with open as well as semifilled subshells

require a special approach to the calculation of their structure and spectra. A convenient,

effective theory to calculate the structure of a semifilled shell atom is the “spin-polarized”

Hartree-Fock (SPHF) approximation developed by Slater [21]. The quintessence of SPHF is

as follows. It accounts for the fact that spins of all electrons in the semifilled subshell(s) of

the atom (e.g., in the 3d5↑ and 4s1↑ subshells in the Cr atom ) are co-directed, in accordance

with Hund’s rule, say, all pointing upward. This results in splitting of each of other closed

nℓ2(2ℓ+1) subshells in the atom into two semifilled subshells of opposite spin orientations,

nℓ2ℓ+1↑ and nℓ2ℓ+1↓. This is in view of the presence of exchange interaction between nl↑

electrons with only spin-up electrons in the original spin-unpaired semifilled subshell(s) of

the atom (like the 3d5↑ and 4s1↑ subshells in the Cr atom) but absence of such for nl↓

electrons. Thus, the SPHF configurations of the picked out semifilled-subshell atoms are as

follows:

Cr(...3p3↑3p3↓3d5↑4s1↑, 7S),

Mn(...3p3↑3p3↓3d5↑4s1↑4s1↓, 6S),

Eu(...4d5↑4d5↓4f 7↑6s1↑6s1↓, 8S).

SPHF equations for the ground-state, bound excited-states and scattering-states of a

semifilled shell atom differ from ordinary HF equations for closed shell atoms by accounting

for exchange interaction only between electrons with the same spin orientation (↑, ↑ or ↓,

↓). To date, SPHF has successfully been extended to studies of electron elastic scattering
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off isolated semifilled shell atoms in a number of works [22–24] (and references therein). In

the present paper, SPHF is utilized for calculation both of the atomic and scattering states

of A@C60 endohedral fullerenes, where A is a semifilled shell atom.

III. RESULTS AND DISCUSSION

A. Valence orbitals of the encapsulated atoms A in A@C60

The impact of the C60 cage on the valence orbitals of the encapsulated atoms of interest

is illustrated by Fig. 1.
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FIG. 1. Calculated Pns↑(r) and Pns↓(r) radial functions (in atomic units) of the valence subshells

of closed-shell Ar@C60, Xe@C60, and Ba@C60 atoms, as well as semifilled-shell Cr@C60, Mn@C60,

and Eu@C60 along with those of their free counter-parts, as marked, versus radius (in units of a0,

a0 being the first Bohr radius); the spatial region 5.262 < r < 8.17 belongs to the wall of the C60

cage. Note, in Eu@C60, the 6s↑- and 6s↓-orbitals are drawn into the C60 cage equally strongly (see

text) and are, thus, totally blended with each other in the plotted figure.

Note that the free-Ar 3p valence orbital practically coincides with the Ar@C60 3p orbital.

Even the 5p valence orbital of a bigger Xe atom is only insignificantly altered upon its

encapsulation inside of the C60 cage. Therefore, these atoms are referred to as the “compact”

atoms in the present paper. In contrast, the valence orbitals of the Ba, as well as Cr, Mn,

and Eu atoms are significantly drawn into the potential well, i.e., into the region of the wall
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of C60. These atoms are to be referred to as the “soft” atoms.

Next, note that the 4s↓-orbital of Mn is drawn into the C60 wall noticeably stronger than

the 4s↑-orbital. This induces the transfer of a noticeable part of primarily the spin-down

electron density from the encapsulated atom to the C60 cage. Correspondingly, the C60 cage

becomes, as it were, “charged” by a spin-down electron density. This effect was originally

spotted in Mn@C60 [1], where it was named the “C60-spin-charging effect”. Later, it was

detailed on a more extensive scale with an eye on the register of a quantum computer in

[25]. In contrast to Mn@C60, cage becomes spin-up charged in Cr@C60. This is because of

a significant spin-up electron density drain from a 4s↑ spin-unpaired semifilled subshell of

Cr to the C60 cage. In contrast, the spin-dependent drain of the valence electron density

does not take place in Eu@C60. This is because the 6s↑ and 6s↓ orbitals are drawn into

the C60 cage equally. The latter, in turn, is because the 4f7↑ semifilled subshell of Eu lies

much deeper relative to its 6s1↑ and 6s1↓ subshells than the spin-unpaired semifilled 3d5↑

subshell of Mn relative to its spin-up and spin-down 4s subshells. Correspondingly, the

exchange interaction between the 4f↑ and 6s↑ electrons in Eu is negligible, and there is

no exchange interaction between the 4f↑ and 6s↓ electrons. Hence, there is practically no

difference between the 6s↑ and 6s↓ orbitals of free or encapsulated Eu. As a result, the C60

cage in Eu@C60 is “spin-neutral”. Note that, as was argued in [25], the C60-spin-charging

can affect the manipulation of spins in the corresponding A@C60 systems and that it must

inhibit, or at least render more complex, the operation of the register of a fullerene-based

quantum computer [26].

The above findings stir up one’s mind by way of wonder: (a) how sensitive is electron

elastic-scattering and bremsstrahlung to the size of a compact encapsulated atom?; (b)

alternatively, how sensitive are these phenomena to the size of a soft encapsulated atom?;

and (c) how sensitive are these phenomena to the spin of an encapsulated atom?

The rest of the present work is motivated by the search for answers to the above questions.
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B. Electron collision with a closed shell A@C60: A = Ar,Xe,Ba

1. Electron elastic-scattering and bremsstrahlung cross sections

Calculated total electron elastic-scattering cross sections σA@C60
el , bremsstrahlung cross

section ωdσ/dω, bremsstrahlung angular-asymmetry parameter β(ǫ), and Stokes polarization-

parameter ζ3(ǫ)|θ=90◦ of low-frequency bremsstrahlung due to electron collision with Ar@C60,

Xe@C60, Ba@C60, and empty C60 are depicted in Fig. 2.

Fig. 2 clearly demonstrates that all of the above electron elastic-scattering and bremsstrahlung

quantities develop a resonance behavior. The interpretation of the oscillatory behavior of

the electron elastic-scattering off empty C60 was provided in Refs. [2, 13]. There, it was

shown that they are due to quasi-discrete states formed by a centrifugal potential barrier

for the states with ℓ ≥ 3. Namely, the first narrow resonance in σC60
el at ǫ ≈ 0.27 eV is the

f -virtual resonance, the second resonance (at ǫ ≈ 2.3 eV) is the g-virtual resonance, and

so on. As for the s-, p-, and d-scattering states, they cannot and do not have a resonance

behavior, because the model spherical-annular potential, as well as the model δ-potential

of work [13], were found to form a s-, p-, and d-bond state, thus the corresponding quasi-

resonances cannot be formed [18]. The calculated in the present work resonance structures

in bremsstrahlung quantities upon electron collision with empty C60 admit, naturally, the

same interpretation as well.

However, the case of electron collision with endohedral fullerenes A@C60 appears to not

always be developing in the same way as electron collision with empty C60. For example, on

the one hand, the electron elastic-scattering cross sections σAr@C60
el and σXe@C60

el practically

do not differ either from each other or from σC60
el . Their resonance structure, thus, admits

the same interpretation as the resonance structure of σC60
el . This is because the Ar and

Xe atoms are compact, i.e., their electron density is concentrated practically entirely inside

the C60 cage, so that they are largely “shielded” by the C60 cage from the “attention” of

the incoming electrons. On the other hand, the cross section σBa@C60
el behaves clearly much

differently than σC60
el , or σAr@C60

el , or σXe@C60
el . Indeed, in σBa@C60

el , (a) the low-energy f -virtual

resonance is absent, (b) there is a sign of a new resonance near ǫ ≈ 1.4 eV (the latter is

particularly clearly resolved in the calculated bremsstrahlung parameters), and (c) there is

a noticeable dip in this cross section near 8 eV. The Ba atom was found to be a soft atom
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FIG. 2. Calculated HF (a) total electron elastic-scattering cross sections σA@C60
el and σC60

el (in units

of a20), (b) bremsstrahlung cross section ω dσ
dω [in units of kilo-barn (kb); 1 barn = 1024 cm2 ≈ 3.57

10−8 a20], (c) bremsstrahlung angular asymmetry parameter β, and (c) bremsstrahlung Stokes

polarization parameter ζ3 (at θ = 90◦) upon electron collision with A@C60 (A = Ar,Xe, and Ba)

and empty C60, as marked. Note, the calculated in the present work σC60
el coincides naturally

with that calculated in Ref. [2] (not plotted in the figure) in the framework of the same model

static-exchange approximation.
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whose valence electron density is noticeably drawn into the C60 cage, so that the above noted

peculiarities in electron-Ba@C60 collision definitely correlate with the softness of the atom.

The finding that electron scattering off Ar@C60, Xe@C60, and especially off Ba@C60 can

be significantly weaker than electron scattering off empty C60, at ceratin electron energies

(see Fig. 2 a), deserves particular attention. In other words, the gas medium of empty

C60 can be much less transparent to the incoming beam of electrons than the medium of

“stuffed” C60 (A@C60), at ceratin electron energies. This feels somewhat counter-intuitive.

This finding should be combined with another counter-intuitive finding of work [1] where

it was shown that electron scattering off A@C60 can even be weaker than scattering of the

atom A itself.

In conclusion, the authors emphasize that results depicted in Fig. 2 demonstrate that

the bremsstrahlung parameters appear to be more sensitive to the presence of a particular

atom inside C60 than the corresponding electron elastic scattering cross section. Indeed,

e.g., a weakly developed 1.4-eV resonance in σBa@C60
el is seen to be resolved much better in

the bremsstrahlung parameters. In addition, whereas there are little differences between

σAr@C60
el , σXe@C60

el , and σC60
el in the whole energy region, the corresponding bremsstrahlung

parameters for one system differ significantly from bremsstrahlung parameters for another

system, particularly above approximately 4 eV. The authors attribute the reason for the

“enhanced” sensitivity of low-frequency bremsstrahlung to the structure of an encapsulated

atom to that fact that bremsstrahlung cross section, β, and ζ3 depend on the difference

between elastic scattering phase shifts, thereby tying up features of both phases in, as

it were, “one place”. In contrast, the electron elastic scattering cross section depends on

absolute values of individual phase shifts. The above also suggests that the angle-differential

scattering cross sections should also be more sensitive to the presence of the encapsulated

atom A inside the C60 cage than the integral cross sections, for the same reason as for the

bremsstrahlung parameters.

In order to understand the above established peculiarities in electron elastic scattering

and bremsstrahlung off Ar@C60, Xe@C60 and Ba@C60, the study of the corresponding phase

shifts is in order. Results of such study are detailed below.
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2. Electron elastic-scattering phase shifts

Calculated HF electron elastic-scattering phase shifts δℓ(ǫ) due to scattering off Ar@C60,

Xe@C60, and Ba@C60 and, for comparison, off empty C60 are depicted in Fig. 3.
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FIG. 3. Calculated HF electron elastic-scattering phase shifts δℓ(ǫ) (in units of radian) (ℓ ≤ 5)

upon electron collision with Ar@C60, Xe@C60, Ba@C60, and empty C60, as marked. Horizontal

dotted lines designate the values of δℓ which are modulo π/2. For scattering off empty C60, the

calculated phase shifts coincide with results of Ref. [2] obtained in the framework of the identical

model (not plotted in the present figure).

First, let us discuss the phase shifts at ǫ = 0, see Table I.

In order to understand the behavior of phase shifts at ǫ → 0, let us refer to Levinson

theorem [18] which we write as follows:

δℓ(ǫ)|ǫ→0 → (Nnℓ
+ qℓ)π. (15)

Here, Nnℓ
is the number of occupied states with given ℓ in the ground-state configuration

of a target-scatterer, whereas qℓ is the number of additional (if any) empty bound states

with the same ℓ which can accommodate (bind) an external electron. For the empty C60

cage approximated by the annular potential, Eq. (1), Nnℓ
= 0 for all ℓs. Therefore, from the

calculated values of δC60
ℓ (0), Table I, one concludes that qℓ = 1 for ℓ = s, p, and d, but qℓ = 0
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TABLE I. Calculated HF electron elastic-scattering phase shifts δℓ(ǫ) (at ǫ = 0) upon electron

collision with empty C60 and A@C60 (A = Ar,Xe, and Ba).

ℓ δℓ(0)

C60 Ar Xe Ba

s π 4π 6π 6π

p π 3π 5π 5π

d π π 3π 3π

f 0 0 0 π

for ℓ = f . The implication is that the confining potential Uc(r) (or the C60 cage itself) has

the ability to bind an electron into a s-, or p-, or d-state; this was already noted in Ref. [2].

In addition to results of Ref.[2, 13] for empty C60, the present study predicts the existence

of the s-, p-, and d-anions Ar@C−
60 and Xe@C−

60, in the given approximation. Indeed, if one

counts the number of occupied s-, p-, and d-subshells in Ar (Nnℓ
= 3, 2, and 0, respectively)

and Xe (Nnℓ
= 5, 4, and 2, respectively), then, with the help of Eq. (15) and Table I, one

easily finds that qs = qp = qd = 1 whereas qf = 0 for both atoms. For Ba@C60, however,

the situation is somewhat different. Indeed, as shown in Table I, δBa@C60
s (0) = 6π, and there

are exactly six s-subshells in the Ba atom, i.e., Nns
= 6. This makes qs = 0, for Ba@C60.

The latter indicates the absence of a s-bound state in the field of Ba@C60. This is contrast

to the situation for Ar@C60, Xe@C60, and C60. Next, δBa@C60
f (0) = π, although there are

no occupied f -subshells in the Ba atom. Hence, qf = 1. This predicts the emergence of a

f -bound state in the field of Ba@C60, in contrast to the case of the Ar@C60, Xe@C60, and

C60 fullerenes. Obviously, things work differently for Ba@C60 because of a noticeable drain

of the valence electron density of Ba to the C60 cage, see Fig. 1.

We now discuss the energy dependence of the plotted phase shifts along with corre-

sponding consequences in conjunction with the general scattering theory, particularly with

an eye on resonance scattering. The characteristic phase-shift-criterion for a low-energy

quasi-resonance scattering is that a phase shift δℓ(ǫ) first increases towards modulo π with

decreasing energy, then, before that value is reached, it sharply decreases to a zero (or

another modulo π) passing through the value of, this time, modulo π/2 [18, 27, 28].

One can see that the f -phase shifts upon electron scattering off each of the considered
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fullerene systems but Ba@C60 clearly satisfy the quasi-resonance-scattering criterion. For

each of the considered fullerene systems (but Ba@C60), the f -phase shifts pass through

the value of π/2 at about the same energy ǫ ≈ 0.23 eV, exactly where there is a sharp

narrow resonances in the calculated corresponding electron elastic scattering cross sections,

or about where there is a narrow sharp resonance in the calculated bremsstrahlung quantities.

Furthermore, the g- (ℓ = 4) and h- (ℓ = 5) phase shifts for all considered fullerene systems

(the Ba@C60 including) clearly satisfy the quasi-resonance-scattering criterion as well. One

thus concludes that a low-energy resonance at ǫ ≈ 1.76 eV in the Ba@C60 collision spectra

as well as the low-energy resonances at ǫ ≈ 2.3 eV in the spectra of other fullerenes are

the quasi-bound resonances. The just discussed f -, g-, and h-resonances were revealed

previously in the case of electron elastic-scattering off empty C60 in Refs. [2, 13]. It is a

finding of the present work that these resonances retain in the electron collision spectra of

Ar@C60, Xe@C60 and Ba@C60 (but the f -resonance in Ba@C60) as well. This is not entirely

surprising in the framework of our model which largely neglects the interaction between the

encapsulated atom and the C60 cage. The resonances in question occur either at very low

energies or in high-ℓ electronic waves. When the energy is low, the de-Broglie wavelength

of the incident electron exceeds the width of the potential well and, thus, scattering is

generally insensitive to details of the potential in the interior of C60 where an atom is

encapsulated. When ℓ is big, the centrifugal barrier is too high for a low-energy high-ℓ

electronic wave to penetrate deep into the interior of C60, thereby, making scattering of

high-ℓ electronic waves generally insensitive to details of the potential as well. For Ba@C60,

where there is a noticeable drain of the valence electron density of Ba into the C60 cage,

things, naturally, work somewhat differently. Because of the electron drain, the field of the

encapsulated Ba atom becomes more attractive in the interior of C60. As known [27], a

stronger attractive potential increases the value of a phase shift and also moves resonances

toward lower electron energy. This is why the g- and h-phase shift resonances in the case of

Ba@C60 are greater than the corresponding resonances in the case of Ar@C60, Xe@C60, and

C60, and the resonance maxima are positioned at somewhat lower energies. Furthermore,

by exploring the d-phase shift upon electron collision with Ba@C60, one reveals another

finding of the present work. Namely, one can see that the low-energy behavior of the phase

shift satisfies the resonance-scattering criterion as well. We, thus, predict the existence of

(approximately) a 1.5-eV d-quasi-resonance in the electron collision spectrum of Ba@C60.
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This resonance is clearly seen in the calculated bremsstrahlung spectra and, less clearly, in

the calculated electron elastic-scattering cross section σBa@C60
el , Fig. 2. This 1.5-eV d-quasi-

resonance emerges near the much stronger 1.76-eV g-quasi-resonance. These two resonances

appear to be resolved better in the bremsstrahlung spectra than in σBa@C60
el . Next, by

exploring a near-zero energy dependence of the s- and p-phase shifts depicted in Fig. 3, one

can see that they pass through the value of modulo π/2 while rising towards modulo π at

ǫ = 0. Where δℓ equals modulo π/2, the corresponding electron-scattering spectra maximize

as well. This situation, however, should not be confused with resonance scattering, since it

does not fit the resonance-scattering criterion. In accordance with the later [27], δℓ(ǫ) must

be decreasing with decreasing ǫ while passing through the value of π/2 (or modulo π/2) to

a zero (or modulo π) at ǫ = 0.

In conclusion, one could wonder, why the s-, p-, d-, and f -phase shifts upon electron

scattering off different A@C60 are so quantitatively different from each other even when the

electron wavelength is bigger than the size of the potential well, or ℓ high, so that in both

cases scattering should have be insensitive to details of the potential in the interior of C60, as

for the above discussed case of the g- and h-waves. The answer to this is simple. As known

[28], exchange interaction plays an important role in electron scattering off atoms. Therefore,

while the “direct” interaction between the incident electron and encapsulated atom can be

shielded by the C60, the exchange interaction cannot. Of particular importance is exchange

interaction between an incoming electron and atomic electrons of the encapsulated atom

with the same ℓ. Therefore, the more nℓ subshells in the encapsulated atom with the same

ℓ as the ℓ of the incoming electron, the stronger the exchange-interaction impact on the

ℓ-phase shift. Thus, it is in principle impossible to make the encapsulated atom invisible to

an incident electron (with the exception, perhaps, where there are no atomic subshells with

the same ℓ as the ℓ of an incident electron, as in the case of g- and h-scattering considered

above).

3. Independent-scattering approximation

We now attempt to understand the differences between the d-phase shifts upon electron

scattering off C60, Ar@C60, Xe@C60, and Ba@C60 as well as between the f -phase shifts,

Fig. 3. The noted differences are not only quantitative, but qualitative as well.
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It is found in the present study that, as odious as it may seem, the above observations

can be understood in terms of a simple sum of a phase shift δC60
ℓ due to electron scattering

off empty C60 and a phase shift δAℓ upon electron scattering by the isolated atom A (while

this paper was in preparation, Amusia [29] came to the same conclusion as well):

δA@C60
ℓ (ǫ) ≈ δ̃A@C60

ℓ (ǫ) = δAℓ (ǫ) + δC60
ℓ (ǫ). (16)

The above stated approximation is referred to as the independent-scattering approximation

in the present paper. Fig. 4 below provides the supporting evidence in favor of this approx-

imation.
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FIG. 4. Calculated HF d- and f -phase shifts (in units of radian): dotted line - empty-C60 δC60
ℓ ,

dashed line - free-atom δAℓ , dash-dotted line - δ̃A@C60
ℓ = δAℓ +δC60

ℓ , solid line - δA@C60
ℓ due to electron

collision with A@C60 as the whole (true result); A = Ar,Xe,Ba.

One can see from Fig. 4 that, indeed δ̃A@C60
ℓ ≈ δA@C60

ℓ , to a good approximation. The

agreement is reasonable even for the case of electron collision with Ba@C60, although the

latter is a less suitable system to apply this approximation to, because of the noticeable

electron density drain from Ba to C60. One, of course, would be too naive to expect that the
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independent-scattering approximation is perfect. One can readily conclude, upon exploring

Fig. 4, that the characteristic differences in the d-phase shifts between δAr@C60
d , δXe@C60

d , and

δBa@C60
d , as well as the differences in the f -phase shifts between these three systems, are due

to the characteristic differences between the corresponding free-atom phase shifts δAℓ . For

example, the sudden decrease (with decreasing energy) of δBa@C60
d at ǫ ≈ 1.8 eV definitely

correlates with the same for free-Ba δBa
d . On the other hand, the free-Xe phase shift δXe

d

behaves very much differently than δBa
d . As a result, the phase shifts δBa@C60

d and δXe@C60
d

behave nearly oppositely to each other, at low electron energies. Equally, the well-developed

minimum in δBa@C60
f definitely correlates with a sharp decrease (with decreasing energy) of

free-Ba δBa
f from about π to a zero in this energy region (indicative of a f -shape resonance

in the f -scattering state). In contrast, the free-Ar and free-Xe f -phase shifts are slowly

changing monotonic function of energy which cannot “beat” the sharply changing empty-

C60 f -phase shift. As a result, δBa@C60
f phase shift does, but δXe@C60

f does not, develop the

strong broad minimum in the discussed energy region.

The independent-scattering approximation will be frequently employed further in the

paper on various occasions as an easy qualitative tool for understanding the behavior of

phase shifts for other case-study systems.

C. Electron collision with high-spin A@C60: A = Cr, Mn, and Eu

1. Eu@C60

One of the interesting findings discussed in the previous discussion was that electron

scattering off soft Ba@C60 has characteristic features which are absent in electron scattering

off compact Ar@C60 and Xe@C60. It is, therefore, interesting to see whether similar features

will emerge in another soft A@C60 system, where the atom A is about as big as Ba and

donates about as much of its valence electron density to C60 as Ba. Furthermore, it is also

interesting to explore how electron scattering off such system might change if a big, soft

atom A is, additionally, a high-spin atom. The ideal candidate for the stated study is the

Eu@C60 system. Indeed, the Eu atom matches the Ba atom in the electron-density drain

rate from the atom to the C60 cage (see Fig. 1) and, besides, Eu has the most capacious

semifilled subshell - the 4f 7↑ subshell -, thereby representing an atom with the highest
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spin. Furthermore, Eu has a spherical symmetry which simplifies greatly the corresponding

calculations.

Calculated SPHF electron elastic-scattering phase shifts δEu@C60
ℓ↑ and δEu@C60

ℓ↓ of spin-up

and spin-down electrons, respectively, are depicted in Fig. 5 for ℓ ≤ 3. Plotting phase shifts

with ℓ > 3 is not necessary since they are nearly identical to those for scattering off Ba@C60.

This is because a high value of the centrifugal potential barrier for these electrons makes

their scattering relatively insensitive to the details of the potential inside C60.
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FIG. 5. Calculated SPHF electron elastic-scattering phase shifts (in units of radian) of incident

spin-down (↓) and spin-up (↑) electrons with ℓ ≤ 3 scattered off Eu@C60 (δEu@C60

ℓ↑(↓) ) and free-Eu

δEuℓ↑(↓), as marked. Horizontal dotted lines mark the values of δℓ which are modulo π/2. The phase

shifts are plotted on the expanded energy scale for a better clarity of features in the interval of 0

to 15 eV.

First, looking at the values of the depicted phase shifts at ǫ = 0, one concludes, with

the help of Levinson theorem, that, similar to Ba@C60, the Eu@C60 fullerene is capable of

binding an extra electron into a p-, or d-, or f -state, but not into a s-state.

Furthermore, note the dependence of the phase shifts on the electron spin polarization

which appears to be noticeable for the d-phase shifts but the strongest for the f -phase shifts.
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This spin dependence is due to the presence (absence) of exchange interaction of the spin-up

f↑ electrons of the 4f 7↑ semifilled subshell of the atom with the incident spin-up (spin-down)

electrons. One can see that the f -phase shifts of oppositely spin-polarized incident electrons

take even drastically different routes with decreasing electron energy.

Next, let us uncover the reason behind the most striking result - the drastic difference

between the spin-up and spin-down f -phase shifts both for the free-Eu and Eu@C60 cases.

In the framework of HF or SPHF, atoms do not make negative ions. Since there are

no spin-down f↓-electrons in free Eu, the free-Eu f↓-phase shift must decrease to a zero

with decreasing energy, in accordance with Levinson theorem. This explains the calculated

behavior of the free-Eu f↓-phase shift depicted in Fig. 5. On its way to a zero, this phase

shift passes through the value of π/2 at ǫ ≈ 14 eV, thereby causing the shape-resonance

in the f↓-partial electron elastic-scattering cross section. Qualitatively, the f↓-phase shift

behaves similar to the f -phase shift upon electron scattering off Ba; this is because Ba has no

f -subshells in its ground-state configuration as well. Furthermore, using the independent-

scattering approximation, Eq. (16), i.e., adding the free-Eu f↓-phase shift with the empty-

C60 f -phase shift, one easily (no commentary is needed) arrives at the understanding of the

behavior of δEu@C60
f↓ as well, particularly at the understanding of the emergence of the broad

minimum in δEu@C60
f↓ at low electron energies. Again, all this is in a close analogy to the case

of f -wave scattering off Ba@C60. Let us now discuss the spin-up f↑-phase shift. Obviously,

the free-Eu f↑-phase shift must approach the value of π, since there is the spin-up 4f 7↑

subshell in the atomic configuration of Eu. This explains the drastic difference between the

free-Eu f↓- and f↑-phase shifts. Then, adding the free-Eu f↑-phase shift with the empty-

C60 f -phase shift, one arrives at the understanding of the behavior of δEu@C60
f↑ depicted in

the figure. In particular, it also becomes clear why δEu@C60
f↑ = 2π but δEu@C60

f↓ π at ǫ = 0.

As it was emphasized above, the field of Eu@C60 binds an electron into a f -state regardless

of the electron spin polarization. However, since there are only f↑-bound electrons in the

free-Eu configuration, the additional binding of a f -electron by the whole system Eu@C60

results in δEu@C60
f↑ = 2π but δEu@C60

f↓ π at ǫ = 0, due to Levinson theorem.

Now, let us discuss the formation of the low-energy maxima in the d-phase shifts δEu@C60
d↑

and δEu@C60
d↓ . Let us start from the free-atom case. In accordance with Levinson theorem,

both the free-Eu d↑- and d↓-phase shifts must take the value of 2π at ǫ = 0, owing to the

presence of two nd5↑ and two nd5↓ (n = 3, 4) subshells in the atom. This explains why

21



the free-Eu d-phase shifts, depicted in Fig. 5, both decrease to 2π at ǫ = 0 regardless of

the spin-polarization of the incident d-electrons. It appears that the energy-dependence

and low-energy-position of the rapid decrease of the free-Eu spin-up and spin-down d-phase

shifts, during which they pass through the value of modulo π/2, obey the quasi-resonance

criterion. Thus, in the case of free Eu, both the d↑- and d↓-partial electron elastic scattering

cross sections are subject to a quasi-resonance enhancement near 2 eV of the electron energy.

This is in close analogy to the case of Ba. Furthermore, adding the empty-C60 d-phase shift

to the free-Eu d-phase shifts results in δ̃Eu@C60
d↑ and δ̃Eu@C60

d↓ (not plotted in Fig. 5) which

have a low-energy maxima that should, and they do, approximately match the low-energy

maxima in actual δEu@C60
d↑ and δEu@C60

d↓ . In other words, the above finds that the low-energy

behavior of the Eu@C60-d-phase shifts is directly associated with the behavior of the free-Eu

d-phase shifts, similar to the Ba@C60 case.

Moreover, the above results show clearly that only the spin-up δEu@C60
d↑ phase shift satisfies

the quasi-resonance criterion (similar to the d-scattering off Ba@C60). Hence, scattering of

the d↑-electronic wave off Eu@C60 will be resonantly enhanced at ǫ ≈ 1 eV, whereas the d↓-

scattering will not. We, thus, have unraveled an interesting phenomenon the quintessence of

which is that the quasi-resonance trapping of an incident electronic wave can depend on its

spin-polarization. We term the discovered effect the selective spin-dependent trapping effect.

It is interesting to explore the electron elastic-scattering cross sections σEu@C60

el↑(↓) , low-

frequency bremsstrahlung cross section ωdσ↑(↓)/dω, angular-asymmetry parameter β↑(↓), and

Stokes polarization parameter ζ3↑(↓), in general, and how the selective spin-dependent phe-

nomenon will affect these quantities, in particular. The corresponding calculated data are

depicted in Fig. 6.

The peaks in σEu@C60
el↑ and ωdσEu@C60

↑ /dω, positioned at approximately 1.9, 4.6, and 8

eV, have the same origin, i.e., they are due to the quasi-resonances in the phase shifts with

ℓ = 4, 5, and 6, respectively, as in the case of empty C60. The resonance peaks at about the

same energies can be seen in bremsstrahlung βs and ζ3s as well. They have the same origin

as the resonances in the cross sections.

Furthermore, note that the spin-up elastic-scattering and bremsstrahlung cross sections

maximize, additionally, at ǫ ≈ 1.1 eV as well. This is due to the quasi-resonance in the

d↑-phase shift induced by the selective spin-dependent trapping effect discussed above. The

corresponding difference between spin-up and spin-down βs and ζ3s is even more drastic
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FIG. 6. Calculated SPHF (a) total electron elastic-scattering cross sections σel↑(↓) (in units of a20),

(b) bremsstrahlung cross sections ω
dσ↑(↓)

dω (in units of kb), (c) bremsstrahlung angular asymmetry

parameter β↑(↓), and (c) Stokes polarization parameter ζ3↑(↓)|θ=90◦ upon collision of spin-up and

spin-down incident electrons with Eu@C60 and empty C60, as marked.

than in the case of the cross sections, near 1 eV.

In addition, explore the energy region between 10 and 12 eV. There is an additional

strong difference between the calculated spin-up and spin-down quantities; the difference

looks especially impressive for the case of bremsstrahlung cross sections. This difference
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is due to the peculiarity in the f↓-phase shift, namely due to the above discussed shape-

resonance in there.

Finally, note that, similar to the case of Ba@C60, one encounters, once again, a counter-

intuitive result where electron elastic-scattering off Eu@C60 is much weaker than off empty

C60, at ceratin electron energies.

2. Cr@C60 and Mn@C60

Although in the above case of Eu@C60 we dealt with the atom which is both a big-sized

and high-spin atom, an important nuance associated with atomic spin was missing. Namely,

in Eu@C60, the C60 is not spin-charged, because both the 6s↑- and 6s↓-electron densities

are drawn into the C60 cage equally strongly. Good candidates to account both for the

impact of a high atomic spin and C60-spin-charging on electron collision with A@C60 are

the two closest atom-neighbors in the periodic table – the Cr(...3d5↑4s1↑, 7S) (Z = 24)

and Mn(...3d5↑4s1↑4s1↓, 6S) (Z = 25) atoms. Moreover, this pair of atoms is interesting in

that the Cr atom makes the C60 primarily spin-up charged, whereas the Mn atom makes it

primarily spin-down charged, as was discussed earlier in the paper. It is, therefore, inter-

esting to study electron elastic scattering and bremsstrahlung off Cr@C60 and Mn@C60 and

inter-compare results obtained.

SPHF calculated electron elastic-scattering phase shifts of spin-up and spin-down elec-

trons with ℓ ≤ 3 due to collision with Cr@C60 or Mn@C60 are depicted in Fig. 7.

First, note the values of s-, p-, and d-phase shifts at ǫ = 0. These values, in conjunction

with the SPHF ground-state configurations of Cr and Mn as well as Levinson theorem, speak

to that fact that the model static-exchange potentials of Cr@C60 and Mn@C60 support a

spin-up and spin-down s-bound-state, p-bound-state, and d-bound-state beyond the atomic

configurations of the Cr and Mn atoms themselves. Both potentials, however, do not support

bound states with ℓ ≥ 3. The binding properties of Cr@C60 and Mn@C60 are, thus, the

same as the binding properties of compact Ar@C60 and Xe@C60.

Second, note how differently the s-phase shift δCr@C60
s↓ behaves compared to δCr@C60

s↑ ,

δMn@C60
s↑ and δMn@C60

s↓ at low energies. While the behavior of the three latter phase shifts

is typical for the case of low-energy scattering on a s-discrete level of small binding energy,

the behavior of the spin-down phase shift δCr@C60
s↓ is not – it breaks the rule at ǫ ≈ 1.7 eV.
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FIG. 7. Calculated SPHF spin-down (solid lines) and spin-up (dashed lines) s-, p-, d-, and f -phase

shifts (in units of radian) upon electron collision with Cr@C60, free-Cr (dash-dot-dot) (left column),

as well as Mn@C60 and free-Mn (dash-dot-dot) (right column), as marked. For the f -phase shifts,

only the f↑-phase shift is plotted in view of a near identity between these spin-up and spin-down

phase shifts. The phase shifts with ℓ > 3 are practically identical to those for electron-C60 collision

and not plotted on the figure.

This is another bright example of the role of exchange interaction in electron scattering off a

multielectron atom encapsulated inside a confining potential (the C60-potential). Indeed, the

major difference between the s↑- and s↓-scattering off Cr@C60 is the presence of exchange in-

teraction between the s↑-incident electron and the only spin-unpaired valence 4s↑-electron in

encapsulated Cr, but the absence of exchange interaction between this valence electron and

a s↓-incident electron. Because of this [and in conjunction with Levinson theorem, Eq. (15),

the free-Cr s↓-phase shift δCr
s↓ [23] starts, at ǫ ≈ 0.3 eV, sharply decreasing to the value

of δCr
s↓ (0) = 3π. It is clear then, on the basis of the independent-scattering approximation,

that the δCr@C60
s↓ phase shift must start first decreasing but then increasing with decreasing

energy, reaching the value of δCr@C60
s↓ (0) = 4π (because Cr@C60 supports a s↓-bound state)
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– exactly as depicted in Fig. 7. There is some interesting difference, though, between the

sharp decrease of the free-Cr δCr
s↓ and δCr@C60

s↓ , with decreasing energy. Indeed, the decrease

in δCr
s↓ occurs at ǫ ≈ 0.3 eV [23], whereas the corresponding decrease in δCr@C60

s↓ is seen to

occur at ǫ ≈ 1.7 eV. We associate this difference with the C60-spin-charging effect due to

which the C60 cage in Cr@C60 becomes primarily spin-up charged. As for the free-Cr phase

shift δCr
s↑ , it, in contrast to δCr

s↓ , “enjoys” its monotonic rise towards δCr
s↑ (0) = 4π [23]. This is

due to the presence of the 4s↑-subshell in Cr. Then, adding δCr
s↓ and δC60

s together, we obtain

a monotonic increase of δCr@C60
s↑ to (4+1)π at ǫ = 0, as was found in the direct calculation of

δCr@C60
s↑ depicted in Fig. 7. In the same manner should behave the phase shifts δMn@C60

s↑ and

δMn@C60
s↓ . Indeed, in free Mn, there are both the 4s↑- and 4s↓-subshell. Therefore, spin-up

and spin-down incident s-electrons experience about equal exchange interaction with the 4s

electrons of Mn which is also about the same as exchange interaction between an incident

s↑-electron and the 4s↑-electron in electron-Cr collision. Therefore, δCr
s↑ , δ

Mn
s↑ and δMn

s↓ behave

identically, all rising monotonically towards 4π at ǫ = 0, and so are δCr@C60
s↑ , δMn@C60

s↑ and

δMn@C60
s↓ as well.

Third, note how differently the d↓-phase shift δCr@C60
d↓ behaves compared to the d↑-phase

shift δCr@C60
d↑ . The same differences are characteristic between the δMn@C60

d↓ and δMn@C60
d↑ phase

shifts as well. The noted differences can be explained exactly in the same manner as the just

discussed differences between the spin-up and spin-down s-phase shifts in electron-Cr@C60

collision, or the differences between the spin-up and spin-down f -phase shifts in electron-

Eu@C60 collision discussed earlier in the paper.

Fourth, note how the phase shift δCr@C60
d↓ upon electron-Cr@C60 collision differs from that

δMn@C60
d↓ upon electron-Mn@C60 collision. Namely, the low-energy minimum in δMn@C60

d↓ is

narrower and emerges at lower energies than the minimum in δCr@C60
d↓ . This, however, can

easily be tracked back to the differences between the corresponding free-Cr and free-Mn

phase shifts depicted in Fig. 7 as well: the free-Mn phase shift δMn
d↓ starts rapidly decreasing

at a lower energy and at a greater rate than δCr
d↓ . Then, employing the independent-scattering

approximation, it becomes clear why the low-energy minimum in δMn@C60
d↓ is narrower and

emerges at lower energies than the minimum in δCr@C60
d↓ .

Finally, the total electron elastic-scattering cross sections σel↑(↓) for incident spin-up and

spin-down electrons, bremsstrahlung cross sections ωdσ↑(↓)/dω, angular-asymmetry param-

eter β↑(↓), and Stokes polarization parameter ζ3↑(↓)|θ=90◦ of low-frequency bremsstrahlung
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off Cr@C60 and Mn@C60 are depicted in Fig. 8 along with those for electron collision with

empty C60, for comparison.

Similar to electron collision with empty C60, the resonance maxima in the calculated

elastic-scattering and bremsstrahlung quantities are due to the resonances in incident elec-

tronic waves with ℓ = 4, 5, and 6, respectively. Calculations showed that the extremely

narrow f↑- and f↓-quasi-resonances emerge at the electron energy ǫ ≈ 0.05 eV. The latter,

however, is outside of the energy range scale of the figure for which reason they are not seen

in the figure.

Next, one can see that differences between the spin-up and spin-down calculated quan-

tities are generally stronger in the case of Cr@C60 than in the case of Mn@C60. This is at-

tributed to the following. First, Cr is a higher-spin atom than Mn, so that spin-dependence

of scattering reactions brought about by exchange interaction is stronger in electron-Cr@C60

than in electron-Mn@C60 collision. Second, the C60 cage is spin-up charged in Cr@C60 but

primarily spin-down charged in Mn@C60; this induces, implicitly, additional features in ex-

change interaction of incident electrons with Cr@C60 compared to Mn@C60.

Furthermore, one encounters once a again the situation where electron elastic scattering

off “stuffed” C60 is noticeably weaker than off empty C60. In addition, one sees the rep-

etition of the situation met in the Eu@C60 case. Namely, the difference between collision

of spin-up and spin-down electrons with the considered systems are stronger in calculated

bremsstrahlung parameters than in electron elastic-scattering cross sections. The difference

is particularly strong in the electron-Cr@C60 bremsstrahlung cross section ωdσ↑(↓)/dω above

about 6 eV. In the corresponding angular-asymmetry β↑(↓) and Stokes polarization param-

eter ζ3↑(↓)|θ=90◦ , the above discussed difference happens at around approximately 0.8 eV.

There, for example, the spin-down Stokes polarization parameter ζCr@C60
3 ↓ changes its sign

twice in the narrow energy region around 0.8 eV, whereas the spin-up parameter remains

always positive.

IV. CONCLUSION

The present work has provided the detailed insight into possible features of low-energy

electron elastic scattering and low-frequency bremsstrahlung upon electron collisions with

A@C60 fullerenes gained in the framework of the simple and yet reasonable model static-
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exchange approximation. This was achieved by studying the dependence of these processes

on the individuality of encapsulated atoms A and spin-polarization of incident electrons. Re-

sults of the work identify, at the given level of approximation, the most interesting and/or

useful future measurements or more rigorous calculations to perform. The present study also

provides researchers with a wealth of the background information which is useful for future

studies aimed at elucidating of the significance of dynamical polarization, correlation effects,

molecular-structure effects, etc., in these processes. These processes, particularly polariza-

tion of A@C60 by incident electrons, will make the A@C60 potential more attractive, so that

predicated resonances and other features may appear at different energies, or disappear at

all, and some actual bound states may be converted to resonances. A thorough discussion of

possible consequences of all this is provided in Ref. [2] for the case of electron elastic scatter-

ing off empty C60. Obviously, the presence of the atom encapsulated inside C60, which will

be dynamically polarized dependently or independently of the polarization of the cage itself,

and also interacting with the cage in certain ways, will induce additional modifications in

electron-A@C60 collision. Such effects, however, are subject to an independent study, some

aspects of which we are currently pursuing.
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