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Abstract 

Based on the scattering theory, simultaneously enhanced energy transport and 

suppressed momentum exchange are demonstrated by patterning doped-silicon surfaces 

in the near field. The radiative heat flux between doped-silicon gratings exceeds that 

between planar surfaces and can be one or even two orders of magnitude as high as what 

is predicted by the geometry-based Derjaguin’s proximity approximation (PA). The 

underlying mechanism is interpreted as due to the excitation of broadband hyperbolic 

modes which facilitate photon tunneling, especially when the period is small. This is 

confirmed by comparison of the results from the scattering theory with those from the 

effective medium theory. The Casimir force, which may cause stiction and even failure of 

mesoscopic devices, is reduced with the grating structures as predicted by both the 

scattering theory and PA. However, depending on the separation distance, PA may over- 

or under-predict the Casimir force. 
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I. INTRODUCTION 

Near-field thermal radiation and Casimir interaction induced by quantum 

mechanical electromagnetic fluctuations have received much attention in the last decades.  

Tunneling of evanescent waves enables near-field radiative heat flux between two close 

bodies to exceed the well-known Stefan-Boltzmann law, the upper limit for the far-field 

thermal radiation, especially when hyperbolic modes or surface modes such as surface 

plasmon polaritons (SPP) and surface phonon polaritons (SPhP) are excited [1-7]. The 

promising applications of near-field heat transfer in thermophotovoltaics (TPV) [8-14], 

thermal imaging [15,16], thermal modulators [17-23], and local thermal management 

[24,25] motivate researchers to explore nanostructures capable of supporting higher 

efficiencies or larger heat fluxes than those between planar surfaces. Deep sub-

wavelength metamaterials, such as nanowires [26-28], nanoholes [29-31], and carbon 

nanotubes [32-34] have recently been demonstrated to have better near-field heat transfer 

performance than bulk materials with planar surfaces. Most of these works are based on 

the effective medium theory (EMT), which is valid only when the gap distance is much 

greater than the period of nanostructures [35]. Additionally, controlling the surface 

roughness of nanowires or nanotubes within submicron gap distances to avoid contact is 

very difficult. Binary gratings are another type of promising candidates for near-field 

radiation control and the grating structures with desired dimensions can be realized using 

micro and nanofabrication technologies. 

Although EMT is questionable at gap distances comparable to or smaller than the 

period, small gap spacing is often desired for applications such as energy harvesting and 

effective heat removal. However, the near-field energy transport for small gap 
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separations may approach the localized situation when the interactions are important only 

between nearby surfaces, as is the case described by the geometry-based Derjaguin’s 

proximity approximation (PA) [36,37]. The implication of such a localization 

phenomenon is that, in the near field, nanostructures may not achieve higher radiative 

heat flux than the bulk counterparts with the same gap distance, measured by the 

minimum separation between the two materials. Lussange et al. [38] investigated two 

corrugated silica plates considering various geometry parameters and found that PA 

works well for aligned silica gratings. This is not surprising since the lateral propagation 

length of evanescent surface modes is short especially for high-k modes; subsequently, 

the heat transport tends to be localized. On the other hand, Guerout et al. [39] predicted 

that corrugating gold film can prominently improve the near-field heat transfer over bulk 

counterparts. The mechanism lies in the shifting of guided modes to the lower frequency 

region with increasing corrugation depth, where the energy of Planck’s oscillators is 

higher. Nevertheless, for noble metals, surface modes generally lying in the violet or 

ultraviolet region and can barely be thermally excited to enhance radiative energy transfer 

unless at extremely high temperatures. As a result, they are usually poor near-field 

emitters compared with those for which surface modes lie in the infrared region that can 

be easily thermally excited, such as silica and doped silicon. It has been noted that 

covering graphene will break the PA limit and help to achieve delocalized radiative heat 

transfer between corrugated silica surfaces due to the large propagation length of 

graphene plasmons [40]. One of the objectives of the present work is to investigate 

doped-silicon gratings using the scattering theory and to analyze various geometric 

parameters to see whether PA limit will be valid and whether EMT will be applicable 
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under certain circumstances. It is hoped that large enhancement of near-field radiative 

transfer can be achieved with corrugated doped-silicon surfaces. 

Another aspect of this study is on the calculation of forces between doped-silicon 

gratings in close proximity. In practical applications of microelectromechanical systems 

(MEMS) and nanoelectromechanical systems (NMES) for thermal management, the 

Casimir stiction between working parts has to be considered even in vacuum. The 

Casimir interaction, arising from momentum exchange between fluctuating 

electromagnetic waves, always accompanies near-field heat transfer and is mainly 

induced by quantum fluctuations along with thermal fluctuations [41-43]. The Casimir 

force can be as large as 130 kPa at a gap spacing of 10 nm, and thus could cause a failure 

of mesoscopic systems and devices [44]. It is necessary to examine how nanostructures 

affect the Casimir force. 

This work investigates both the radiative energy transport and the Casimir 

interaction between doped-silicon gratings. Three formulations based on the scattering 

theory [38-40,45], EMT [18,31,46,47], and PA are employed for the calculation and 

analysis. The results are compared for various geometries to explore the potential for 

near-field heat transfer enhancement using gratings. Because of the unique characteristics 

of doped silicon and doped-silicon nanostructures, the underlying mechanism for the 

near-field heat transfer is very different from guide modes in gold gratings or surface 

modes in graphene-covered nanostructures. The reason why PA fails to predict near-field 

radiative heat transfer between doped-silicon gratings is explored. In particular, 

broadband hyperbolic modes are identified by comparison of the energy transmission 
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coefficients predicted by both the scattering theory and EMT. The effect of the lateral 

displacement between the gratings for the emitter and receiver is also discussed. 

 

II. THEORETICAL FORMULATION 

The schematic of near-field heat transfer and Casimir interaction between  

gratings separated by a vacuum gap of distance d is shown in Fig. 1, where P is the 

period, W is the grating width, and H is the grating thickness. Note that δ  is the lateral 

displacement between the two gratings with identical geometry. In all the calculations, 

temperatures of the emitter and receiver are set to T1 = 310 K and T2 = 290 K, 

respectively. Doped silicon is used as the base material for both the grating region (or 

film) and the substrate (bulk solid adjacent to the grating film) since it can support SPP in 

the infrared region with good tunability [48-51]. The n-type doping concentration is 

chosen as 1020 cm-3 at which the dielectric function can be described by a simple Drude 

model [48,52]: 2 2
D-Si p( ) 11.7 / ( )iε ω ω ω γω= − + , where the plasma frequency pω  = 

1.08×1015 rad/s and scattering rate γ  = 9.34×1013 rad/s are evaluated at the average 

temperature of the two gratings, i.e., 300 K.  

 

A.  EXACT SOLUTIONS BASED ON THE SCATTERING THEORY 

The near-field radiative heat transfer between two gratings based on the scattering 

theory is presented by [38,39] 
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h  is the average energy of Planck’s oscillator, and  

( ), ,x yk kξ ω is the energy transmission coefficient that depends on the frequency and 

wave vector components xk and yk  considering all the polarization states. Based on the 

scattering theory, the energy transmission coefficient is given as [38,39] 
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where 1 1=S R , 0 0
2 2

z zik d ik de e=S R  and †  means Hermitian adjoint. Note that 1 2 or R R

is a (4 2) (4 2)N N+ × +  reflection matrix obtained by using rigorous coupled-wave 

analysis (RCWA) [53,54]. Here, N is the highest diffraction order used in the 

computation and should be large enough to ensure convergence. Note that xk  is folded 

into the first Brillouin zone since the structure is periodic in the x direction. Operators 

( )
( )pw ew

1 1−∑ identifying propagating and evanescent modes are presented in Ref. [38]. The 

accuracy of the numerical method is solely limited by the diffraction orders used in the 
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RCWA. The calculation results are validated by comparison with previous works [38,39] 

and the convergence are tested using sufficiently large number of diffraction orders. The 

numerical solutions obtained by the scattering theory are treated as exact results in this 

work for comparison purpose. 

 

B. EFFECTIVE MEDIUM THEORY 

Alternatively, when the gap distance is much larger than the period of 

nanostructures, EMT combined with fluctuational electrodynamics can be well adopted 

to predict the near-field heat flux. In this circumstance, the grating film can be 

homogenized as a uniaxial material with the optical axis lying in the x-y plane. The 

effective dielectric functions of the equivalent homogenized thin film for the grating 

region are given by  [31] 

 ( )O D-Si1 f fε ε= − +  (6) 

 
( )

D-Si
E

D-Si1 f f
εε

ε
=

− +
 (7) 

where Oε  and Eε  are the dielectric functions for the electric field perpendicular and 

parallel to the optical axis, respectively, and /f W P=  is the filling ratio. For the 

configuration shown in Fig. 1, the optical axis is parallel to the x-axis.  

The radiative heat flux between thin grating films on doped Si substrates based on 

EMT can be expressed as [18,31] 
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where 2 2
x yk kβ = +  is the transverse wave vector, φ  is the azimuthal angle, and 

( ), ,ξ ω β φ  is the energy transmission coefficient considering polarization coupling  and 

can be expressed as [31] 
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where ( )0
12

1 2
zik de

−
= −D I R R  is a Fabry-Pérot type denominator representing the 

multiple reflections inside the vacuum cavity, and 1R  and 2R  are the 2 × 2 reflection 

coefficient matrices including both the co-polarization ( ssr  and ppr ) and cross-

polarization ( spr  and psr ) components. Since the two gratings are parallel to each other, 

the optical axes are also parallel, making the calculations much easier. Note that φ  

defines the plane of incidence, and rotation of the plane of incidence is equivalent to the 

rotation of the optical axis of the anisotropic film. The dielectric function tensor of the 

film with respect to the plane of incidence is given as 
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where χ  is the angle between the optical axis and the normal of the plane of incidence. 

In Refs. [31], expressions for the reflection coefficient matrix were given when the 

anisotropic medium is semi-infinite. These expressions are extended in the present study 

to treat the anisotropic film with thickness of H, i.e., the same as the grating height, on 

top of a bulk substrate.  

 

C. PROXIMITY APPROXIMATION  

The PA, which is based on pair-wise addition, assumes near-field heat transfer 

between complex structures to be localized without considering interactions between 

neighboring unit cells. The resulting radiative heat flux can be calculated as a weighted 

average of plane-plane configurations at different gap distances. For 1D gratings with

0.5f ≤ , the radiative heat flux predicted by PA can be written as  

 
( )

2
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2
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Similarly, when 0.5f > , PA gives  
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Here, dQ , d HQ + , and 2d HQ +  are the radiative heat flux for plane-plane configurations 

at gap distance of d, d+H, and d+2H, respectively. Due to symmetry, the range of lateral 

displacement that needs to be considered is from 0 to P/2 only. Note that Eqs. (11) and 
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(12) can be used directly to calculate the Casimir interaction by replacing the radiative 

heat flux with the Casimir force.   

 

D. CALCULATION OF THE CASIMIR FORCE 

The Casimir attraction between gratings at finite temperature T at equilibrium 

conditions can be obtained using the previously discussed scattering theory as [53,54]  

 
/ 1
/
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π
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∞ ∞ −
− −∞
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∂⎡ ⎤−⎢ ⎥∂⎣ ⎦∑ ∫ ∫
MI M  (13) 

where the prime on the summation operator means the n = 0 term should be taken with a 

factor of 0.5. Eq. (13) is similar to Eq. (1) to some extent, but the summation here is 

exerted over the Matsubara imaginary frequencies, 2n n Bi i nk Tζ ω π= = h . Note that T is 

set to be 300 K, the average of T1 and T2, and the nonequilibrium effects are neglected 

given that the temperature difference between T1 and T2 is small (20 K) and the zero-

point energy has the dominant contribution at sub-micron gap spacings around room 

temperature. Matrix nM  can be described by the reflection coefficients 1R  and 2R  at 

the Matsubara frequencies, obtained by using RCWA [53].  

 

III. RESULTS AND DISCUSSIONS 

A. ENHANCEMENT OF NEAR-FIELD HEAT FLUX 

In this study, the following geometric parameters are chosen as the default values 

unless otherwise specified: P = 200 nm, d = 400 nm, f = 0.2, H = 1 μm, and δ  = 0 
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(aligned case). The radiative heat flux between two gratings as a function of the filling 

ratio is plotted in Fig. 2a, while other geometric parameters are set as the default values. 

When f = 1, both results reduce to the case for two planar substrates (bulk doped silicon) 

for which the near-field heat flux is 294 W/m2. The radiative heat flux predicted by PA 

decreases linearly as f is reduced, which is in opposite to the trend calculated by the 

scattering theory (exact). When f = 0.05, the heat flux achieves a maximum value of 1154 

W/m2, which is 20.7 times as large as what is predicted by PA, breaking down the 

assumption of localized radiative transport. Further decreasing f will result in a reduction 

of the heat flux. Of course, f = 0 implies the situation between two planar media with a 

gap distance d + 2H and both the exact solution and PA method give the same result. 

However, even though the filling ratio is as small as 0.01, the heat flux is enhanced to 

over 1000 W/m2 as predicted by the scattering theory. The radiative heat transfer for 

doped-silicon gratings is very efficient with higher heat flux at any practical filling ratio 

than that for bulk doped silicon. This is in contrast to aligned gratings made of polar 

materials, such as silica, which have been demonstrated to support localized heat 

transport due to the short lateral propagation length of surface phonon modes [38]. For 

this reason, PA works well for aligned silica gratings and, as such, silica nanostructures 

can barely outperform bulk materials in terms of near-field radiative heat transfer [38,40]. 

For doped-silicon gratings, reducing the filling ratio can result in an enhancement of 

more than two orders of magnitude over that predicted by the geometry-based PA. 

As shown in Fig. 2b, the near-field heat flux increases with the grating depth 

according to the exact solution, while PA predicts an opposite trend. When H is close to 

zero, the calculated radiative heat flux based on the exact solution recovers the value of 
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294 W/m2, i.e., between two planar substrates. The heat flux between gratings increases 

slowly and tends to saturate when the grating thickness exceeds 10 μm, suggesting that 

the radiation penetration depth of the grating film is on the order of several micrometers. 

When H is further increased, the substrates beyond the grating region contribute little to 

near-field radiative transfer.  

 

B. COMPARISON OF THE EXACT SOLUTIONS WITH EMT AND PA 

The near-field radiative heat flux between gratings based on the scattering theory 

is compared with the predictions from EMT and PA as shown in Fig. 3. In order to 

identify the region where doped-silicon gratings perform better than bulk counterparts, 

the radiative heat flux for bulk doped silicon is also shown in Fig. 3. The effect of period 

on the calculated heat flux is shown in Fig. 3a, in which d, f, and H are kept at the default 

values of 400 nm, 0.2, 1 μm, respectively. The predicted heat fluxes by EMT and PA are 

independent of the period for aligned identical gratings and thus are flat lines. 

Interestingly, as the period decreases, the heat flux predicted by the scattering theory 

(exact) approaches and finally coincides with that by EMT. For example, when P = 20 

nm the heat flux from the exact solution is 941.54 W/m2, which is essentially the same as 

the EMT prediction of 941.58 W/m2. With decreasing period and the width of the 

gratings, it becomes difficult for waves to sense the small features and, therefore, 

homogenizing the grating as an effective medium becomes more reasonable. Similar 

observations were shown for metallodielectric metamaterials in Ref. [35], where 

quantitative criteria for the validity of EMT in predicting radiative heat transfer between 

multilayers are given.  
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On the other hand, if the period becomes large enough, the radiative heat transfer 

is expected to achieve the value predicted by PA due to the negligible interactions 

between different unit cells nearby. At P = 20 μm, the heat flux of 96.0 W/m2 as 

predicted by the scattering theory is only slightly higher than the PA limit of 93.3 W/m2. 

The exact solutions lie between the upper asymptotic line governed by the EMT limit and 

the lower asymptotic line governed by the PA limit. Corrugating bulk doped silicon helps 

to enhance the radiative heat flux for small periods, where the many-body interactions 

between neighboring unit cells become nontrivial.  

The near-field radiative heat flux for gap distance varying from 10 nm to 10 μm is 

shown in Fig. 3b when other geometric parameters are fixed at the default values. The 

agreement between the scattering theory and EMT is excellent when d > 0.6 μm. The 

reason is that the number of contributing modes decreases with increasing gap spacing 

[35,55]. Then, at large d, the major contribution comes from low-k modes with longer 

effective wavelengths. EMT is valid when the effective wavelength is greater than the 

period. However, when the gap spacing exceeds 10 μm, beyond the characteristic 

wavelength of thermal radiation, photon tunneling effects become weak and the radiative 

heat flux will converge to the far-field values when the energy transfer is dominated by 

propagating modes and independent of the gap spacing anymore.  

With decreasing d, the exact solution deviates from the EMT result but 

approaches the PA prediction. Hence, the near-field radiative heat transfer tends to be 

localized at small gap spacing since the field will be highly confined due to the dominant 

contribution of high-k modes. Figure 3b also demonstrates that for the chosen values of f, 
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H, and P, doped-silicon gratings outperform the bulk counterparts in terms of the heat 

transfer enhancement for d > 15 nm. Another interesting phenomenon is that the near-

field heat flux of doped-silicon grating exhibits a power law close to d−1 for sub-micron 

gap spacing rather than the well-known d−2 (obtained by assuming p-polarized waves 

have dominant contributions [56]) as is the case for both bulk and homogenized media 

supporting surface resonances. 

 

C. EXCITATION OF BROADBAND HYPERBOLIC MODES 

The underlying mechanism for the efficient radiative heat transfer is further 

explored by considering the spectral distribution, effective dielectric functions, and 

contour plot of the energy transmission coefficient. Using the default values, the exact 

solution gives a heat flux of 736 W/m2, which is about eight times as high as the PA limit 

and 78% of the EMT limit. The heat flux spectra predicted by the three methods are 

plotted in Fig. 4a. It can be seen that the spectral heat flux predicted by the scattering 

theory is much higher than that by PA from 3×1013 rad/s to 3×1014 rad/s. The surface 

resonance mode of doped Si lies at 2.88×1014 rad/s [31], where there is a small rise in the 

PA prediction. However, this feature does not show up according to the exact solution 

and EMT, both of which give very similar trend in the spectral heat flux. The reason is 

further explored by considering the dielectric functions predicted by EMT.  

The real parts of the dielectric function in orthogonal directions, Oε ′  and Eε ′ , 

calculated from Eqs. (6) and (7) are shown in Fig. 4b. When Oε ′  and Eε ′  have different 
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signs, the dispersion becomes hyperbolic with unbounded density of states [57,58]. As a 

result, high-k modes become propagating in the homogenized grating region. The local 

density of states (LDOS) becomes high, leading to broadband efficient photon tunneling 

[26]. The hyperbolic band ranges from very low frequencies to 2.58×1014 rad/s as 

denoted by the shaded region in Fig. 4b.  

The energy transmission coefficient contour for 0yk =  and 0 /xk Pπ≤ ≤  based 

on the scattering theory and EMT is given in Fig. 5a and Fig. 5b, respectively. Because 

the cutoff wave vector for hyperbolic modes, defined as 1.94/d [35], is less than 2π/P, 

only modes in the first Brillouin zone have nontrivial contributions to the radiative heat 

flux and the folding of other diffraction orders has negligible contributions. For EMT, the 

calculation is set to 0φ = °  and 0 / Pβ π≤ ≤ , in which case the cross-polarization terms 

become zero. The energy transmission coefficient considers both s and p polarizations 

and hence the upper limit is two instead of one [31]. The agreement of the energy 

transmission coefficient predicted by both the scattering theory with the EMT is quite 

good. For s-polarized waves at frequencies below 2.58×1014 rad/s where O 0ε ′ < , the 

gratings behave like a metal and give a very small ξ . At high frequencies, the energy 

transmission coefficient for s-polarized waves is large for propagating waves since Oε ′  is 

greater than zero and Oε ′′  is small. However, photon tunneling for s-polarized waves 

contributes little to near-field radiation because of the negligibly small energy 

transmission coefficient (or tunneling probability). Attention is now paid to p-polarized 

waves as discussed next. 
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When 0yk = , the reflection coefficient at the interface between vacuum and 

homogenized gratings for p-polarized waves is given as [31,59] 

 
( )
( )

2 2 2 2 2 2
0 0 E E O 0 O

pp 2 2 2 2 2 2
0 0 E E O 0 O

/ /

/ /

x x x

x x x

k k k k k k
r

k k k k k k

ε ε ε ε

ε ε ε ε

− − − −
=

− − + −
 (14) 

Only ppr  is considered since neither s-polarized waves nor polarization coupling effects 

are important for high-k evanescent waves [31]. Considering Eε ′′  (the imaginary part) is 

close to zero though not shown here, Eε  can be replaced by its real part Eε ′  and Eq. (14) 

can be recast as follows:  

 
2 2 2 2

E 0 0 O
pp 2 2 2 2

E 0 0 O

x x

x x

k k k k
r

k k k k

ε ε

ε ε

′ − − −
=

′ − + −
 (15) 

Note that for evanescent waves the imaginary part of ppr  must not be zero in 

order for the ξ  to become nontrivial [31]. For the high-frequency region beyond the 

hyperbolic band, O 0ε ′ >  and Oε ′′  is negligible, as a result, 2 2
0 Oxk k ε−  becomes purely 

imaginary when 0xk k  is greater than Oε ′ , which is about 1 as shown in Fig. 4b. The 

result is a very low tunneling probability at high frequencies. For propagating waves at 

high frequencies, ξ can still be large for p-polarized waves due to the dielectric behavior 

for both ordinary and extraordinary waves. Even though the combination of s- and p-

polarized waves gives large ξ  values (1.0 to 1.8) in this region, the contribution from the 

high-frequency region to the total radiative heat flux is less than 10%.  
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In the hyperbolic region, O 0ε ′ <  and Oε ′′  is large, so that 2 2
0 Oxk k ε−  has a 

dominant real part at low frequencies, leading to nontrivial energy transmission 

coefficients of evanescent waves. Doped-silicon gratings exhibit the unique property of 

hyperbolic modes with large photon tunneling probability in a broad frequency band. 

This is the main reason for the enhancement of near-field radiation by gratings over bulk 

doped silicon. As shown in Fig. 5, even in the hyperbolic region, ξ  is very small for low-

xk  modes. When the hyperbolic film representing the grating region is thin, smaller than 

the penetration depth of the slow-decaying low- xk  modes, the film becomes transparent. 

Due to the metallic feature of the doped-silicon substrate, the resulting ξ  is very small in 

the hyperbolic band for low xk  values. This has been confirmed by calculations with 

increasing H, which results in higher energy transmission coefficient for low- xk  modes 

(although not shown here).  

It is worth noting that thin-film effects also play a role such that the doped-silicon 

substrates act together with the hyperbolic film to enhance near-field heat flux for high-

xk modes. The demonstrated hyperbolic nature may come from the coupling with short-

range SPPs [60]. The slight difference between Fig. 5a and Fig. 5b is that the hyperbolic 

band featured with a large energy transmission coefficient is slightly broader for an 

effective medium described by EMT, suggesting that the hyperbolic dispersion at large 

wave vectors fails to hold for actual doped-silicon grating. This explains why EMT tends 

to predict a higher radiative heat flux than the exact solution. Similar phenomena have 

been noticed in multilayered metamaterials [35,58,61]. Overall, it can be clearly seen that 

the photon tunneling is effective in the hyperbolic region with a large number of xk  
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modes except those very close to the light line. That is the reason why doped-silicon 

gratings support a much higher heat flux than bulk materials. Furthermore, since high xk  

modes become propagating in the gratings and the propagation length can exceed one 

period, near-field radiative transport with doped-silicon gratings tends to be delocalized;  

this explains why PA fails as the period becomes sufficiently small. 

 

D. SURPRESSED CASIMIR ATTRACTION 

The formula for predicting the Casimir stiction between doped Si grating based on 

the scattering theory has been given in Eq. (13). The dielectric function of doped silicon 

at the imaginary frequency iζ ω=  is given as [62] 

 ( ) ( )
22

0
2 2

0

10.8351.035 pωωε ζ
ω ω γω ω

= + +
++

 (16) 

Note that the first two terms on the right side of Eq. (16) are the high-frequency dielectric 

response of silicon and are independent of the doping level. Here, 0ω = 6.6×1015 rad/s is 

a fitted resonance frequency used to describe the interband transition for intrinsic silicon 

[62]. The last term of Eq. (16) represents the intraband contribution, where the values of 

pω  and γ  are given in Section II for a doping concentration of 1020 cm−3. Note that the 

high-frequency dielectric response of silicon can be treated as a constant in the 

calculation of radiative heat transfer, since the contribution from frequencies higher than 

4.0×1014 rad/s is negligible. However, for the Casimir interaction, these high-frequency 

modes are significant and even dominant for gap distances below hundreds of nanometers. 

The Casimir force of doped-silicon gratings Fg normalized by that of bulk doped silicon 
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Fb is plotted in Fig. 6 for varying submicron gap distances with two periods P = 0.2 μm 

and 1.0 μm with f = 0.2 and H = 1 μm. The dashed lines with marks represent the results 

from the scattering theory using RCWA. As shown as the dash-dotted line, the PA 

prediction is independent of the period and gap distance. Since Casimir force is a strong 

function of the distance between two parallel planar surfaces, the ratio /g bF F  in the PA 

limit approaches to the filling ratio of 0.2 for aligned gratings. In contrast to near-field 

energy transfer, the Casimir force is always reduced by surface corrugation as predicted 

by both the scattering theory and the PA method. Similar results were demonstrated for 

intrinsic silicon and metal gratings [54,63-65]. Nevertheless, the PA method may under- 

or over-predict the Casimir force as compared with the exact method. It is interesting to 

note, according to the exact solution, the Casimir force of doped-silicon gratings is 

reduced to below the PA limit at gap distances below several hundred nanometers, which 

fall in the desired separation range for near-field energy harvesting and thermal 

management due to the prominently high radiative heat flux. The reason for the reduction 

of Casimir force below the PA limit may be attributed to the strong interactions of the 

fields between the ridges and those inside the grooves. Virtual photons confined between 

the ridges of the emitter and the receiver tend to leak when being close to the edges. The 

Casimir force predicted by the scattering theory for P = 1 μm tends to be closer to the PA 

limit than for P = 0.2 μm. This is expected since both the edge effects and interactions 

between neighboring unit cells will become weak for increasing grating period. Therefore, 

besides improving the near-field radiative heat flux, patterning doped-silicon surfaces 

helps to relieve the Casimir stiction.     
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E. EFFECTS OF THE LATERAL DISPLACEMENT 

The heat flux and Casimir force generally decrease when some lateral 

displacement δ  is introduced between the top and bottom gratings since mode coupling 

is deteriorated due to symmetry breaking. Such an effect has been considered for 

potential devices such as thermal modulators [38]. Before possible applications of doped-

silicon gratings in modulating the heat flux and attraction force, it is necessary to study 

the effects of lateral displacement. To simplify the analysis, the relative lateral 

displacement Pδ  is chosen to be 0.5, i.e., the maximum misalignment, so that the heat 

flux and Casimir attraction force should be the smallest. The ratio of the radiative heat 

flux and Casimir force between the misaligned case and the aligned case, =0.5 =0PQ Qδ δ  

and =0.5 =0PF Fδ δ , are shown in Fig. 7a and 7b, respectively, for varying grating period.  

When the period is small, below 200 nm, both the radiative heat flux and Casimir force 

remain the same despite of the misalignment. This is not surprising since when the period 

is shorter than the wavelength of the dominating modes, gratings behave as a 

homogeneous film according to the EMT. Even when d = 0.5 μm, the heat flux and 

Casimir force for misaligned case are still very close to that for the aligned case. 

Therefore, when the period is small, the heat flux and Casimir force for the doped-silicon 

gratings are insensitive to the displacement. As the period increases, there exists a strong 

dependence of both the radiative energy transfer and momentum transfer on the lateral 

displacement. As expected, if P exceeds 10 μm, both of the ratios approach those as 

governed by the PA limit. The PA limit of =0.5 =0PQ Qδ δ  is 56% as seen from Fig. 7a, 

while that of =0.5 =0PF Fδ δ  is only 2% as seen from Fig. 7b. This is because the Casimir 
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interaction is more sensitive to the gap spacing (d−4) compared with the near-field 

radiative heat flux (d−2).  

 

IV. CONCLUSIONS 

Highly efficient radiative heat flux between doped-silicon gratings is 

demonstrated and the amount can be as high as three times that between planar substrates. 

Furthermore, the exact solution based on the scattering theory predicts the heat flux to be 

1-2 orders of magnitude higher than that given by the geometry-based approximation. 

The excitation of hyperbolic modes, which support broadband and large energy 

transmission coefficient for high-k modes, is attributed to be the main reason of the 

enhanced near-field energy transport. Meanwhile, the issue of Casimir stiction is 

demonstrated to be greatly relieved with gratings as compared to the bulk counterparts. 

This work opens new possibilities of enhancing radiative energy transfer while 

simultaneously suppressing momentum exchange by patterning doped-silicon surfaces. 

The findings hold promise for applications in contactless thermal management, near-field 

energy harvesting, and relieving adhesion problems of MEMS and MEMS devices. 
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Figure Captions: 

FIG. 1  Schematic of near-field radiative heat transfer between two one-dimensional 

doped-silicon gratings with a lateral displacement of δ . For both gratings, the 

height, period, and width are H, P, and W, respectively. The temperatures of the 

two gratings are set as T1 = 310 K and T2 = 290 K, respectively, for all 

calculations. 

FIG. 2 Radiative heat flux as a function of (a) filling ratio /f W P=  and (b) grating 

height H, calculated from both the scattering theory (indicated as exact) and the 

PA method for aligned gratings. Only one parameter is changed while the rest 

are fixed as the default values P = 200 nm, d = 400 nm, f = 0.2, and H = 1 μm. 

FIG. 3  Comparison of heat flux calculated from the scattering theory with EMT, PA 

limit, and bulks. (a) Effects of period for d = 0.4 μm; (b) Effects of gap distance 

at P = 0.2 μm. 

FIG. 4  (a) Spectral radiative heat flux predicted by the scattering theory, EMT, and PA 

with the default parameters; (b) Effective dielectric functions for orthogonal 

directions for doped silicon gratings with f = 0.2. 

FIG. 5  Contour plots of the energy transmission coefficient at 0yk =  for the default 

parameters: (a) Exact solution based the scattering theory using RCWA; (b) 

EMT by setting 0φ = . The dash-dotted line denotes the light line. 

FIG. 6  Casimir force between aligned doped-silicon gratings normalized to that for 

bulk counterparts as a function of the gap distances.  

FIG. 7  Ratio of (a) the radiative heat flux or (b) Casimir force for the misaligned 

grating when Pδ  = 0.5 to that corresponding to the aligned gratings as a 

function of the period. 
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