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I. INTRODUCTION

Quantum Electrodynamics (QED), the relativistic field theory of the electromagnetic

interaction of charged particles, describes the simplest atom, hydrogen, with high accuracy.

This accuracy of both experiment and theory is continuously improving, with the level of

parts per billion (ppb) not unusual for both [1]. To achieve agreement between theory and

experiment QED effects, most prominently the one-loop radiative correction known as the

Lamb shift, must of course be included.

The definition of a QED effect is particularly straightforward for hydrogen, simply being

any correction to the analytically known energy levels predicted by the Dirac equation. If the

nucleus is treated as an infinitely heavy point charge, a modification of the interaction picture

of QED introduced by Furry [2] gives a framework for calculating QED effects. In particular,

the Lamb shift is a precisely defined quantity involving the propagator of an electron in the

field of the point charge. For example, before regularization and renormalization the self-

energy part of the one-loop Lamb shift of an electron in state v when the nuclear charge is

Z|e| is

Ev(SE) = −ie2
∫

d3x d3y
∫

d4k

(2π)4
ei
~k·(~x−~y)

k2 + iδ
ψ̄v(~x)γµSF (~x, ~y; ǫv − k0)γ

µψv(~y), (1)

with the electron propagator obeying the equation

[

(

E +
Zα

r

)

γ0 + i~γ · ~∇x −m
]

SF (~x, ~y;E) = δ3(~x− ~y). (2)

Advances in numerical methods have led to its evaluation accurate to under one Hz [3].

However, as soon as more than one electron is present, the definition of a QED effect

is less obvious, as one no longer has either an analytically or numerically known analog to

the Dirac energy levels. If one allows the definition of QED effects to include relativistic

corrections, one approach is to define the energy relative to which a QED effect is defined as

ES, the solution of the Schrödinger equation HΨ = ESΨ for N electrons, with Hamiltonian

H =
N
∑

i=1

[

~p 2
i

2m
− Zα

ri

]

+
∑

i<j

α

|~ri − ~rj|
. (3)

Effective field theory methods, introduced as nonrelativistic QED (NRQED) by Caswell and

Lepage [4], provide a systematic method of including corrections to ES from QED effects.
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When considering few-electron atoms and molecules, variational methods allow ES to be

determined very precisely. The ground state energy of helium is a striking example [5],

ES = −2.903 724 377 034 119 598 311 ..., (4)

in atomic units, with many more digits not shown. The QED corrections, while challenging

to calculate, are basically under control at the same level as hydrogen. Examples of state of

the art calculations are the fine structure of helium [6] and the hydrogen molecule [7].

When variational methods become impractical, a mean central field U(r) is introduced,

and the Hamiltonian reorganized to H = H0 + V , with

H0 =
N
∑

i=1

[

~p 2
i

2m
− Zα

ri
+ U(ri)

]

(5)

and

V =
∑

i<j

α

|~ri − ~rj|
−

∑

i

U(ri). (6)

The Rayleigh-Schrödinger perturbation expansion in V is known as many-body perturbation

theory (MBPT), and will have a close relation to the QED approach we use.

In this paper we treat highly-charged ions with many electrons. In these ions, relativistic

effects are too large to be included perturbatively, and there are too many electrons to allow

the use of variational methods, so an approach along the lines of MBPT is called for. A

relativistic form of MBPT can be introduced by replacing the nonrelativistic kinetic energy

~p 2
i /2m with ~αi · ~pi + βim in Eq. (5). While there are well-known problems present when

carrying out the sums over intermediate states of MBPT when negative energy states are

involved [8, 9], they can be avoided by simply excluding those states from those summations.

ED, a relativistic generalization of ES, can then be defined.

When U(r) is chosen to be the Hartree-Fock potential, a set of calculations of ED have

been carried out up to third order in MBPT for the lithiumlike [10], sodiumlike [11], and

copperlike [12] isoelectronic sequences. Significant discrepancies with experiment are found

in all cases, as expected because QED effects are not included in ED. A useful approximate

inclusion of the leading QED effect, the Lamb shift, for the three sequences was given

in Ref. [13]. However, a QED approach equal in rigor to NRQED can be applied, based

on a modification of the Furry representation [2] used in hydrogen calculations. An early

application of this approach was given by Blundell [14], and more recently two calculations
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of the lithiumlike sequence have been carried out [15, 16]. We note also another approach

to incorporating QED into the many-body problem by Lindgren [17].

Furry representation changes the interaction picture, where electrons propagate freely,

in such a way that the electrons propagate in an external Coulomb field, as described in

Eq. (2). The unitary transformation that does this is easily modified to incorporate the

mean central potential U(r), though we have to use local approximations to the original

Hartree-Fock potential because of its nonlocality. Just as with hydrogen, a set of Feynman

diagrams can be generated, which can be associated with energy shifts with the use of either

S-matrix techniques, used in Ref. [15], or two-time Green’s function techniques [18], used in

Ref. [16]. The diagrams are similar to those used in hydrogen calculations, though, as we

shall show later, new diagrams involving photon exchange between different electrons and a

new interaction associated with the model potential U(r) are present.

As individual contributions to the energy level change with U(r), only if ED can be

shown to be independent of the potential to a high degree of accuracy will this approach be of

practical utility. This is definitely not the case for most neutral atoms, although Hamiltonian

methods that sum high orders of MBPT diagrams such as coupled-cluster methods [19], are

constantly improving. However, it is the case for the isoelectronic sequences mentioned above

once the ions are highly charged. In this case one need consider only a limited set of Feynman

diagrams, and a well defined way of carrying out completely QED based calculations of the

ions exists. As will be described below, QED effects get intertwined to some extent with the

definition of ED, so in the following we give results solely in terms of Feynman diagrams.

The extension from lithiumlike to the general case is complicated by a number of issues.

The first has to do with the starting point of the calculations, which can be chosen to

be hydrogenic orbitals for lithiumlike ions. However, with 11 or more electrons, ignoring

the electron-electron interaction in lowest order is a poor approximation. This necessitates

building in screening in the basic formalism, an optional step for the lithium isoelectronic

sequence. Secondly, the fact that only the 1s core state was populated in lithiumlike ions led

to certain simplifications, so some of the formulas given in Ref. [15] have to be generalized

to the case when there are multiple core states. Thirdly, an interesting apparent instability

appears in two parts of the two-photon exchange calculation. The combination of those parts

will be shown to be stable, and the reason for the instability, which is related to autoionizing

states, is discussed. Finally, even though the large nuclear mass makes recoil corrections
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small, the QED treatment is highly non-trivial, and will be discussed in some detail.

The plan of the paper is as follows. In the next section, we introduce the formalism

used in the calculations. In the following three sections we treat energy shifts associated

with Feynman diagrams with one, two, and three photons, respectively. The finite mass of

the nucleus is accounted for, along with a discussion of issues to do with its structure in

Section VI. Application to the sodium isoelectronic sequence is given in Section VII, along

with a comparison with other calculations and experiment. In the conclusion we discuss

issues involved in carrying out a more complete QED treatment of alkalilike ions, and the

possibility of treating ions with more complicated electronic structure.

II. S-MATRIX FORMALISM

The fact that even the lightest nucleus is three orders of magnitude heavier than the

electron leads to its role being predominately the source of a classical Coulomb field. Once

this approximation is made, one is dealing with a standard bound state QED problem

that can be treated in the Furry representation [2]. While the original application was to

hydrogen, QED is intrinsically a many-body theory, and one can treat atoms with more

than one electron with the same formalism. In terms of creation and annihilation operators,

all that needs be done for alkalilike ions is to change the initial state of an electron in state

v, for hydrogen described as

|v〉 = b†v |0〉 (7)

to

|v〉 = b†v |0C〉. (8)

Here |0〉 is a state with no electrons present, and |0C〉 a state with all core states populated,

ten for the case of sodiumlike ions.

While QED is intrinsically a many-body theory, the electron propagator does not au-

tomatically “know” how many electrons are present when one is doing calculations on a

many-electron atom or ion. This leads to certain complications when carrying out practical

calculations. Many of these are avoided in MBPT through a redefinition of the ground state.

While similar redefinitions can be done in QED, here we choose the ground state to have no

core electrons present. This means that for sodiumlike ions |0C〉 is understood to have ten

core electron creation operators operating on |0〉. We will show in several cases throughout
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the paper how different Feynman diagrams act together to effectively “fill the core”, building

in the effect of the Pauli exclusion principle by cancelling terms involving core electrons.

We begin by showing in the row labeled E0 in Tables I – II the 3s, 3p1/2 and 3p3/2

eigenenergies of sodiumlike tungsten in two different potentials. Sodiumlike tungsten is the

ion we use for purposes of illustration. It is also of current interest, as recent experiments

[20, 21] have found

E3p1/2 −E3s1/2 = 5.8635(12) a.u.,

E3p3/2 −E3s1/2 = 19.595(5) a.u..

We note that natural units with h̄ = c = 1 are used throughout this paper, and unless

otherwise specified, energies are given in atomic units, where 1 a.u. = 27.211384 eV.

Were we to start by ignoring the interaction between electrons, we would be using the

original Furry representation, which has the external field being the Coulomb field of the

nucleus,

UC(r) = −αZnuc(r)

r
. (9)

Solving the Dirac equation for a nucleus of finite size with root-mean-square charge radius

of 5.359 fm gives the Coulomb eigenenergies E0 shown in Table I, which leads to transition

energies of −0.048 and 18.182 a.u., a clearly undesirable starting point. However, the Furry

representation can easily be modified by taking the QED Hamiltonian H = H0 + HI and

rearranging it to H = H̃0 + H̃I , where

H̃0 =
∫

d3xψ†(x)
[

−i~α · ~∇+ βm+ UC(r) + U(r)
]

ψ(x), (10)

with U(r) chosen to approximately account for the effect of screening. This requires a

modification of the interaction Hamiltonian, which acquires a new counter term,

HCT = −
∫

d3xψ†(x)U(r)ψ(x), (11)

so that the interaction Hamiltonian becomes

H̃I =
∫

d3x
[

qeA
µ(x)ψ̄(x)γµψ(x)− ψ†(x)U(r)ψ(x)

]

. (12)

We use Feynman gauge for this part of the calculation, but note that we will later use

Coulomb gauge when recoil corrections are treated. In the above equations ψ(x) is a field

operator, with associated wave functions obeying the Dirac equation

[

−i~α · ~∇+ βm+ UC(r) + U(r)
]

ψn(~x) = ǫnψn(~x). (13)
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We can choose any function U(r), so long as it is a local function of r, which prohibits use

of the Hartree-Fock potential. However, a local potential that gives results close to Hartree-

Fock is the Kohn-Sham (KS) potential [22], which we define as VKS(r) = UC(r) + UKS(r),

with

UKS(r) = α
∫

dr′
1

r>
ρt(r

′)− 2

3

[

81

32π2
rρt(r)

]1/3α

r
. (14)

Here

ρt(r) = g2v(r) + f 2
v (r) +

∑

a

(2ja + 1)
[

g2a(r) + f 2
a (r)

]

, (15)

where the large- and small-component radial Dirac wavefunctions g and f are normalized

so that for large r, UKS(r) → αN/r, with N the number of electrons. For the sodium

isoelectronic sequence, the valence state v is chosen to be the 3s state, and the sum over the

core states a ranges over the 1s, 2s, 2p1/2, and 2p3/2 states. Solving the Dirac equation with

this potential gives the results E0 on the first line of Table II, and we now have a starting

point within 6 percent for the 3s1/2 − 3p1/2 transition energy and (accidentally) almost

exactly in agreement with the 3s1/2 − 3p3/2 transition energies. In our earlier calculation

on lithiumlike bismuth [23], we chose a set of potentials, which of course gave different

transition energies in lowest order, and showed that inclusion of higher-order diagrams led

to well-converged totals: here we will do this only for the case of sodiumlike tungsten.

We now wish to begin including the corrections coming from H̃I . This can be done by

using the S-matrix, the time-ordered exponential of the sum of these interaction Hamilto-

nians. Carrying out the standard expansion of the S-matrix leads to expressions that can

be represented by Feynman diagrams. To deal with bound state QED the rules for these

diagrams must be slightly modified, as we wish to calculate energies rather than scattering

amplitudes. To do this, an adiabatic damping factor e−ε|t| is introduced that multiplies the

interaction Hamiltonian, and one can then show that energy shifts can be obtained from

this modified Hamiltonian with the equation [24],

∆E = lim
ε→0

iε

2
lim
λ→1

∂
∂λ
〈φ|T (e−iλH̄I)|φ〉

〈φ|T (e−iλH̄I)|φ〉 , (16)

where

H̄I ≡
∫

dx0 e
−ε|x0|H̃I . (17)

Note that the first term in the perturbation expansion of 〈φ|T (e−iλH̄I )|φ〉 is 1, so the de-

nominator in the above can often be neglected, but it will play a role in the evaluation of

two-photon terms.
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At this point corrections can be calculated using the standard tools of quantum field

theory. A frequently encountered integral when Feynman gauge is used is

gijkl(E) = α
∫

d3x d3y
eiĒR

R
ψ†
i (~x)αµψk(~x)ψ

†
j(~y)α

µψl(~y), (18)

where R = |~x− ~y|, αµ = (1, ~α) and Ē =
√
E2 + iδ. If we restrict µ to 0 and put E = 0 this

is the familiar Coulomb matrix element of MBPT, gcijkl. The definition of Ē builds in the

proper boundary conditions: for real values of E it is of course simply the absolute value,

and when we need to deal with complex values it gives exponential damping.

III. ONE-PHOTON EFFECTS

A. One-photon exchange terms

In Fig. 1, we show the diagrams for the exchange of a photon between the valence electron

and a core electron, together with the action of HCT on a valence electron: in terms of

counting photons, one HCT always counts as one, but one needs two actions of Aµψ̄γµψ to

get a photon propagator. Diagrams in which the valence electron is not involved, while they

do not vanish, can be ignored for our purposes, as they affect neither valence removal or

transition energies, and the convention of not including diagrams of this sort will be followed

throughout the calculation. The photon propagator in Feynman gauge is

Dµν(x, y) = −gµν
∫ d4k

(2π)4
e−ik·(x−y)

k2 + iδ
= gµν

1

4πR

∫ dk0
2π

ei|k0|R, (19)

where R = |~x − ~y|, and we use a metric where k2 = k20 − ~k2. The integral over x0 gives a

function multiplying this of the form

Dε =
ε

π

1

ε2 + (k0 −E)2
, (20)

where for this problem E = 0 or E = ǫv − ǫa. This acts as a delta function, and one can

usually set k0 = E in Eq. (20). Evaluating the integral over k0 then gives a term going as 1/ε,

which cancels the ε in Eq. (16). After carrying out the simpler analysis of the counter-term

graph, one finds the energy shift

E1F =
∑

a

[gvava(0)− gvaav(ǫva)]− Uvv, (21)
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where we have introduced the notation

ǫij ≡ ǫi − ǫj . (22)

If we replace g with gc this exactly reproduces the energy that would be found in MBPT.

We are using Feynman gauge, but note that if we used Coulomb gauge, the replacement

just mentioned is exactly the result of calculating the exchange of a Coulomb photon. In

Coulomb gauge one also has transverse photons, but their connection to Feynman gauge is

more complicated. However, because we are working with a local potential, gauge invariance

ensures that the results of a Feynman gauge calculation will be identical to those coming

from a Coulomb gauge calculation so long as a gauge invariant set of diagrams is treated.

The term involving gvaav has in general both a real and an imaginary part, with the latter

playing a role in the decay rate of the ion, discussed further below. We do not tabulate it

here, as we are interested in energies, but note that the imaginary part of g terms have to be

kept when more than one of them are present, as is the case for two-photon contributions.

The real part is given as E1 in Tables I – II. We note that if we compare the 3s energy for

the two potentials, a 0.2 percent discrepancy in lowest order is reduced to 0.03 percent after

E1 is included.

B. One-loop Lamb shift diagrams

Turning to the other one-photon diagrams, the self-energy (SE) and vacuum polarization

(VP) shown in Fig. 2, we note that the techniques we use for their evaluation have been

described in considerable detail in Refs. [25, 26]. The calculations apply to any state, so

we do not repeat the formulas here. However, there are corrections to the SE term not

important in lowest order that need to be discussed for later application in the two photon

calculation. If we define the electron self-energy operator as

Σij(ǫ) = −ie2
∫

d3x d3y
∫

dnk

(2π)n
ei
~k·(~x−~y)

k2 + iδ
ψ̄i(~x)γµSF (~x, ~y; ǫ− k0)γ

µψj(~y), (23)

the self-energy contribution for the valence election is Σvv(ǫv). (A self-mass counter term is

implicit.) The electron propagator SF , which satisfies

{

[E − UC(r)− U(r)]γ0 + i~γ · ~∇x −m
}

SF (~x, ~y;E) = δ3(~x− ~y), (24)
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is treated in two ways throughout this calculation. The first utilizes a spectral decomposition,

represented by a sum over positive and negative energy states,

SF (~x, ~y;E) =
∑

m

ψm(~x)ψ̄m(~y)

E − ǫm(1− iδ)
. (25)

The term involving δ puts poles in the complex E plane below the positive real axis for

positive energy states and above the negative real axis for negative energy states. This

form for the propagator is very useful, and fits in with one of our numerical methods, the

use of finite basis sets [27]. These methods allow us to replace the sum in the spectral

decomposition, which has an infinite sum over bound states along with an integration over

continuum states, with a finite sum, for a typical basis set of a given angular momentum

channel involving 50 negative energy states and 50 positive energy states. The number 50 is

chosen because calculations of terms involving SF have generally converged by that point,

with the use of larger basis sets not changing the answer appreciably.

The other method of treating the electron propagator uses differential equation tech-

niques. There, one solves the Dirac equation away from an energy eigenvalue. Two types of

solution result, one which is finite at the origin but diverges at infinity, and the other with

the situation reversed. SF (~x, ~y;E) can then be formed as a linear combination of products

of these functions. This method is particularly useful when high accuracy is called for.

The SE term is ultraviolet divergent, and we have regularized that divergence by replacing

d4k with dnk where n = 4− 2ǫd, with the understanding that ǫd → 0 after renormalization.

Were we to take ǫd to vanish, the SE term would be, after carrying out the d3k integration

and using Eq. (18),

Σvv(ǫv) = −i
∫

dk0
2π

∑

m

gvmmv(k0)

k0 − ǫv + ǫm(1− iδ)
. (26)

To numerically evaluate this, we Wick rotate k0 to the imaginary axis, k0 → iω. The

integration over ω is divergent, and a subtraction scheme is required to make it finite, but

here we concentrate on the effect of states more deeply bound than the valence state on

the Wick rotation. These lead to poles that are encircled by this rotation, which give a

contribution to the self-energy we refer to as the pole term,

Σvv[p] =
∑

p

gvppv(ǫvp), (27)

where p sums over all more deeply bound states. The special case p = v will be discussed

below. We note the similarity of the pole term to the second term in E1F , differing only
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by having the opposite sign and summing over both the core and any valence states with

less energy than ǫv. These terms generally have real and imaginary parts. They are the

only source of an imaginary part to the energy from one-loop radiative corrections, as the

ω integration is purely real, as are the vacuum polarization corrections.

The fact that the pole term is almost the negative of the second term of E1F shows a

connection between topologically different diagrams that will be encountered again when

we discuss two-photon physics. This cancellation of the core terms is needed to enforce

the Pauli exclusion principle in our approach, since the valence electron in an alkalilike ion

cannot decay to a core state a. Were we dealing with a hydrogenic ion and v was any state

above the 1s state, no one-photon diagram would exist to lead to a cancellation, and decays

to all lower energy states, unless prohibited by parity or angular momentum considerations,

would be possible.

At this point we elaborate on the pole term when p = v. This is actually a half-pole, and

a factor of 1/2 should be present for that case since that pole is not encircled by the Wick

rotation, but only skirted with a half circle. However, in order to deal with singularities in

parts of the two-photon calculation we have introduced what we call “reference state regu-

larization”. It is distinct from the usual infrared and ultraviolet regularizations encountered

in QED. It consists of introducing a small parameter δ and the replacement of the actual

valence and core energies (in this case including the rest mass of the electron) with

ǫv → ǫv(1− δ)

ǫa → ǫa(1− δ ǫv/ǫa) (28)

This regulates certain terms, discussed in more detail in Sec. IV, that would diverge loga-

rithmically to become factors of lnδ. We generally take the average of a small positive and

a small negative δ, and this procedure leads to the factor 1/2 in the pole term when p = v.

IV. TWO-PHOTON PHYSICS

A. Two-photon exchange terms

Before beginning the S-matrix calculation, we note that second-order MBPT gives an

important contribution to energies of highly-charged ions, as it behaves as Z0 in the 1/Z
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expansion. We wish to show that it can be obtained as a limit of the diagrams in which two

photons are exchanged between electrons. The MBPT formula is

E(2) =
∑

abm

gcmvba(g
c
abmv − gcabvm)

ǫa + ǫb − ǫm − ǫv
+

∑

amn

gcavmn(g
c
mnav − gcmnva)

ǫa + ǫv − ǫm − ǫn

+
∑

am

Xam(g
c
vmva − gcviav) + (gcvavm − gcvamv)Xma

ǫa − ǫm

+
∑

i

XviXiv

ǫv − ǫi
. (29)

Here X ≡ VHF − U , where

(VHF )ij =
∑

a

(gciaja − gciaaj). (30)

We follow the usual MBPT notation that a, b, . . . sum over only occupied core states,

m, n, . . . sum over positive energy states above the core, and i, j, . . . sum over both. For

purposes of comparison with the part of the S-matrix calculation related to this contribution,

we note that we can rewrite E(2) in terms of a unrestricted summation over i and j by simply

carrying out manipulations like

∑

m

F (m) =
∑

i

F (i)−
∑

a

F (a). (31)

The result of this exercise casts Eq. (29) into the form

E(2) =
∑

abi

gcivba(g
c
abiv − gcabvi)

ǫa + ǫb − ǫi − ǫv
+

∑

aij

gcavij(g
c
ijav − gcijva)

ǫa + ǫv − ǫi − ǫj

−
∑

abi

(gcavib − gcavbi)(g
c
ibav − gcibva)

ǫa + ǫv − ǫi − ǫb

+
∑

ai

Xai(g
c
viva − gcviav) + (gcvavi − gcvaiv)Xia

ǫa − ǫi

+
∑

i

XviXiv

ǫv − ǫi
. (32)

In this form the relation between MBPT and the present S-matrix calculation is clearest.

Now turning to the present two-photon exchange calculation, we note that it leads to a

number of effects, which we organize by the number of closed loops. The simplest diagrams

have no loops, and we begin with them. They are shown in Figs. 3a – 3c. The two-photon

propagators can be treated as described above, with the lowest-order approximation giving

E2F =
∑

abi

[gbvbi(0)− gvbbi(ǫvb)] [giava(0)− giaav(ǫva)]

ǫv − ǫi
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+
∑

abi

[gvavi(0)− gvaiv(ǫav)] [gibab(0)− gibba(ǫab)]

ǫa − ǫi

+
∑

abi

[gviva(0)− givva(ǫav)] [gabib(0)− gabbi(ǫab)]

ǫa − ǫi

−
∑

abi

[gavbi(ǫab)− gavib(ǫvb)] [gibva(ǫab)− gibav(ǫvb)]

ǫa + ǫv − ǫi − ǫb

+
∑

abi

[gbavi(ǫvb)− gabvi(ǫva)]givba(ǫva)

ǫa + ǫb − ǫv − ǫi

−
∑

ai

[gavai(0)− gvaai(ǫva)]Uiv + Uvi [gaiav(0)− giaav(ǫva)]

ǫv − ǫi

−
∑

ai

[gaviv(0)− gvaiv(ǫva)]Uia + Uai [givav(0)− givva(ǫva)]

ǫa − ǫi

+
∑

i

Uvi Uiv

ǫv − ǫi
. (33)

We first note that the first, sixth, and eighth term, if we replace g(E) with gc, reproduce

the last term of Eq. (32). Similarly, the second, third, and seventh term reproduce the next

to last term. The fourth term reproduces the third term, and the fifth the first term. Only

the second term of Eq. (32) remains unaccounted for, and we will see below that it can be

found in a one-loop diagram.

In the above expressions, terms in which the denominator vanishes are understood to be

excluded. While this is automatic in MBPT, the treatment of these terms requires care in the

present approach. The excluded terms lead to contributions with an extra power of 1/ǫ. The

leading part of the contribution cancels with a term arising from expanding the denominator

of Eq. (16), but when matrix elements gijkl(E) are taken together with the function Dǫ of

Eq. (20), an extra term arises from Taylor expanding gijkl(E) = gijkl(k0)+ (E− k0)g
′
ijkl(k0).

A detailed description of how this works can be found in Section IIB of Ref. [28]. These

terms are the first of a set of contributions to the energy that we call derivative terms, which

all arise from similar manipulations. In this case they are

E2F ′ =
∑

ab

g′avvb(ǫva)[gvbva(0)− gvbav(ǫva)]−
∑

ab

g′vbav(−ǫva)[gvaba(0)− gvaab(0)]

−
∑

ab

g′vbbv(ǫva)[gvava(0)− gvaav(ǫva)]

+Uvv

∑

a

g′vaav(ǫva) +
∑

a

U[a][a]g
′
vaav(−ǫva). (34)

We note that particular care must be taken in this derivation, because while g(E) is an even

function, g′(E) is odd, so the signs of the arguments in the above are important. The matrix
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element of U does not depend on the magnetic quantum number of core state a, which we

emphasize with the [a] notation.

Evaluation of these terms is computationally simple. However, the numerical evaluation

of one of them is unstable. This instability comes from the fourth term in E2F . If we write

the negative of the denominator as ǫi − (ǫv + ∆), with ∆ = ǫa − ǫb, we first note that for

lithiumlike ions, ∆ vanishes as there is only one 1s core state, and the denominator vanishes

only for the case that is eliminated by the formalism. However, for ions with more than one

core state, ∆ can be large and sufficiently positive so as to make the sum ǫv +∆ an energy

in the continuum. This should always lead to a vanishing denominator, characteristic of

autoionizing states. We note that such terms are not present in Eq. (29), the equation for

MBPT. However, they do appear in Eq. (32), which resulted from the manipulation in which

we forced intermediate sums to include the core. This suggests the instability is spurious,

and we will show below that this is indeed the case.

This numerical problem could be severe if, for example, we attempted to use differen-

tial equation techniques, which implicitly include core states, to carry out the sum over i.

However, we chose to evaluate this term with finite basis set techniques [27], in which ǫi

ranges over a set of discrete values. While it is extremely unlikely that one value would

precisely lead to a vanishing energy denominator, these discrete values change as the basis

set changes, and this affects the answer. The instability referred to above is the fact that as

the basis set is increased in size, E2F , rather than tending to a converged value as is usually

the case with finite basis set calculations, keeps changing its value regardless of how large the

basis set is made due to the changing value of ǫv+∆. However, as with the one-photon case,

the terms causing the problem can be shown to cancel with part of the other two-photon

exchange diagram involving one loop. Before discussing that, we again emphasize that the

two g factors in each term are both complex numbers, and the calculation is carried out

with that in mind. However, while the end result has an imaginary part, we do not evaluate

it here, and will keep only the real part of all further two-photon terms. Presumably were

one to follow all imaginary terms from two-photon physics, one would again find canceling

terms enforcing the Pauli exclusion principle, along with reproducing the two-photon decay

rate and radiative corrections to one-photon decay.
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B. Ladder and crossed-ladder diagrams

We now turn to the one-loop diagrams, which can be broken into two classes, one primarily

associated with structure, and the other with screening of the Lamb shift. The structure

diagrams are shown in Figs. 3d and 3e, which we refer to as the ladder (L) and crossed-ladder

(X) diagrams respectively. They give the energy shifts

∆EL =
i

2π

∑

aij

∫ ∞

−∞
dz

gijav(z)[gavij(z)− gavji(z − ǫva)]

[ǫa + z − ǫi(1− iδ)] [ǫv − z − ǫj(1− iδ)]
(35)

and

∆EX =
i

2π

∑

aij

∫ ∞

−∞
dz

{

gajiv(z)givaj(z)

[ǫa + z − ǫi(1− iδ)] [ǫv + z − ǫj(1− iδ)]

− gajia(z)givvj(z − ǫva)

[ǫa + z − ǫi(1− iδ)] [ǫa + z − ǫj(1− iδ)]

}

. (36)

At this point we can complete the connection to MBPT. If we again replace g(E) with

gc, Cauchy’s theorem allows the z integration to be carried out. For the ladder, if both

intermediate states are positive energy states, the second term of Eq. (32) is reproduced,

which was the only term from Eq. (32) that had not already been accounted for.

There is of course additional physics present even with the approximation we have made.

For the ladder, while terms with one positive and one negative energy state vanish, a con-

tribution survives when both are negative. For the crossed ladder, the nonvanishing terms

after Cauchy integration involve one positive and one negative energy state. Power counting

arguments can be made that show these three extra contributions contribute at the level of

1/Z of the one-loop Lamb shift, that is (Zα)3 a.u., and they can be thought of as being part

of the screening of the Lamb shift. We will return to the connection of MBPT and QED

in the three-photon section, but now return to the numerical evaluation of the ladder and

crossed-ladder diagrams.

While the basic formulas for ∆EL and ∆EX are relatively simple, and the z integration

easily evaluated in the MBPT approximation, the unapproximated integrals are quite com-

plicated to carry out. The main problem has to do with the fact that, just as with the

one-loop self-energy, a Wick rotation z → iω is called for. However, the structure of the

complex plane now has not only a set of poles that get encircled, sometimes appearing as

double poles, but it also has two cuts that must be wrapped around. We begin by treating

the pole terms.

15



For the ladder, if we choose to close the contour from above, we need to consider poles

in quadrants I and III. The first part of the denominator has poles when

z = −ǫa + ǫi(1− iδ). (37)

We will rename i as p1 if it is encircled. For negative ǫi the poles are in quadrant II, and

for positive ǫ either III or IV. To be in quadrant III requires ǫp1 ≤ ǫa, that is, p1 is a core

state more deeply bound than whichever core state a is under consideration. Summing over

all such states gives

∆EL(p1) =
∑

ap1i

[

gp1iav(ǫp1a)gavp1j(ǫp1v)

ǫa + ǫv − ǫp1 − ǫi
− gp1iav(ǫp1a)gavip1(ǫp1a)

ǫa + ǫv − ǫp1 − ǫi

]

. (38)

The second part of the denominator has poles when

z = ǫv − ǫj(1− iδ). (39)

In this case negative energy states have poles in quadrant IV, and positive energy states

have poles in quadrant I, but only when ǫv ≥ ǫp2. This gives rise to

∆EL(p2) =
∑

ap2i

[

gip2av(ǫvp2)gavip2(ǫvp2)

ǫa + ǫv − ǫp2 − ǫi
− gip2av(ǫvp2)gavp2i(ǫap2)

ǫa + ǫv − ǫp1 − ǫi

]

. (40)

When these ladder pole terms are evaluated numerically with finite basis set techniques, the

same instability as encountered in E2F appears. However, the terms that give rise to the

instability can be seen to be equal and opposite in the two cases, so the sum is stable. We

note that the cancellation is only of the unstable terms because the p1 poles do not range

over the entire core. Furthermore, we do not explicitly build in the cancellation, instead

evaluating E2F and the sum of all pole terms from the ladder and crossed ladder diagrams

separately. While each has the instability, the sum is completely stable.

The analysis of the crossed-ladder poles is done in a manner similar to the ladder poles.

The rest of the calculation follows exactly along the lines given for the treatment of excited

states of helium given in [28]. As with our work on lithiumlike ions [15], the ω integration

that remains after the poles and cuts have been dealt with is by far the most computationally

intensive part of the calculation. We carried this out both with finite basis set and differen-

tial equation techniques, as described in that paper. The sum of the two-photon structure

diagrams is denoted E2 in Tables I – II. It is notable that this rather involved set of calcu-

lations gives a result quite close to the MBPT procedure of Ref. [11], even though MBPT
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excludes contributions from the negative energy states and its treatment of retardation is

less complete than the present approach.

C. Lamb shift screening diagrams

The one-loop self-energy has had some screening built into it by our choosing a screened

potential. For example, from Table I, with only the nuclear Coulomb field present, the 3s

self-energy is 0.2856 a.u. and Uehling potential −0.0515 a.u. Referring to Table II, we see

that the screening provided by the KS is 18 percent for both. The diagrams of Fig. 4 provide

further screening (or anti-screening, if the original potential provides too much screening).

The treatment of these diagrams is almost completely unchanged from that described in

Ref. [15] for lithiumlike ions because regardless of the number of core electrons present, only

one photon is exchanged, with the other being part of the radiative correction. Therefore

the valence state can interact only with one core state at a time. Thus, for the most part,

for alkalilike ions one simply carries out a calculation for each core state similar to that

described in Ref. [15], and sums them. There is always a sum over the magnetic quantum

number of the core state, and when one does not have an s state there is a more complicated

angular-momentum recoupling factor associated with summing over all magnetic quantum

numbers: otherwise the calculation is basically unchanged. For example, the derivative term

coming from the valence line,

Ev(der) = E1F Σ′
vv(ǫv)−

∑

a

g′vaav(ǫva) Σvv(ǫv). (41)

is unchanged from Eq. (22) of Ref. [23], but for derivatives coming from the core states,

Eq. (23) of that work must be changed to

Ecore(der) =
∑

a

Σ′
[a][a](ǫa) [gvava(0)− gvaav(ǫav)]−

∑

a

Σ[a][a](ǫa)g
′
avva(ǫav). (42)

The same issues as discussed after Eq. (34) enter here, namely care is needed with the sign

of the argument of g′ and the notation [a] is used to emphasize magnetic quantum number

independence.

The derivative term comes from the part of the spectral representation of the electron

propagator in Figs. 4c and 4d when ǫm = ǫv, to be discussed in connection to the vertex

diagrams below. When ǫm 6= ǫv the sum over m generates what we call a “perturbed orbital”

17



term. Such terms were treated in a general way in Ref. [23], where they were denoted as ṽ

or ã. Because the self-energy is diagonal in magnetic quantum numbers one can eliminate

them from the sum over the core and write

∆EPO = Σvṽ(ǫv) + Σṽv(ǫv) +
∑

[a]

(2ja + 1)
[

Σ[a][ã](ǫa) + Σ[ã][a](ǫa)
]

. (43)

In the lithiumlike work [15], a simple factor of 2 was used.

The vertex diagrams of Figs. 4c and 4d were also treated in generality in Ref. [15], with

the state a left unspecified. As shown in [15], they consist of five terms: ∆E1 – ∆E5 where

∆E1 and ∆E2 are the direct and exchange terms of Fig. 4c for the valence electron, ∆E3

and ∆E4 are those for the core electrons, and ∆E5 is the counter-potential vertex term of

Fig. 4d. Use of spectral representations for the electron propagators and the Feynman gauge

matrix element allows a compact representation of the terms, specifically

∆E15 = −i
∑

mn

∫

dk0
2π

gvnmv(k0)(
∑

a gmana(0)− Umn)

(ǫv − k0 − ǫm)(ǫv − k0 − ǫn)
, (44)

∆E24 = −2i
∑

amn

∫

dk0
2π

ganmv(k0)gmvna(ǫva)

(ǫa − k0 − ǫm)(ǫv − k0 − ǫn)
, (45)

∆E3 = −i
∑

amn

∫

dk0
2π

ganma(k0)gmvnv(0)

(ǫa − k0 − ǫm)(ǫa − k0 − ǫn)
. (46)

Here we have combined ∆E1 and ∆E5 into ∆E15, and used ∆E24 = 2∆E2 = 2∆E4. This

sum over states form is useful for analysis of pole terms that come from a Wick rotation

and the reference state singularity. After the Wick rotation is carried out, an ultraviolet

divergent set of terms results, which we treat with differential equation techniques. They are

ultraviolet divergent, which we treat by adding and subtracting the same expression but with

both electron propagators replaced with free propagators. Combining the subtracted term

with the vertex makes the combination ultraviolet finite. The remaining term is evaluated

in momentum space.

Care is required with the treatment of reference state singularities, which we illustrate by

considering ∆E24. The summation over basis states is not defined when m = a and n = v.

However, after a Wick rotation, use of the energy shifts given in Eq. (28) gives the regulated

expression

∆Ẽ24= 2
∑

abw

∫

dω

2π

gawbv(iω)gbvwa(ǫva)

(iω + ǫvδ)2
. (47)

Here w and b are used to indicate that the magnetic quantum numbers of m and n are

summed over. If one Taylor expands gawbv(iω) = gawbv(0)+ |ω|g′awbv(0)+ ..., the higher-order
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terms are finite at ω = 0 and the first term leads to a vanishing integral. The term linear in

k0 leads to an integral proportional to lnδ multiplying g′awbv(0). A short analysis shows this

latter term reduces to the product of normalization integrals. The net result is that the δ

behavior of this term is

∆E24 =
2α

π
ln δ

∑

a

gavva(ǫva). (48)

One check of the calculation is varying δ and making sure this behavior was seen. The other

was showing the independence of the complete calculation on this regulator. When these

graphs are taken together the complete factor of E1F is formed, which cancels the valence

derivative term. The same thing happens for the core derivative terms.

We note in passing that while wave function renormalization and vertex renormalization

counterterms are present, making the vertex diagram and the derivative terms ultraviolet

finite, Ward’s identity makes them cancel, and in our calculation we simply pull out the

divergent terms from each diagram, which in dimensional regularization are terms that go

as 1/δ, and show that they cancel.

Turning to vacuum polarization, we note that our treatment in [26] was general, with

care required only in using the factor (2ja + 1) in the core part of the perturbed orbital

terms.

Finally, there is a set of two-loop diagrams collectively referred to as the two-loop Lamb

shift. It has been calculated for the hydrogenic 1s ground state along with 2s, 2p1/2, and 2p3/2

states [29], but is as yet not calculated for sodiumlike ions. Nevertheless, order-of-magnitude

estimates based on the hydrogenic results with 1/n3 scaling and ad hoc screening corrections

show that 2-loop Lamb shifts are completely negligible for low- to mid-Z sodiumlike ions

and only reach a few tens of meV at very high Z. In view of their small sizes and high

uncertainties, we shall omit these corrections here and include their effects in our error

estimates.

V. THREE PHOTON EFFECTS

We have so far given a complete description of the contribution to energy levels of all

Feynman diagrams involving one and two photons. Clearly the next logical step to take

in the computational approach used here is to carry out a QED treatment of all diagrams

involving three photons. As will be described further in the conclusions, this is a large-scale
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task that has not yet been carried out. However, as mentioned above, second-order MBPT

roughly reproduces the structure-related two photon QED calculation. For this reason, to

approximate three-photon effects we simply use third-order MBPT, including the dominant

Coulomb correction along with a part of Breit interaction terms, following the treatment of

Ref. [11]. This ignores 3-photon radiative corrections involving the one-, two-, and three-

loop Lamb shift, which will again be discussed in the conclusions. We present these results

in the tables as E3, and note that they are relatively small.

VI. NUCLEAR CORRECTIONS

A. Nuclear structure effects

We have treated the nucleus as having infinite mass in the preceding discussion, but now

take account of the finite mass. Before discussing the effect of nuclear recoil we mention

three other nuclear effects that lie outside the scope of QED. While relatively small, each of

these effects leads to some theoretical uncertainty, and this uncertainty will likely prove a

fundamental barrier to progress in understanding the spectra of highly-charged ions at some

point.

The first uncertainty comes from the finite size of the nucleus and readily shows up in

the lowest-order energy E0 calculated with a nuclear charge distribution modeled as a Fermi

distribution,

ρ(r) =
ρ0

1 + e4ln3(r−c)/t
. (49)

Here t = 2.3 fm and the parameter c is taken from Ref. [30]. At Z = 74 the value c = 6.4464

fm from that reference would have to change to 6.4458 fm to give the value from the more

recent tabulation of Angeli and Marinova [31]. The change in the 3s energy would be

0.0024 eV, which is smaller than our theoretical uncertainty. With increasing experimental

precision the need to know nuclear sizes accurately will eventually become important. This

issue has received recent attention for the proton, where questions about its charge radius

have been raised by experiments on muonic hydrogen [32]. More electron scattering data,

new experiments on muonic atoms, and advances in nuclear structure theory are all called

for to reduce this uncertainty. Alternatively one can assume QED is correct and use the

spectra, as is done with hydrogen, to provide an independent method of determining the
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nuclear charge radius.

The second uncertainty is the distribution of nuclear magnetism, the Bohr-Weisskopf

effect [33]. We have not included it in our treatment of the sodium isoelectronic sequence

since it only affects hyperfine splittings and has very little effect on weight-averaged energy

levels.

The last uncertainty comes from nuclear polarizability, another kind of two-photon ex-

change effect in which photons are exchanged between the valence electron and the nucleus.

Part of this exchange is of course already accounted for in E2 when the nucleus remains in

the ground state. When it is excited, a new effect called nuclear polarization is present. This

effect can be significant for the actinides with low-lying nuclear excited states, particularly

for the important case of uranium, where its contribution to the 2s− 2p transition energies

amounts to 0.03 eV [34]. However, with 1/n3 scaling and increased screening for sodiumlike

ions, the effect on n = 3 states is likely to be just a few meV for uranium and can be ignored.

B. One-electron nuclear recoil

We now turn to the proper treatment of recoil effects, defined as terms suppressed by

powers of m/M , with M the mass of the nucleus. While straightforward to include in the

nonrelativistic case, in the relativistic case the problem is nontrivial even for one-electron

ions. While the first proper treatments for the one-electron case were given long ago, it is

only relatively recently that results valid to all orders in Zα have been presented, though

only first order in m/M , in [35] and [36]. The second reference is valid only for a two-body

system, as it employed a variant of the Bethe-Salpeter equation. An extremely compact re-

derivation of the one-electron results also applicable to the many-electron case was presented

by Shabaev in Ref. [37]. The remainder of this section presents his derivation using S-matrix

techniques.

The simplest way to derive the leading effect of the finite mass of the nucleus can be

made in the context of classical mechanics, where in a system with Ne light particles of mass

m (the electrons) and a heavy particle of mass M (the nucleus), one considers the heavy

particle’s nonrelativistic kinetic energy,

TN =
~P 2
N

2M
, (50)

21



and evaluates it in the center of mass system. If one treats the electrons nonrelativistically,

so that their kinetic energy is

Te =
Ne
∑

i=1

~pi
2

2m
, (51)

eliminating TN through

~PN → −
Ne
∑

i=1

~pi (52)

turns Ttot = Te + TN into

Ttot =
Ne
∑

i=1

~pi
2

2mr

+HMP, (53)

where mr = m/(1 +m/M) is the reduced mass, and

HMP =
∑

i 6=j

~pi · ~pj
2M

(54)

is the mass polarization Hamiltonian. When this classical argument is extended to nonrel-

ativistic quantum mechanics, it incorporates recoil exactly. As mentioned above, to treat

the electrons relativistically, one cannot simply replace m with mr in the Dirac equation,

even for hydrogenlike atoms [38]. However, if one works in the approximation of keeping

only m/M corrections, extending the classical argument described above to field theory, as

shown by Shabaev in Ref. [37], allows recoil to be treated relativistically for both one- and

many-electron systems. Before we revisit this argument in the framework of our S-matrix

approach, we note that terms of order (m/M)2 would require a different treatment, as the

kinetic energy of the nucleus would be more complicated. This problem has of course been

solved for the two-particle case, most strikingly for positronium where there is no recoil

expansion, through the use of the Bethe-Salpeter equation [39].

To generalize Eq. (52) to field theory, we first note that the electron momentum is now

described as a single field operator,

~pe = −i
∫

d3xψ†(x)~∇ψ(x). (55)

Here the electron field operator ψ(x) = ψ(~x, t) is given by

ψ(x) =
∑

np

ψnp(~x)e
−iEnp tbnp +

∑

nm

ψnm(~x)e
−iEnmtd†nm

, (56)

where np and nm are positive and negative energy states, respectively, and normal ordering

is implicit. The state ψnm must be charge conjugated to describe positrons created by d†nm
,
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but when entering as intermediate sums, this step is not necessary. While there is also

momentum carried by the electromagnetic field, we do not treat it here as it leads to m/M

contributions suppressed by powers of α. However, the electromagnetic field modifies the

nuclear momentum in the usual way, with Eq. (50) now becoming

TN → |~PN + Ze ~A(~0, t)|2
2M

. (57)

The position of the nucleus is close to the origin, so ~A is evaluated there. Now using the

field theory generalization of Eq. (52),

~PN → −~pe, (58)

we see that including the kinetic energy of the nucleus leads to three new operators to be

added to H̃I ,

HR = HR(CC) +HR(CT ) +HR(TT ), (59)

with

HR(CC) = − 1

2M

∫

d3x
∫

d3y ψ†(~x, t)~∇xψ(~x, t) · ψ†(~y, t)~∇yψ(~y, t), (60)

HR(CT ) =
iZe

M
~A(~0, t) ·

∫

d3xψ†(~x, t)~∇xψ(~x, t), (61)

and

HR(TT ) =
Z2e2

2M
~A(~0, t) · ~A(~0, t). (62)

We note the similarity of HR(CC) with the Coulomb part of the QED Hamiltonian HC

when Coulomb gauge is used (as it is in this part of the calculation), where

HC = e2
∫

d3x
∫

d3y
1

|~x− ~y| ψ
†(~x, t)ψ(~x, t)ψ†(~y, t)ψ(~y, t). (63)

Both are instantaneous interactions, but a photon propagator is present in the latter.

We now have three new operators to add to H̃I in our S-matrix formulation, and treating

them to first order will account for all m/M corrections. However, we are still dealing

with a many-electron problem, so higher-order corrections from the non-recoil parts of the

interaction Hamiltonian will be present. A major advantage of this approach is that by

choosing a realistic potential those higher-order corrections to an already small correction

are negligible, as can be seen from Tables I – II for Z = 74.
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We begin with HR(CC). While it is possible to express this in terms of an electron

propagator, we carried out its analysis simply in terms of the field operators. For the one-

electron case, where |0C〉 = |0〉, the true vacuum, the analysis leads to

∆ER1(CC) =
1

2M





∑

np

~pvnp · ~pnpv −
∑

nm

~pvnm · ~pnmv



 . (64)

An advantage of relativistic finite basis set methods is that they split naturally into positive

and negative energy terms, making the evaluation of terms like ∆ER1(CC) particularly

straightforward.

We now continue to the transverse photon terms. In this case we must go beyond first-

order perturbation theory, and include the ordinary interaction with the photon field, which

we refer to as HT , either once or twice. We will encounter the transverse photon propagator,

defined by

Dij(~x, x0; ~y, y0) = −i 〈0|T (Ai(~x, x0)Aj(~y, y0))|0〉

=
∫

dk0
2π

e−ik0(x0−y0)
∫

d3k

(2π)3
ei
~k·(~x−~y)

δij − kikj
~k2

k20 − ~k2

≡
∫ dk0

2π
e−ik0(x0−y0)Dij(~x, ~y; k0). (65)

To evaluate the effect of HR(CT ), which has a single photon field, one interaction with

HT is required. We call this term ∆ER(CT ), given by the formula

∆ER(CT ) =
iZe

2M

∑

m

∫

d3x
∫

d3y
∫

dk0
2π

Dik(~x,~0; k0)
ψ†
v(~x)αiψm(~x)ψ

†
m(~y)∇jψv(~y)

k0 + ǫv − ǫm
. (66)

Turning to HR(TT ), we note that two factors of HT are required by the presence of the

two-photon fields. The formula for the associated energy shift is

∆ER(TT ) =
Z2e2

2M

∑

m

∫

d3x
∫

d3y Dik(~x,~0;ω)Djk(~y,~0;ω)
ψ†
v(~x)αiψm(~x)ψ

†
m(~y)αjψv(~y)

k0 + ǫv − ǫm
.

(67)

Like the two-photon exchange diagrams, ∆ER(CT ) and ∆ER(TT ) are evaluated by carrying

out a Wick rotation k0 → iω. As with those diagrams, this rotation passes poles, which lead

to a set of easily evaluated terms.

We tabulate the sum of these recoil corrections, which agree well in the case of hydro-

genlike ions with known results, as Recoil-1 in Tables I – II.
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C. Two-electron nuclear recoil

When more than one electron is present, additional recoil corrections related to mass

polarization are present. Leading 2-electron recoil corrections are given by the generalized

mass-polarization Hamiltonian

HMP =
1

2M

∑

i 6=j

{

~pi · ~pj + V (ri)[~αi + (~αi · r̂i)r̂i] · ~pj
}

. (68)

where the second term in the summation is the relativistic correction to mass polarization

[40] and has been shown to arise from the exchange of one transverse photon in a QED

formalism [16]. Higher-order relativistic corrections from the exchange of two transverse

photons have been calculated for lithiumlike ions [16]. They are negligibly small at low Z

but are significant at high Z as they increase very rapidly along the isoelectronic sequence.

However, as pointed out in [15], these corrections are well approximated by the expectation

values of the operator 1
2M

∑

i 6=j ~qi · ~qj where

~qi =
1

2
V (ri)[~αi + (~αi · r̂i) r̂i]. (69)

As a result, 2-electron recoil corrections for many-electron systems are closely given by the

relativistic mass-polarization Hamiltonian

Hrel
MP =

1

2M

∑

i 6=j

(~pi + ~qi) · (~pj + ~qj), (70)

and results for sodiumlike ions thus calculated are listed as Recoil-2 in Tables I – II.

VII. APPLICATION TO THE SODIUM ISOELECTRONIC SEQUENCE

In addition to the Kohn-Sham results for Z = 74 in Table II, structure and QED con-

tributions to the ionization potentials of the 3s and 3p states as calculated with the same

potentials are shown for a few more selected sodiumlike ions in Table III. The nonrelativistic

1/Z-expansion behavior of the structure terms is apparent here, along with the effect of the

relativistic Zα expansion [41] as is evidenced by the slowly varying, non-constant E2 term.

While the recoil corrections are seen to go up slowly with Z, QED corrections are definitely

increasing very rapidly along the isoelectronic sequence.

In Table IV, total ionization potential and transition energy results are given for ions with

Z = 30 − 100, along with the root-mean-square nuclear charge radii Rrms as derived from
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the Fermi c and t parameters which, as mentioned at the beginning of the previous section,

are used to model the nuclear potentials here. The same nuclear parameters are used in

our earlier work for lithiumlike ions [15]. Nuclear finite-size corrections are small corrections

and uncertainties in Rrms have very little effects on most contributions to the ionization

energy except the one-electron eigenenergy E0. Indeed, it has been shown that different

choices of Rrms can lead to fractions of an eV changes in the 2s− 2p transition energies for

mid- to high-Z lithiumlike ions, with up to 0.7 eV change for lithiumlike thorium (Z = 90),

and that these changes are largely due to differences in the 2s eigenenergies, and to a lesser

extend the 2p eigenenergies [15]. For the n = 3 states of sodiumlike ions considered here,

uncertainties in the finite nuclear size corrections are less significant due to the 1/n3 scaling,

and as in the case of lithiumlike ions, can easily be corrected by recalculating the 3s and 3p

eigenenergies E0 with more reliable nuclear charge radii.

In Table V, the present 3s − 3p transition energies are compared with experiment and

with other theories. Uncertainties in the present results at low Z are due mainly to the

incomplete treatment of higher-order correlation corrections in evaluating the E3 term. At

high Z, they are dominated by the omission of 2-loop Lamb Shifts. Experimental results

listed in Table V are from NIST’s online database of atomic spectra [42] at low to mid Z

and from EBIT measurements at high Z [20, 21, 43]. On the theory side, high-precision

results are available for selected ions from the RMBPT calculations of Blundell [14] who

evaluated all screened QED corrections in Figs. 2 and 4 except the vertex exchange terms

in Fig. 4d which were deemed to be very small and were neglected. There are also rela-

tivistic configuration-interaction (RCI) results for Z = 74 [20, 44] and 92 [43] which include

directly calculated QED energies, though QED screening and relaxation effects are only

approximately accounted for by evaluating the 1-loop diagrams in Fig. 2 with Kohn-Sham

wave functions specific to the initial and final states. By far, the most complete theoretical

tabulation of these energies is by Kim et al. [13]. It is based on MCDF calculations with

correlation energies derived from RMBPT and resulting structure energies are thus essen-

tially the same as the RMBPT energies of Refs. [11] and [14]. However, as QED corrections

are calculated with the ad hoc Welton’s method [45] and are rather crude, these transition

energy results are not included in the present comparisons.

As shown in Table V, agreements between theory and experiment are generally very

good. This is further illustrated in Figs. 5 and 6 for the 3s−3p1/2 and 3s−3p3/2 transitions,
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respectively, where discrepancies are seen to be mostly within 0.1 eV even at high Z. In spite

of the close agreements, the 3s−3p1/2 RMBPT energies in Fig. 5 can be seen to deviate more

and more from the present results as Z increases and these discrepancies arise mainly from

the structure energy differences. The same trend has also been observed in the 2s − 2p1/2

structure energy differences between RMBPT and our S-matrix calculations for lithiumlike

ions [15] and underscores the importance of the correct treatment of frequency-dependent

Breit interactions and ladder and cross-ladder correlation diagrams in Figs. 3d and 3e. It is

interesting to note that the experimental results of Gillaspy et al. at Z = 72−79 [21] appear

to track the RMBPT results closely, though they are also consistent with the present results

which have comparable uncertainties of about 0.02 – 0.03 eV in this Z range.

In Fig. 6, it can be seen that the present 3s − 3p3/2 transition energies are in good

agreements with RMBPT [14] along the isoelectronic sequence and with RCI at Z = 74 and

92 [20, 43, 44]. While this is due in part to cancelations of errors between the structure

and QED energies, neither of these differences are too much larger. With the estimated

uncertainties of 0.02 and 0.05 eV at Z = 74 and 92, respectively, the present results are

also in good agreement with the EBIT measurements [20, 43]. Not shown here are the

measurements of Gillaspy et al. [21] which are listed in Table V but are mostly outside the

range of this figure. Those results are nevertheless consistent with the present ones as they

have relatively large uncertainties.

VIII. CONCLUSIONS

One of the best known successes of QED is the accurate theoretical prediction of the

anomalous magnetic moment of the electron, made possible by the smallness of the expansion

parameter α/π in the formula

ae =
∑

i=1

Ci(
α

π
)i. (71)

The constants Ci are now known up to i = 5 [46], and are all of order 1. Because α/π is

about two parts-per-thousand, the theoretical uncertainty is now well under the part-per-

trillion level. The calculation of ae is the best example of precision calculation in physics.

Another example of the theory working with extremely high accuracy is the determination

of the electron mass through study of the g-factors of hydrogenic ions [47]. Given these

successes, and the fact that the electromagnetic interaction is the dominant force in all of
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atomic physics and chemistry, it is natural to ask if the successful application of QED to the

electron anomalous magnetic moment can be extended to many-electron systems. However,

a diagrammatic approach to problems with more than one electron generally fails, as the

interaction between electrons cannot be treated perturbatively. An exception to this case,

which we have concentrated on in this paper, is in highly-charged ions, where the attraction

to the nucleus is much larger than the electron-electron interaction. This allows one to

expand in both powers of 1/Z and α, which leads to rapid convergence providing one avoids

expanding in Zα.

The isoelectronic sequences amenable to treatment with the methods described in this

paper include all alkalis, and also any ion with a single electron outside closed shells. An im-

portant example of the latter case is the copper isoelectronic sequence, where measurements

on many ions have been carried out, some with very high accuracy. An alkali of particular

interest that has been relatively unstudied is potassium. The ground state of potassiumlike

ions is 3d3/2. The 3d fine structure of these ions is almost totally free of nuclear size uncer-

tainty, and in the range Z = 27 − 33 the transition lies in the optical range and could be

measured in principle with extremely high accuracy, as the ground state has zero width and

the 3d5/2 is very narrow. This then could be used to provide an independent determination

of α, with the precision almost certainly limited by theory. Many terms, however, cancel

out when dealing with fine structure, as was illustrated in Ref. [48]. With 19 electrons,

variational methods are impractical, so the approach given here seems the most promising.

In order to extend this work to more sequences one must change the starting point

from a†v|0C〉 to that appropriate for the sequence in question. An obvious sequence to be

considered is the helium isoelectronic sequence, which has recently been measured [49] to

have a spectrum possibly in disagreement with theory [50]. Our approach is at present

limited to states that do not have significant configuration mixing, a disadvantage of the S-

matrix formalism. Specifically, as the 2p1/2 and 2p3/2 states have different energies, 1s2p1/2

and 1s2p3/2 J = 1 configurations cannot be mixed to form starting states for perturbation

calculations. While states without mixing do not have this problem, and a QED treatment

of the ladder and crossed-ladder diagrams has been given for the 1s2p1/2
3P0 and 1s2p3/2

3P2

states in Ref. [28], most experiments involve the strongly mixed 1s2p 1,3P1 states, so progress

in this direction with our methods awaits overcoming the difficulty just mentioned. The

same comment applies to the fairly wide range of systems which can be described with
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a particle-hole approach [51]. Excited states of the noble gases, in particular, have many

excitations where a core electron is excited to a valence state, with the starting point being

Favaaa
†
v|0C〉, (72)

where Fav is an angular decoupling factor. However, the case with one electron outside a

closed shell remains the simplest many-body problem to study, and we return to discussion

of that case.

We have presented results only for at least 19 times ionized sodiumlike ions. Were we

to use the Kohn-Sham potential on neutral sodium, QED effects such as the Lamb shift

would be much smaller than the discrepancy between MBPT taken through third order and

experiment, which is over one percent for the 3s removal energy. While the Lamb shift

has been evaluated for neutral sodium [52, 53], it depends on the potential used. Its size,

however, is of order 12 µHartrees. We consider it an outstanding challenge to methods

of solving the Schrödinger equation to reach the µHartree level, so that the actual value

of the Lamb shift could be reliably inferred through the disagreement between theory and

experiment.

We turn finally to the issue of QED in the context of highly-charged ions. Assuming that

structure has been solved to a certain accuracy, one then wishes to calculate QED effects

to at least the same accuracy. Provided that nuclear uncertainties can be controlled, the

systematic evaluation of all three-photon diagrams in a completely field-theoretic manner

is clearly the obvious next step. When all three photons are exchanged between electrons,

it should be possible to show that the result presented here, E3, is recovered along with

QED corrections, just as has was done for two-photon exchange in this paper. These QED

corrections are at the forefront of one-electron QED bound state calculations, and should

enter at the α3 a.u. level. There are many diagrams involving three photons, the three-loop

Lamb shift, entering at order Z4α5, one-photon exchange corrections to the two-loop Lamb

shift at Z3α4, and two-photon exchange corrections to the one-loop Lamb shift at Z2α3.

Comparing these scalings to the basic order of the energy level of an ion, Z2, we see that all

are quite small, but important at the ppm level.

In conclusion, we have generalized methods used in the lithium isoelectronic sequence to

many-electron alkali sequences. These methods have been applied to sodiumlike ions, and

good agreement with experiment and other calculations found. Theoretical progress will
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involve a complete evaluation of the three-photon diagrams along with improvement in the

accurate solution of the many-body problem.

Acknowledgments

The work of J.S. was supported in part by NSF Grant No. PHY-1068065. The work of

K.T.C. was performed under the auspices of the U.S. Department of Energy by Lawrence

Livermore National Laboratory under Contract DE-AC52-07NA27344. We thank Vladimir

Shabaev and Steve Blundell for useful discussions and Greg Adkins for a reading of the

manuscript.

[1] P. J. Mohr, B. N. Taylor, and D.B. Newell, Rev. Mod. Phys. 84, 1527 (2012).

[2] W.H. Furry, Phys. Rev. 81, 115 (1951).

[3] Ulrich D. Jentschura, Peter J. Mohr, and Gerhard Soff, Phys. Rev. A 63, 042512 (2001).

[4] W.E. Caswell and G.P. Lepage, Phys. Lett. B 167, 437 (1986).

[5] C. Schwartz, Int. J. Mod. Phys. E 15, no. 4, 877 (2006).

[6] K. Pachucki and V. Yerokhin, Can. J. Phys. 89, 95 (2011).

[7] K. Piszczatowsi, G. Lach, M. Przybytek, J. Komasa, K. Pachucki, and B. Jeziorsi, Journal of

Chemical Theory and Computation 5, 3039 (2009).

[8] G.E. Brown and D.G. Ravenhall, Proc. Roy. Soc. London, Ser. A 208, 552 (1951).

[9] J. Sucher, Int. J. Quantum Chem. 25, 3 (1984).

[10] W.R. Johnson, S.A. Blundell, and J. Sapirstein, Phys. Rev. A 37, 2699 (1988).

[11] W.R. Johnson, S.A. Blundell, and J. Sapirstein, Phys. Rev. A 38, 2699 (1988).

[12] W.R. Johnson, S.A. Blundell, and J. Sapirstein, Phys. Rev. A42, 1087 (1990).

[13] Y.-K. Kim, D.H. Baik, P. Indelicato, and J.P. Desclaux, Phys. Rev. A 44, 148 (1991).

[14] S.A. Blundell, Phys. Rev. A 47, 1790 (1993).

[15] J. Sapirstein and K.T. Cheng, Phys. Rev. A83, 012504 (2011).

[16] A.N. Artemyev, V.M. Shabaev and V.A. Yerokhin, Phys. Rev. A 52, 1884 (1995).

[17] I. Lindgren, Relativistic Many-Body Theory: A New Field-Theoretical Approach, (Springer,

New York, 2011).

30



[18] V.M. Shabaev, Phys. Rep. 356, 119 (2002).

[19] H.J. Monkhorst, Int. J. Quant. Chem. 12, S11, 421 (1977).

[20] J. Clementson and P. Beiersdorfer, Phys. Rev. A81, 052509 (2010).

[21] J.D. Gillaspy, I.N Draganic, Yu. Ralchenko, J. Reader, J.N. Tan, J.M. Pomeroy, and S.M.

Brewer, Phys. Rev. A80, 010501(R) (2009).

[22] R. Cowan, The Theory of Atomic Spectra, Chapter 7, Section 7-11.

[23] J. Sapirstein and K.T. Cheng, Phys. Rev. A 64, 022502 (2001).

[24] J. Sucher, Phys. Rev. 107, 1448 (1957).

[25] J. Sapirstein and K.T. Cheng, Phys. Rev. A 73, 012503 (2006).

[26] J. Sapirstein and K.T. Cheng, Phys. Rev. A 68, 042111 (2003).

[27] W.R. Johnson, S.A. Blundell, and J. Sapirstein, Phys. Rev. A37, 307 (1988).

[28] P.J. Mohr and J. Sapirstein, Phys. Rev. A 62, 052501 (2000).

[29] V.A. Yerokhin, Phys. Rev. A 80, 040501(R) (2009); V.A. Yerokhin, P. Indelicato, and V.M.

Shabaev, Phys. Rev. Lett. 97, 253044 (2006).

[30] W.R. Johnson and G. Soff, At. Data Nuc. Data Tables 33, 405 (1985). For Z = 90 and Z = 92

we use c = 7.0598 and c = 7.13753 fm, respectively, as derived from measurements by Zumbro

et al., Phys. Lett. 167B, 383 (1986), and Phys. Rev. Lett. 53, 1888 (1984).

[31] I. Angeli and K.P. Marinova, At. Data Nuc. Data Tables 99, 69 (2013).

[32] R. Pohl et al., Nature, 466, 213 (2010).

[33] A. Bohr and V. Weisskopf, Phys. Rev. 77, 94 (1959).

[34] G. Plunien and G. Soff, Phys. Rev. A 51, 1119 (1995). Due to a mistake in the formulas,

results of this work are too large by a factor of 2π as pointed out in the erratum: G. Plunien

and G. Soff, Phys. Rev. A 53, 4614 (1996).

[35] A.N. Artemyev, V.M. Shabaev, and V.A.Yerokhin, Phys. Rev. A 52, 1884 (1995); J. Phys. B

28, 5201 (1995). Note these calculations are based on formulas derived much earlier by V.M.

Shabaev, Teor. Mat. Fiz. 64, 413 (1973) [Sov. Phys. JETP 37, 211 (1973)].

[36] G.S. Adkins, S. Morrison, and J. Sapirstein, Phys. Rev. A10, 10 (2009).

[37] V.M. Shabaev, Phys. Rev. A 57, 59 (1998).

[38] W.A. Barker and F.N. Glover, Phys. Rev. 99, 317 (1955).

[39] Thomas Fulton and Paul C. Martin, Phys. Rev. 95, 811 (1954).

[40] C.W.P. Palmer, J. Phys. B 20, 5987 (1987); A.P. Stone, Proc. Phys. Soc. 77, 786 (1961); ibid

31



81 868 (1963).

[41] H. Doyle, Adv. At. Mol. Phys. Vol. 5, Chap. 8, P. 337 (Editor David Bates, Academic Press,

1969).

[42] NIST Atomic Spectra Database, http://physics.nist.gov/PhysRefData/ASD.

[43] M.H. Chen, K.T. Cheng, P. Beiersdorfer, and J. Sapirstein, Phys. Rev. A68, 022507 (2003).

[44] M.H. Chen and K.T. Cheng, Phys. Rev. A84, 012513 (2011).

[45] T. A. Welton, Phys. Rev. 74, 1157 (1948).

[46] T. Aoyama, M. Hayakawa, T. Kinoshita and M. Nio, Phys. Rev. 109, 111807 (2012).

[47] V.A. Yerokhin and Z. Harman, Phys. Rev. A 88, 042502 (2013).

[48] J. Sapirstein and K.T. Cheng, Phys. Rev. A73, 012503 (2006).

[49] T. Chantler et. al., Phys. Rev. Lett. 109, 153001 (2012).

[50] A.N. Artemyev, V.M. Shabaev, V.A. Yerokhin, G. Plunien, and G. Soff, Phys. Rev. A71,

062104 (2005).

[51] E.A. Avgoustoglou, W.R. Johnson, D. Plante, J. Sapirstein, S. Sheinerman, and S.A. Blundell,

Phys. Rev. A46, 5478 (1992).

[52] J. Sapirstein and K.T. Cheng, Phys. Rev. A 66, 042501 (2002).

[53] V.M. Shabaev, I.I. Tupitsyn, and V.A. Yerokhin, Phys. Rev. A88, 012513 (2013).

32



! "

FIG. 1: (a) One-photon exchange diagram between the valence and a core electron and (b) the

action of a counter-potential, represented by a cross inside a circle, on a valence electron.

! "

FIG. 2: One-photon self-energy and vacuum polarization diagrams for the valence electron.

!
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FIG. 3: Two-photon exchange diagrams between the valence and up to two core electrons. A

cross inside a circle represents a counter-potential. Where there is no photon exchanged between

electrons (c), core electrons are treated as spectators only
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FIG. 4: Screened self-energy (a-d) and vacuum polarization (e-g) diagrams between the valence

and a core electron. A cross inside a circle represents a counter-potential. Where there is no photon

exchanged between electrons (b, d, f), core electrons are treated as spectators only.
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FIG. 5: (Color online) Experimental and theoretical energies relative to the present results for the

3s− 3p1/2 transition. Solid circles, RMBPT [14]; crosses, NIST [42]; open triangles, Gillaspy et al.

[21].
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FIG. 6: (Color online) Experimental and theoretical energies relative to the present results for the

3s − 3p3/2 transition. Solid circles, RMBPT [14]; open circles, RCI [20, 43]; crosses, NIST [42];

closed triangles, EBIT [20, 43].
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TABLE I: Breakdown of structure and QED contributions to the ionization potentials (a.u.) of the

n = 3 states for sodiumlike tungsten using the Coulomb potential.

Terms 3s1/2 3p1/2 3p3/2

E0 -330.1011 -330.1498 -311.9187

E1 71.2399 78.3267 73.4074

E2 -3.4203 -4.4226 -4.0129

E3 0.0091 0.0104 0.0028

Recoil-1 0.0011 0.0010 0.0009

Recoil-2 -0.0001 -0.0005 -0.0005

SE 0.2856 0.0267 0.0394

Uehling -0.0515 -0.0061 -0.0005

WK 0.0019 0.0003 0.0001

SE-screen -0.0659 -0.0186 -0.0291

VP-screen 0.0118 0.0038 0.0015

Sum -262.0895 -256.2335 -242.5096
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TABLE II: Breakdown of structure and QED contributions to the ionization potentials (a.u.) of

the n = 3 states for sodiumlike tungsten using the Kohn-Sham potential.

Terms 3s1/2 3p1/2 3p3/2

E0 -260.1538 -254.6228 -240.5712

E1 -2.0688 -1.5423 -1.8936

E2 -0.0460 -0.0638 -0.0517

E3 0.0004 0.0006 0.0005

Recoil-1 0.0009 0.0008 0.0008

Recoil-2 -0.0001 -0.0004 -0.0004

SE 0.2326 0.0186 0.0291

Uehling -0.0421 -0.0044 -0.0003

WK 0.0015 0.0002 0.0000

SE-screen -0.0109 -0.0096 -0.0078

VP-screen 0.0018 0.0017 0.0012

Sum -262.0845 -256.2214 -242.4934

38



TABLE III: Breakdown of structure and QED contributions to the ionization potentials (a.u.) of

the n = 3 states for selected sodiumlike ions using the Kohn-Sham potential.

Terms Z = 30 Z = 40 Z = 50 Z = 60 Z = 70 Z = 83 Z = 92

3s1/2

E0 -26.32286 -57.07157 -100.1534 -156.4747 -227.3405 -344.3878 -444.9521

E1 -0.76169 -1.07398 -1.3790 -1.6751 -1.9593 -2.3037 -2.5180

E2 -0.01956 -0.02364 -0.0285 -0.0346 -0.0423 -0.0560 -0.0687

E3 0.00060 0.00056 0.0005 0.0005 0.0004 0.0005 0.0005

Recoil-1 0.00025 0.00038 0.0005 0.0007 0.0008 0.0012 0.0014

Recoil-2 -0.00003 -0.00004 -0.0001 -0.0001 -0.0001 -0.0001 -0.0002

SE 0.00625 0.01991 0.0479 0.0987 0.1844 0.3814 0.6101

Uehling -0.00054 -0.00206 -0.0059 -0.0142 -0.0312 -0.0806 -0.1519

WK 0.00000 0.00003 0.0001 0.0004 0.0010 0.0035 0.0075

SE-screen -0.00131 -0.00212 -0.0035 -0.0057 -0.0091 -0.0167 -0.0257

VP-screen 0.00005 0.00014 0.0003 0.0007 0.0014 0.0032 0.0059

Sum -27.09884 -58.15238 -101.5209 -158.1034 -229.1944 -346.4552 -447.0911

3p1/2

E0 -24.81041 -54.77595 -97.0181 -152.4192 -222.2571 -337.7626 -437.1343

E1 -0.68279 -0.93787 -1.1671 -1.3603 -1.5034 -1.5800 -1.5251

E2 -0.02424 -0.03049 -0.0376 -0.0466 -0.0582 -0.0790 -0.0989

E3 0.00067 0.00066 0.0006 0.0006 0.0006 0.0006 0.0007

Recoil-1 0.00024 0.00037 0.0005 0.0006 0.0007 0.0010 0.0011

Recoil-2 -0.00013 -0.00020 -0.0003 -0.0003 -0.0004 -0.0004 -0.0005

SE -0.00015 -0.00023 0.0004 0.0033 0.0120 0.0449 0.0994

Uehling 0.00000 -0.00004 -0.0002 -0.0009 -0.0028 -0.0115 -0.0286

WK 0.00000 0.00000 0.0000 0.0000 0.0001 0.0007 0.0020

SE-screen -0.00079 -0.00140 -0.0026 -0.0045 -0.0077 -0.0156 -0.0258

VP-screen 0.00004 0.00013 0.0003 0.0006 0.0013 0.0032 0.0061

Sum -25.51756 -55.74501 -98.2241 -153.8266 -223.8148 -339.3987 -438.7039

3p3/2

E0 -24.60326 -53.96151 -94.7313 -147.1273 -211.4351 -313.4420 -396.7226

E1 -0.69489 -0.97285 -1.2461 -1.5159 -1.7850 -2.1438 -2.4103

E2 -0.02349 -0.02886 -0.0345 -0.0410 -0.0484 -0.0598 -0.0687

E3 0.00064 0.00062 0.0006 0.0005 0.0005 0.0004 0.0004

Recoil-1 0.00024 0.00036 0.0005 0.0006 0.0007 0.0009 0.0010

Recoil-2 -0.00013 -0.00019 -0.0003 -0.0003 -0.0004 -0.0004 -0.0004

SE 0.00027 0.00125 0.0040 0.0101 0.0220 0.0521 0.0879

Uehling 0.00000 0.00000 0.0000 -0.0001 -0.0002 -0.0006 -0.0012

WK 0.00000 0.00000 0.0000 0.0000 0.0000 0.0001 0.0002

SE-screen -0.00094 -0.00156 -0.0026 -0.0042 -0.0066 -0.0113 -0.0161

VP-screen 0.00004 0.00011 0.0003 0.0005 0.0009 0.0019 0.0032

Sum -25.32152 -54.96262 -96.0095 -148.6771 -213.2515 -315.6024 -399.1266
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TABLE IV: Root-mean-square nuclear radius Rrms (fm), 3s, 3p1/2 and 3p3/2 ionization potentials

(a.u.), and 3s − 3p transition energies ∆3p (eV) for sodiumlike ions.

Z Rrms 3s 3p1/2 3p3/2 ∆3p1/2 ∆3p3/2 Z Rrms 3s 3p1/2 3p3/2 ∆3p1/2 ∆3p3/2

30 3.955 -27.0988 -25.5176 -25.3215 43.029 48.363 66 5.083 -198.914 -193.992 -185.972 133.92 352.17

31 3.998 -29.6691 -28.0074 -27.7770 45.218 51.487 67 5.210 -206.246 -201.213 -192.609 136.96 371.08

32 4.079 -32.3569 -30.6143 -30.3452 47.418 54.741 68 5.123 -213.737 -208.589 -199.368 140.08 391.00

33 4.104 -35.1626 -33.3387 -33.0262 49.631 58.135 69 5.192 -221.385 -216.122 -206.249 143.21 411.88

34 4.171 -38.0867 -36.1811 -35.8200 51.856 61.679 70 5.237 -229.194 -223.815 -213.252 146.38 433.83

35 4.156 -41.1299 -39.1420 -38.7270 54.094 65.387 71 5.246 -237.167 -231.669 -220.377 149.61 456.88

36 4.230 -44.2927 -42.2220 -41.7471 56.346 69.268 72 5.290 -245.304 -239.686 -227.626 152.88 481.07

37 4.245 -47.5757 -45.4217 -44.8806 58.613 73.337 73 5.299 -253.610 -247.870 -234.998 156.19 506.47

38 4.242 -50.9795 -48.7417 -48.1276 60.895 77.606 74 5.359 -262.084 -256.221 -242.493 159.54 533.10

39 4.244 -54.5049 -52.1825 -51.4882 63.193 82.088 75 5.351 -270.732 -264.744 -250.113 162.96 561.07

40 4.273 -58.1524 -55.7450 -54.9626 65.508 86.798 76 5.376 -279.555 -273.439 -257.858 166.42 590.40

41 4.318 -61.9228 -59.4298 -58.5511 67.839 91.750 77 5.401 -288.555 -282.311 -265.728 169.92 621.16

42 4.415 -65.8169 -63.2375 -62.2537 70.188 96.960 78 5.418 -297.736 -291.361 -273.724 173.48 653.41

43 4.410 -69.8354 -67.1690 -66.0707 72.556 102.44 79 5.437 -307.101 -300.593 -281.845 177.09 687.23

44 4.475 -73.9791 -71.2250 -70.0022 74.943 108.22 80 5.475 -316.651 -310.009 -290.094 180.73 722.67

45 4.502 -78.2490 -75.4064 -74.0486 77.350 114.30 81 5.483 -326.392 -319.614 -298.469 184.45 759.83

46 4.526 -82.6457 -79.7140 -78.2099 79.778 120.71 82 5.505 -336.326 -329.409 -306.972 188.21 798.76

47 4.542 -87.1704 -84.1486 -82.4864 82.227 127.46 83 5.531 -346.455 -339.399 -315.602 192.02 839.55

48 4.613 -91.8238 -88.7112 -86.8784 84.698 134.57 84 5.539 -356.785 -349.586 -324.362 195.89 882.30

49 4.619 -96.6069 -93.4027 -91.3860 87.192 142.07 85 5.578 -367.318 -359.976 -333.250 199.79 927.04

50 4.655 -101.521 -98.2241 -96.0095 89.710 149.97 86 5.632 -378.058 -370.571 -342.268 203.72 973.89

51 4.704 -106.567 -103.176 -100.749 92.252 158.30 87 5.640 -389.011 -381.376 -351.416 207.75 1023.01

52 4.804 -111.745 -108.261 -105.605 94.818 167.08 88 5.663 -400.179 -392.395 -360.694 211.80 1074.43

53 4.752 -117.058 -113.478 -110.578 97.414 176.33 89 5.670 -411.568 -403.633 -370.104 215.93 1128.29

54 4.826 -122.506 -118.830 -115.668 100.03 186.08 90 5.804 -423.174 -415.093 -379.646 219.88 1184.45

55 4.807 -128.090 -124.317 -120.875 102.68 196.35 91 5.700 -435.025 -426.783 -389.320 224.29 1243.72

56 4.840 -133.812 -129.940 -126.199 105.36 207.17 92 5.861 -447.091 -438.704 -399.127 228.23 1305.18

57 4.855 -139.673 -135.702 -131.641 108.07 218.57 93 5.744 -459.420 -450.866 -409.067 232.78 1370.20

58 4.877 -145.674 -141.602 -137.201 110.81 230.57 94 5.794 -471.980 -463.271 -419.141 236.99 1437.83

59 4.893 -151.817 -147.644 -142.880 113.58 243.20 95 5.787 -484.798 -475.928 -429.350 241.36 1508.80

60 4.915 -158.103 -153.827 -148.677 116.38 256.50 96 5.816 -497.868 -488.840 -439.695 245.65 1582.97

61 4.962 -164.534 -160.153 -154.593 119.21 270.50 97 5.816 -511.206 -502.017 -450.175 250.04 1660.72

62 5.031 -171.111 -166.625 -160.629 122.08 285.23 98 5.844 -524.810 -515.463 -460.792 254.32 1742.00

63 5.041 -177.836 -173.243 -166.784 124.98 300.72 99 5.865 -538.692 -529.188 -471.547 258.61 1827.11

64 5.089 -184.710 -180.009 -173.060 127.92 317.01 100 5.886 -552.858 -543.199 -482.439 262.85 1916.20

65 5.099 -191.735 -186.925 -179.455 130.90 334.15
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TABLE V: The 3s− 3p transition energies (eV) of sodiumlike ions. RMBPT results are from [14].

Unless otherwise specified, experimental results are from the NIST Atomic Spectra Database [42].

3s− 3p1/2 3s− 3p3/2

Z Present RMBPT Expt Present RMBPT RCI Expt

30 43.029(2) 43.025(1) 43.023 48.363(2) 48.362(1) 48.361

31 45.218(2) 45.212 51.487(2) 51.485

32 47.418(2) 47.412 54.741(2) 54.739

33 49.631(2) 49.630 58.135(2) 58.135

34 51.856(2) 51.826 61.679(2) 61.662

35 54.094(2) 54.090 65.387(2) 65.386

36 56.346(2) 56.340 69.268(2) 69.267

37 58.613(2) 58.607 73.337(2) 73.337

38 60.895(2) 60.877 77.606(2) 77.597

40 65.508(2) 65.503(2) 86.798(2) 86.795(2)

42 70.188(2) 70.187 96.960(2) 96.963

50 89.710(1) 89.710 149.97(1) 149.97

54 100.03 100.05 186.08 186.13

55 102.68 102.73 196.35 196.38

56 105.36 105.39 207.17 207.24

64 127.92(1) 127.94(1) 317.01(1) 317.07(1)

72 152.88(2) 152.91(2)a 481.07(2) 481.14(31)a

73 156.19(2) 156.19(2)a 506.47(2) 506.14(37)a

74 159.54(2) 159.57(2)a 533.10(2) 533.09(5)b 533.20(11)c

533.43(38)a

78 173.48(3) 173.51(1) 653.41(2) 653.41(1)

79 177.09(3) 177.14(3)a 687.23(3) 686.28(83)a

80 180.73(3) 180.78(2) 722.67(3) 722.67(1)

82 188.21(3) 188.27(2) 798.76(3) 798.76(1)

90 219.88(5) 219.98(2) 1184.45(5) 1184.44(1)

92 1305.18(5) 1305.11(7)d 1305.12(2)d

aRef. [21].
bRef. [44].
cRef. [20].
dRef. [43].
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