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Over the past decade, precision measurements of the helium 2 3P fine-structure intervals have
been performed using a variety of experimental techniques. We have shown in previous work (Phys.
Rev. A 89, 043403, and references therein) that these measurements can be significantly shifted by
quantum interference with neighboring transitions, despite the fact that the neighboring transitions
are more than a thousand natural widths away from the transition being measured. The shifts
depend on the experimental technique used, since different techniques allow for different quantum-
mechanical interference paths. Here we consider measurements using the saturated absorption
technique, and find that quantum interference effects cause substantial shifts for the 2 3P1—2 3P2

interval. We find that four independent measurements for this interval are now in agreement when
interference shifts are taken into account.

PACS numbers: \pacs{32.70.Jz,32.80.-t}

I. INTRODUCTION

Use of the helium 2 3P triplet intervals to determine
the value of the fine-structure constant α has been the
focus of ongoing theoretical [1–7] and experimental [8–17]
efforts which have yielded increasingly accurate values for
these intervals. A determination of α to a part-per-billion
or better from a comparison between experimental and
theoretical values for the intervals may soon be possible.

At the level of accuracy obtained in these measure-
ments, the effects of off-resonant transitions on the driven
resonance become important, despite the fact that these
off-resonant transitions are separated from the main
resonance by more than a thousand natural widths.
Quantum-mechanical interference between the dominant
excitation and the off-resonant process induces distor-
tions in the lineshape and results in significant shifts. The
scale of these interference shifts depends strongly on the
measurement technique, and previous work has demon-
strated substantial shifts in laser measurement of the
2 3P1—2 3P2 interval [18], and in saturated-fluorescence
spectroscopy of the 2 3S1—2 3P1 and 2 3S1—2 3P0 transi-
tions [19]. Smaller interference shifts are found [20] for
microwave measurements of the 2 3P fine structure.

In this article we turn to an analysis of interference ef-
fects on saturated-absorption laser measurements of the
2 3P fine-structure. Precise measurements of all three
intervals have been performed [17] using the saturated-
absorption method, so it is crucial to understand the size
of the interference effects for these measurements. In this
work, we focus on the 2 3P1—2 3P2 fine-structure inter-
val, as measurements of the other 2 3P intervals are fur-
ther complicated by shifts due to deflection of the atoms
by laser light. The interference shifts calculated in this
work are larger than the uncertainty of the saturated-
absorption measurement [17].
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The saturated-absorption method uses laser excitation
in an rf-discharge helium cell, and detects the power of
the laser beam after it has passed through the sample.
The measurement is performed with and without a sec-
ond counterpropagating laser beam. In both cases, only
the forward-beam power is measured, and the difference
in observed absorption for the two cases (i.e., with and
without the counterpropagating laser beam) forms the
saturated-absorption signal. Because of Doppler shifts,
only when the laser is tuned to near resonance do both
laser beams communicate to the same atoms, and there-
fore the saturated-absorption signal has a much narrower
line width than the full Doppler-broadened laser reso-
nance.

We calculate first the interference effects for the
2 3S1,mJ=1—2 3P1,mJ=1 (|1〉—|2〉 in Fig. 1) saturated-
absorption measurement. This measurement is shifted
due to interference between this transition and the
2 3S1,mJ=1—2 3P2,mJ=1 (|1〉—|3〉 in Fig. 1) transition.
The measurement can be modeled using a closed four-
level system, since any population that starts in the
metastable |1〉 state can only be excited by a linearly-
polarized laser beam to |2〉 or |3〉, and these can ra-
diatively decay only to |1〉 or |0〉. The 2 3S1,mJ = 0
state (|0〉) can be considered to be a dark state because
the 2 3S1,mJ=0—2 3P1,mJ=0 transition is electric-dipole-
forbidden.

II. DENSITY-MATRIX EQUATIONS

To model the saturated-absorption technique for the
measurement performed in [17], we consider a laser with
frequency ω=2πf and linear polarization ẑ interacting
with a cloud of metastable helium atoms. The forward
beam and the counterpropagating beam travel in the +ŷ
and −ŷ directions, respectively, and both laser beams
have a uniform intensity I0 over the volume of atoms
that contribute to the signal. Each Doppler group within
the atomic cloud (with velocity vy in the direction of the
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laser-beam) is considered separately, with the full sig-
nal obtained by averaging over all Doppler groups. An
atom with velocity component vy sees equal and oppo-
site Doppler shifts±∆ωD=±2π∆fD=±ωvy/c for the two
laser beams. The total electric field experienced by a

moving atom in the laser beams is ~E(t)=E(t)ẑ, with

E(t) = E0 cos [(ω + ∆ωD)t]

+ sE0 cos [(ω −∆ωD)t+ ∆φ]. (1)

Here, E0=
√

2I0
ε0c

, ∆φ is the phase difference between the

two laser beams, and the parameter s = 1 or 0 indicates
if the counterpropagating laser beam is switched on or
off.

As was done in [21], one can write density-matrix equa-
tions describing the transfer of population in the four-
level system of Fig. 1, where the population begins in
the metastable |1〉 state, and the laser is nearly resonant
with the |1〉—|2〉 transition. Since very little population
is transferred to the far-off-resonance |3〉 state, the full
set of equations can be approximated [21] by a reduced
set of modified density-matrix equations involving only
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FIG. 1. (Color online) The n=2 triplet energy levels of helium,
illustrating the measurement of the 2 3S1,mJ=1—2 3P1,mJ=1
interval. The population is assumed to start in the
2 3S1,mJ=1 metastable state (|1〉), and is excited (solid arrow)
by a linearly-polarized 1083-nm laser tuned to the 2 3P1,mJ=1
state (|2〉). There is a small amplitude of also driving (dotted
arrow) to the far-off-resonance 2 3P2,mJ=1 state (|3〉). The
atoms can then decay back to |1〉, or to the 2 3S1,mJ=0 state
(|0〉). The |0〉 state can be considered to be a dark state due to
the electric-dipole-forbidden 2 3S1,mJ=0—2 3P1,mJ=0 transi-
tion, and thus only the four numbered states play a significant
role in the measurement.

the initial state |1〉 and the on-resonant state |2〉:

ρ̇11 =

(
iΩ2

2
+

Ω3γ23→1

2ω23

)
ρ12 + γ2→1ρ22

−
(
iΩ∗2
2
− Ω∗3γ23→1

2ω23

)
ρ∗12, (2a)

ρ̇12 =
iΩ∗2
2
ρ11 −

iΩ∗2
2
ρ22

−
[
γ2

2
+ i

(
∆2 +

|Ω3|2

4ω23

)]
ρ12, (2b)

ρ̇22 =
iΩ∗2
2
ρ∗12 −

iΩ2

2
ρ12 − γ2ρ22. (2c)

Here ω23 is the fine-structure splitting between |2〉 and
|3〉 (see Fig. 1), while ∆2=2π∆f is the detuning of the
laser from the |1〉—|2〉 transition frequency. The radia-
tive decay terms involve the quantities γ2=γ, γ2→1=γ/2,
and γ23→1=−γ/2, where γ=1/τ and τ=98 ns is the life-
time of the 2 3PJ states.

We are using the rotating-wave approximation, and the
Rabi frequencies Ω2 and Ω3 associated with the driven
transitions between the metastable state |1〉 and the two
excited states |2〉 and |3〉 are given by

Ωi(t) = Ω
(+)
i + sΩ

(−)
i , (3a)

Ω
(+)
i = ei∆ωDt

eE0

~
〈1|z|i〉, (3b)

Ω
(−)
i = e−i(∆ωDt+∆φ) eE0

~
〈1|z|i〉. (3c)

The (+) and (−) superscripts refer to the forward and
counterpropagating beams, and, as in Eq. 1, the value
of s indicates whether the counterpropagating beam is
switched on or off.

For Eq. 2, the effect of state |3〉 is small since ω23 =
2π(2291 MHz) is more than 1000 times larger than the
other frequency scales (γ, Ωi, and ∆2, all of which are
. 1/τ). As in [21], a small parameter η is defined as the
ratio of these two frequency scales, and ρ33 is of order η2,
and can be ignored. The order-η density-matrix elements
ρ13 and ρ23 are eliminated from the full set of equations,
to give Eqs. 2(a)-(c), which are complete to first order
in η. The order-η terms in Eq. 2 that result from this

elimination are: |Ω3|2
4ω23

, which is the usual ac-Stark shift

of the |1〉 state, and Ω3γ23→1

2ω23
, which represent interference

effects in the decay pathways.

A. Absorption lineshapes

The saturated-absorption method measures the ab-

sorption of the forward laser beam (Ω
(+)
2 of Eq. 3(b)).

For an atom interacting with the laser for a time T the
total absorption is

αs =
i

2

∫ T

0

(
Ω

(+)∗
2 ρ∗12−Ω

(+)
2 ρ12

)
dt. (4)
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FIG. 2. (Color online) Phase- and Doppler-averaged
saturated-absorption lineshape calculated for the 2 3S1—2 3P1

resonance, for a laser intensity of I=0.1 mW/cm2 and an in-
teraction time of T=1 µs. The points defining the FWHM of
the lineshape (in this case 2.8 MHz) are indicated.

This integral, when combined with ρ12 obtained by inte-
grating Eq. 2, is complete to order η. All of the integra-
tions are performed numerically, and must be repeated
twice: for s=0 and s=1 (i.e., with and without the coun-
terpropagating beam), as indicated by the subscript s in
Eq. 4.

The numerical calculation of the difference in absorp-
tion ∆α=α0 − α1 must be repeated for a range of fre-
quencies near resonance to obtain a saturated-absorption
lineshape. Such lineshapes must be calculated separately
for each Doppler group (∆ωD of Eq. 1), as well as for
each relative phase (∆φ of Eq. 1) and the average, ∆α,
gives the full lineshape, as shown, for example, in Fig. 2.
Since the saturated-absorption lineshape is dominated by
atoms that are nearly at rest, it is sufficient to average
only over the values of |∆ωD| <80 MHz.

Figure 3 shows the FWHM of the calculated saturated-
absorption lineshape (solid lines) as a function of laser
intensity I and of interaction time T (top axis). The
feature is broadened both at short interaction times
(T�2πτ) and above saturation (Ω2T�1), but can ap-
proach the natural width (dashed line) for sufficiently-
long T and low enough I.

Collisions of n=2 helium atoms in the discharge with
the much larger number of ground-state atoms in the
cell determine the interaction time T . Velocity-changing
collisions move atoms to different Doppler groups, and
therefore the rate of these collisions determines the time
T spent in the Doppler group that contributes to the
saturated-absorption signal. Thus, as in [17], an approx-
imate correspondence can be made between the recipro-
cal of the pressure P in the cell and the interaction time
T : T = C/P . To find the constant C, we plot measured
[22] saturated-absorptions widths (points in Fig. 3) and
adjust C (and therefore the bottom axis of Fig. 3) to
obtain the best match between the experimental points
and our calculated widths for a laser intensity of I=0.1
mW/cm2.
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FIG. 3. (Color online) Widths of the calculated saturated-
absorption line shapes (solid lines) for the 2 3S1—2 3P1 reso-
nance, over a range of interaction times T , and for various
laser intensities, I. The data points are experimental widths
[22], which are used to calibrate the pressure scale (bottom
axis) with the time scale (top axis). The natural width of the
resonance is shown as a dashed line.

III. INTERFERENCE SHIFTS

The quantum-mechanical interference effect that is be-
ing considered in this work (which leads to the ω−1

23 terms
in Eq. 2) causes shifted lineshapes. After numerically
calculating the saturated-absorption lineshape, the half-
maximum points (see Fig. 2) are used to determine the
shift. As shown in Fig. 4, the shift depends on how many
Doppler groups are included in the calculation, and is
fully converged if all Doppler groups with |∆fD|<20 MHz
are included.
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FIG. 4. (Color online) Shifts in the 2 3S1—2 3P1 resonance as
a function of included Doppler groups. The shifts are cal-
culated using uniformly-distributed Doppler groups ranging
from −|∆fD| to |∆fD|. Results are shown for a laser inten-
sity of 0.1 mW/cm2, with four choices of atom-laser inter-
action times T . The shift has converged when all Doppler
groups with |∆fD|<20 MHz are included, and thus the total
shift from all Doppler groups is the value at the right of each
curve.
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FIG. 5. (Color online) Total shifts (solid thin lines) in the
2 3P1—2 3P2 interval over a range of interaction times T (which
result from helium cell pressures P ) and laser intensities I.
The thin dashed lines give the effect when only the AC shift
term is included (and the Ω3γ23→1

2ω23
term in Eq. 2 is artificially

set to zero) The thick lines show least-squares fits of the shifts
over the pressure range of 18 to 38 mTorr, extrapolated to
zero pressure. The circle indicates the intensity and pressure
at which the most significant data in [17] were taken.

The analysis thus far has been for the
2 3S1,mJ=1—2 3P1,mJ=1 transition. Identical shifts are
obtained when considering the mJ=-1 transition. Also,
a similar calculation can be carried out for a laser nearly
resonant with the 2 3S1—2 3P2 transitions. Every part of
the analysis is similar, except for a sign which results
from the fact that in this instance the on-resonance
process is at a lower (rather than higher) frequency
than the off-resonant (2 3S1—2 3P1) process. A concern
that arises when considering the 2 3S1—2 3P2 transition
is that more than four states could be involved, since
any population that decays to the 2 3S1,mJ=0 state
(state |0〉 in Fig. 1) could be excited to the 2 3P2,mJ=0
state. However, as in [17], a sufficiently large magnetic
field can remove the degeneracy of the mJ levels, and
therefore suppress this transition, leading once again to
a four-level system.

In the saturated-absorption measurements in Ref. [17],
the 2 3P1—2 3P2 fine-structure interval is determined by
subtracting the observed linecenters for the 2 3S1—2 3P1

and 2 3S1—2 3P2 intervals. Because of the equal and op-
posite shifts, the net shift in the fine-structure interval is
two times larger than the shift for the individual transi-
tions, and this shift is shown using solid curves in Fig. 5
for a range of interaction times T and laser intensities I.

For the measurement in [17], the most precise data
were taken for helium cell pressures between 18 and 38
mTorr, and were then extrapolated to zero pressure. The
thick lines in Fig. 5 show extrapolations of our calculated
shifts from this same pressure range. Note that this pres-
sure range avoids the larger interference shifts calculated
for lower pressures (larger T ) and larger I in Fig. 5, These
larger shifts result from the larger line widths (see Fig. 3)

for these T and I, which allows for more interference with
the neighboring resonance. With the extrapolations to
P=0, the interference shifts still remain nonzero. This
holds true even in the limit of zero laser intensity I. Thus,
a repetition of experiments down to lower and lower pres-
sures and laser intensities will not eliminate the inter-
ference shift. As indicated by the lowest-intensity thick
dashed line, the interference shift in the limit of zero I
and P is −1.2 kHz. This is larger than the 0.51-kHz un-
certainty of the saturated-absorption measurement [17]
of this interval, and thus it must be carefully considered
and corrected for in these measurements.

The thin dashed lines in Fig. 5 show the shifts that re-
sult if the Ω3γ23→1

2ω23
term in Eq. 2 is artificially suppressed.

These dashed curves therefore give only the shifts due to

the |Ω3|2
4ω23

term (the ac-Stark shift term). This part of the
shift does go to zero in the limit of zero P and I, as in-
dicated by the thick dotted lines, and therefore it is the
Ω3γ23→1

2ω23
term which leads to the −1.2 kHz shift.

The net −1.2 kHz shift can be broken up into three
parts. The shift at 18 mTorr and 0.1 mW/cm2 (the pres-
sure and intensity at which the most precise data were
taken in [17], as indicated by the circle in Fig. 5) is −1.6
kHz. The extrapolation to zero pressure (the thick solid
line) causes an additional shift of −0.6 kHz. Finally, an
extrapolation of the P=0 intercepts of Fig. 5 to zero in-
tensity causes an additional shift of +1.0 kHz.

The extrapolations of our calculated shifts to P=0 and
I=0 are certainly not exact. For example, a helium cell
at a pressure P would have a range of times T between
velocity-changing collisions (ranging from approximately
50% to 150% of the average T ), and therefore the cor-
respondence between T and P assumed in Fig. 5 is only
approximate. Furthermore, the current modeling does
not explicitly include magnetic fields, and the degree to
which state |0〉 of Fig. 1 is a dark state might depend on
magnetic field, on laser intensity, and on the pressure in
the cell. Because of such uncertainties, we include a 50%
uncertainty for each of the components of the shift and
estimate a total shift of (−1.6 ± 0.8 kHz) + (−0.6 ± 0.3
kHz) + (+1.0± 0.5 kHz) = −1.2± 1.0 kHz for this mea-
surement.

Fig. 6 gives a summary of the current experimental (a
- d) and theoretical (e) determinations of the 2 3P1—2 3P2

fine-structure interval. In that figure, the solid error
bars are measurements without corrections for interfer-
ence effects. Each measurement uses a different technique
(microwave separated oscillatory fields (a), laser spec-
troscopy in a laser-cooled beam (b), laser spectroscopy
in a well-collimated thermal beam (c), and saturated-
absorption spectroscopy in a cell (d), respectively), and
therefore each has different interference processes, and
requires a separate calculation for the interference shift.
The first three of these calculations have been previously
completed ([20], [16], and [18]), and the correction for
the fourth is considered in this work. The correction is
small for the microwave measurement, both because it
has a subnatural line width and because the separation
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FIG. 6. (Color online) Measurements and theory for the
2 3P1—2 3P2 fine-structure interval in helium. The points la-
beled a [10], b [16], c [23] and d [17] are measurements, with
each using a different experimental technique. The point la-
beled e is the calculation of Pachucki and Yerokhin [7], ad-
justed for the CODATA 2010 [24] value of α. The solid error
bars are the values without interference effects. The correc-
tion for interference effects have now been estimated for all
of these measurements (in [20], [16], [18], and in this work,
respectively), and the dashed error bars give the corrected
measurements.

between the observed resonance and its nearest neigh-
bor is an order of magnitude larger than in the other
cases. Even the sign of the shifts depends on the details
of the measurement technique (as shown, e.g., in [19]),
and thus it is coincidental that the shifts are similar for
the other three measurements. The corrected measure-

ments (which include the interference effects and their
estimated uncertainties) are shown as dashed error bars
in Fig. 6. Note that the corrected values show much bet-
ter agreement with each other and with theory than the
uncorrected values.

IV. CONCLUSIONS

We have calculated the effect of quantum-mechanical
interference with a far-off-resonant transition on the
saturated-absorption measurements of the 2 3P1—2 3P2

fine-structure interval in atomic helium. The effect is
found to cause a shift that is large compared to the mea-
surement uncertainty, and therefore must be properly
accounted for. The shift is significant even though the
off-resonant transition is separated by 2.3 GHz, or 1400
natural widths. This work illustrates that shifts due to
quantum-mechanical interference must be carefully con-
sidered for all precision measurements. When possible,
measurements should be planned to minimize the inter-
ference effect (as, for example, for point a of Fig. 6), by
either ensuring that the separation between resonances is
very large, or by techniques which suppress any nonres-
onant processes. To correct for the interference shifts, a
calculation must be performed based on the exact mea-
surement technique used.
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