aps CHCRUS

physics

This is the accepted manuscript made available via CHORUS. The article has been
published as:

Qualitative failure of a multiconfiguration method in prolate
spheroidal coordinates in calculating dissociative
photoionization of H {2}~ {+}

Daniel J. Haxton, Keith V. Lawler, and C. William McCurdy
Phys. Rev. A 91, 062502 — Published 9 June 2015
DOI: 10.1103/PhysRevA.91.062502


http://dx.doi.org/10.1103/PhysRevA.91.062502

Qualitative failure of a multiconfiguration method in prolate spheroidal coordinates in
calculating dissociative photoionization of Hj

Daniel J. Haxton,! Keith V. Lawler,? and C. William McCurdy! 3

I Chemical Sciences and Ultrafast X-ray Science Laboratory,
Lawrence Berkeley National Laboratory, Berkeley CA 94720
?Department of Chemistry, University of Nevada-Las Vegas, Las Vegas NV 8915/
I Departments of Applied Science and Chemistry, Davis CA 95616

A formulation of multiconfiguration time-dependent Hartree-Fock (MCTDHF) with nuclear mo-
tion is tested by application to a three-body breakup problem, the dissociative photoionization cross
section of the HJ ion. The representation of the wave function in terms of a set of Slater determi-
nants used for all nuclear geometries, with a prescribed parametric dependence upon the nuclear
geometry such that the cusps follow the nuclei, times a complete basis expansion in the nuclear de-
grees of freedom shows promise as a method for treating nonadiabatic electronic and nuclear motion
in molecules. However, the method used here for diatomics, in which the parametric dependence
is prescribed through the choice of prolate spheroidal coordinates, produces qualitatively incorrect
step-like behavior in the calculated cross section near onset. Modifications to the prolate spheroidal
coordinate system that would improve this nonadiabatic diatomic MCTDHF representation are

proposed.

PACS numbers: 31.15.-p, 33.80.Eh, 31.15.xv

I. INTRODUCTION

Current and next generation experiments using ultra-
fast laser light demand ab initio methods for quantum
electronic and nuclear molecular dynamics. There are
many situations in which the coupling of nuclear and
electronic motion results in strong deviations from the
fixed-nuclei behavior. Notably, it was recently pointed
out [1] that standard models of tunneling ionization must
be modified to account for the effect of nuclear motion.

An effective all-purpose tool for calculating the re-
sponse of a molecule to intense, short laser pulses must
effectively describe both nonadiabatic nuclear motion
and correlated many-electron quantum dynamics includ-
ing ionization. The multiconfiguration time-dependent
Hartree-Fock (MCTDHF) method [2-15] has received
considerable attention for the electronic problem, and
more than one group [10, 16, 17] have implemented MCT-
DHF methods including both electronic and nuclear mo-
tion. One of those [17, 18] is tested here by application
to the simplest molecular three-body breakup problem,
dissociative ionization of Hy .

The Hj cation is the smallest molecule, and one that is
relevant in environments ranging from interstellar chem-
istry [19, 20] to fusion reactors, and as such is well studied
in the literature. It provides the one-electron archetype
for fundamental processes such as dissociative recombi-
nation [20]. Due to its size, it is tractable to include
nonadiabatic effects in calculating its dynamics [21, 22].
A comprehensive discussion of the interaction of Hy with
general laser fields is found in Ref. [23]. The two-body
breakup, known as dissociative photoexcitation or pho-
todissociation, has been studied experimentally [24—
27] and theoretically [27-30], but our interest is in dis-
sociative photoionization, the three-body breakup pro-
cess. The three-body breakup has received much atten-

tion from theorists over the decades [31-35], and recently
through the topic of differential cross sections [36] and in-
terference effects [37-41]. Recent theoretical and experi-
mental work on the system may be found in Refs. [42-49]
and [50, 51], respectively. Even more recently, the inter-
est in strong field and ultrafast physics has led to many
experimental and numerical studies on coupled electronic
and nyclear dynamics in this fundamental system [52-60].

The cross section derives from Fermi’s golden rule,
and is most directly pertinent to experiments performed
with weak fields. The dissociative ionization and dis-
sociative excitation cross sections were recently calcu-
lated using numerically exact methods within the non-
relativistic approximation and reported in Refs. [61] (in-
cluding non adiabatic couplings) and [62] (in the Born-
Oppenheimer approximation). The effect of the nonadi-
abatic coupling terms in the Hamiltonian was analyzed
in Ref. [61]. Among other things, it was found that the
doubly differential cross section (differential with respect
to kinetic energy of the electron) is accurately calcu-
lated using a Born-Oppenheimer final state wave func-
tion, but is incorrect near onset when calculated with a
Born-Oppenheimer initial state wave function.

To calculate a cross section using a time-dependent
method we use weak pulses, as would the experiment.
The code that we use [18] includes the ability to treat
correlated nonadiabatic electronic and nuclear motion in-
cluding ionization and dissociation with many electrons.
It is formulated in prolate spheroidal coordinates, per-
mitting an implementation of the exact nonrelativistic
Hamiltonian for diatomic molecules [22]. We omit only
Coriolis coupling terms, responsible for Lambda dou-
bling, from this Hamiltonian.

The choice of prolate spheroidal coordinates here is not
only a computationally expedient choice. On the con-
trary, within the present method [17], the choice of coor-



dinate system defines the nonadiabatic MCTDHF ansatz
via the parametric dependence of orbitals upon nuclear
geometry that it prescribes. This parametric dependence
should be physical, e.g., orbitals on dissociating atoms
should not change shape. The main conclusion of this
work is that the prolate spheroidal coordinate system for
diatomics must be modified, in order to improve the cor-
related representation of nuclear and electronic dynamics
described in Ref. [17].

This is not the first application of a multiconfiguration
method to fully nonadiabatic coupled electronic and nu-
clear dynamics. In Ref. [16] the HJ ion was studied using
MCTDH, that is, using an expansion in orbitals for the
electron and nuclear degrees of freedom. A multi-electron
version of this treatment is described in Ref. [10], and
was applied the LiH molecule in Ref. [11]. The present
method differs in that it uses orbitals for the electrons
only, taking the full primitive basis expansion in the nu-
clear degree of freedom. In Ref. [11] it is written that our
expansion is not explicitly time dependent in the nuclear
part, but this statement is difficult to interpret because
both methods compute a fully time dependent electronic
and nuclear wave function.

The present approach [17, 18] uses a single set of or-
bitals defined in prolate spheroidal coordinates for all
bond lengths, permitting a numerically compact repre-
sentation of the multidimensional wave function. Prolate
spheroidal coordinates are a choice that is arbitrary, ex-
cept for the fact that they are nearly the easiest choice
of bond-length-dependent coordinates to implement. In
this method the electronic orbitals have a parametric de-
pendence upon the bond length by way of the prolate co-
ordinate system, denoted by a semicolon in the following
expressions. The wave function is expanded in terms of a
linear combination of Slater determinants at each value
of the bond length, with each determinant comprised of
time-dependent orbitals,

[U(1) =D Ana(t)xx(R)) x |iia(t; R)) (1)

in which each determinant « is specified by the vector 77,
and is defined by

7la(t; R)) = & (|§na, (6 R)) X | dn,n (G R)) 5 (2)

where &7 is the antisymmetrizer. In contrast to the pre-
scription here, Eq. 1, in the method of Refs. [10, 11] the
wavefunction is expanded in terms zél,g,l(t)|1\7,.i ()X |7t (1))
using orbitals (determinants, cumulants, etc., |N,(t)))
for the nuclear motion. The present method using or-
bitals parametrically dependent upon nuclear geome-
try permits an accurate representation of the electron-
nuclear cusp for all bond distances, but introduces cross
terms in the electronic and nuclear kinetic energy because
the total Hamiltonian is not separable in the four prolate
spheroidal coordinates; they do not form an orthogonal
coordinate system.

The time-dependent orbitals |¢,(t)) are spin-
restricted, and expanded in an interpolating piecewise

polynomial basis (a discrete variable representation [63—
65]) using a spherical polar or prolate spheroidal grid as
described in Ref. [17]. The grid is defined in the radial
and polar directions and the primitive basis functions
include factors of M@ / Vor.

The cross sections are calculated within the time-
dependent formalism [66, 67] and reported in Sec. II.
Although they are generally correct over the full range
of incident photon energies, they exhibit qualitatively in-
correct step behavior at onset. This behavior is discussed
in Sec. III. In Sec. IV, we describe the modification of
prolate spheroidal coordinates that should improve this
and other pathologies we have observed.

II. H] PHOTOIONIZATION CROSS SECTIONS

Cross sections are calculated as described in Ref. [17].
We have previously reported a detailed test of the method
for cross sections, which follows that of Ref. [67], in
Ref. [68].

The dissociative photoionization cross section of HJ is
shown in Fig. 1. In this figure the present results are com-
pared with an exact numerical treatment using the full
grid in the electronic coordinates and bond length, and
with the Born-Oppenheimer approximation at the equi-
librium bond length of 2ag. As already mentioned, such
exact results have previously been reported by us [61]
and more recently in Ref. [62].

As in Ref. [61], we additionally compare the results of
the Chase approximation [69] which entails a convolution
of the Born-Oppenheimer result over the wave packets of
the initial and final vibrational states,

E
oCH(E — Ey) = / dE'
0 2

|/dR \/O’BO (E’ + % - EO(R)>XO(R)fl(k//vR)

(3)
In equation 3, Ej is the vibrational ground state energy,
Ey(R) is the Born-Oppenheimer ground state energy as a
function of the bond length, c“# and o2 are the Chase
approximation to the cross section and the calculated
Born-Oppenheimer cross sections, xo is the vibrational
ground state, and f; is an energy-normalized continuum
Coulomb wave function for nuclear motion on the repul-
sive 1/R potential of Hj T, with k”?/2 = E — E’. The
cross sections are functions of photon energy. As can be
seen here this approximation reproduces the exact result
to very good accuracy, except at onset (the threshold for
dissociative ionization, approximately 16.2eV, is substan-
tially below onset, at approximately 25eV).

Cross sections for parallel and perpendicular polariza-
tion are shown in Fig. 1 as a function of the number
of orbitals used to describe the single electron for all
bond distances in prolate spheroidal coordinates. The
initial state orbitals are necessarily all o4, because the
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FIG. 1: (Color online) Cross sections for photoionization of HQJr , including nonadiabatic nuclear motion in the bond length,
calculated with one to four orbitals, compared to the Born-Oppenheimer result and to the Chase approximation. These are
the results of four calculations, using two different laser pulses, one used to calculate the cross section up to 80eV and one for
the onset region, for both parallel (left) and perpendicular (right) polarization.

masses are equal and Coriolis coupling terms were omit-
ted. Coriolis coupling terms were tested and calculated to
have an as-expectedly infinitesimal effect upon the disso-
ciative photoionization cross section of the total angular
momentum .J = 0 ground state. The difference between
the partial cross sections into the two components of the
Lambda doublet for perpendicular polarization, and the
effect of the coupling term upon the parallel polarization
cross section, was on the order of machine precision or
less. The Coriolis coupling terms are therefore neglected
in the final results.

The present calculation depends upon the validity of
a mean field approximation, and we find that we can-
not use reasonable (about 1/100 femtosecond) mean field
time steps without introducing large error into the solu-
tion. The off-diagonal terms in the kinetic energy for
electrons and nuclei are probably making large contribu-
tions to the mean fields and the linear approximation to
them that we use [17] is probably breaking down. All
calculations except the one-orbital one have noise near
onset that depends upon the mean-field parameters and
that we were not able to easily remove. We have not been
able to calculate results for four or more orbitals using

reasonable mean field time steps.

The parallel () cross section is small. Over all en-
ergies plotted it is actually at a minimum with respect
to bond distance at the equilibrium bond length of the
cation (R=2ag). Therefore the result with nuclear mo-
tion deviates significantly from and is higher than the
Born-Oppenheimer result. In Fig. 1 we see that one
orbital yields a result intermediate between the Born-
Oppenheimer result at R=2.0ay and the exact nonadia-
batic result, the latter of which is plotted as a black line
in the figure. Except for the onset region, the calculation
with two orbitals is converged to the exact result within
visual accuracy.

In the Born-Oppenheimer approximation the cross sec-
tion for perpendicular (II) polarization is much larger
than the 3 cross section and relatively constant over the
Frank-Condon region of the cation. Therefore, as shown
in the bottom panel of Fig. 1, the full nonadiabatic re-
sult and the Born-Oppenheimer result at R=2aq are al-
most exactly identical. The multiconfiguration calcula-
tion reproduces the exact result with only one orbital.
No straightforward argument for why this would be the
case seems immediately obvious, and it would be interest-
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FIG. 2: Schematic of wave function density, |¥ (7 R)|?, in-
tegrated over angular coordinates, for an ionized wavepacket
created by a short pulse, in spherical polar coordinates, left,
and prolate spheroidal coordinates, middle. The hypothetical
closest approximation to this wave packet using two orbitals
in prolate coordinates is on the right.

ing to test the performance of the one-orbital calculation
using different pulse envelopes.

The calculations show interesting behavior at onset,
visible through the considerable numerical noise. The
sharply peaked noise is dependent upon the nonphysi-
cal mean field parameters of the calculation — in other
words, it is entirely numerical in origin. The salient dis-
crepancy between the multiconfiguration results shown
in Fig. 1 and the other results, numerical and physical, is
that in the former there are a number of steps equaling
the number of orbitals used in the calculations. Except
for the step behavior at onset, the cross section seems to
be converging to the exact result, which is close to the
Chase approximation. We attempt a qualitative expla-
nation of the step behavior in the following section, and
in the conclusion we describe what would seem to be the
solution.

III. SPURIOUS STEP BEHAVIOR NEAR
ONSET

We have observed the step behavior in the dissociative
photoionization cross section at onset and now provide
our best attempt at an explanation of it. Figure 2 shows
a schematic. The essential contours of the density corre-
sponding to an outgoing wave packet created by a short
pulse are shown in the two coordinate systems, spherical
polar (left) and prolate spheroidal (middle). Because the
Hamiltonian is separable in the former, we expect wave
fronts parallel with the grain of the coordinate system in
the asymptotic region, and this is what we have drawn
in the schematic at left. The left panel shows an outgo-
ing electronic wavepacket not correlated with the nuclear
degree of freedom R. The density at left is well repre-
sented as a product P(R)p(r). In contrast, the density
is not separable in prolate coordinates, middle, and any
attempt to approximate it with few orbitals will compro-
mise it, as in the right panel. The right panel shows a
hypothetical best approximation to the middle panel us-
ing only two orbitals. We imagine that artificial nodes
will be created and the fragmentation of smooth wave
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o
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FIG. 3: (Color online) Initial natural orbitals (real-valued)
(7 R), evaluated at R=2.0ao, y = 0, for two-orbital calcula-
tion.

fronts seems a plausible explanation for the step behav-
ior at onset.

We have not performed a falsifiable test of this hy-
pothesis. We have plotted orbitals from the two-orbital
calculation in search of this behavior and we show the
results of that exercise in Figs. 3,4, and 5.

Ideally, the fragmentation behavior would be visible
in the orbitals from the multiconfiguration calculation.
However, the resolution of these orbitals that would be
the best for this purpose is not obvious. We have choosen
natural orbitals for Figs. 3,4, and 5 — natural orbitals for
the electron, and for the bond distance, which together
comprise the Schmidt decomposition of the wave func-
tion [17].

The natural orbitals diagonalize the reduced density
matrices in the electronic (¢) and nuclear coordinates
(¢) of the prolate spheroidal coordinate system. They
are not independent of this coordinate system, and differ-
ent nonorthogonal coordinate systems will give different
natural orbitals and occupancies. The two-orbital wave
function expressed in terms of natural orbitals is

V(7 R) = M¢1(7; R)p1(R) + Xaga (75 R)pa(R) . (4)

This expression is similar to a Schmidt decomposition
but with the parametrically dependent coordinate.

Fig. 3, 4 and 5 show the electronic natural orbitals ¢
and ¢s. Fig. 3 shows them before the pulse; these are the
natural orbitals of the eigenfunction (stationary state).
The node in ¢ is radial: this makes sense, due to the
parametric dependence of the prolate spheroidal coordi-
nate system for the electrons upon the bond length R.
Because the size of the orbitals increases proportionally
to the bond length, an orbital is required to describe “re-
laxation effects” in the radial degree of freedom. We refer
to the well-known difference between the 2p Hartree-Fock
orbitals in Neon and Neon cation as an example of the
relaxation effect. The phenomenon observed here, sim-
ilarly, is due to the difference in the fixed-nuclei Born-
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FIG. 4: (Color online) Natural orbitals ¢(7; R) for 2-orbital propagation during the pulse, as the ionized flux moves outward,
at (top to bottom) ¢ = 0, 0.5, and 1.0fs after the start of the pulse, evaluated at R=2.0ag, y=0. In each panel, the left image is
the real part; the right, translated by 80 bohr, is the imaginary. The left three panels are the first natural orbital (occupancy

approximately 96%) and the right are the second (4%)

Oppenheimer wave function for H;r at the extrema of
the Frank-Condon region. When the prolate spheroidal
coordinates are changed to better describe the asymp-
totic region, as discussed in the conclusion, the nature of
the node in the first correlating orbital may change, but
the orbital will always belong to the totally symmetric
irreducible representation.

Fig. 4 shows the natural orbitals during the pulse, at
t =0, 0.5, and 1.0fs. One can see flux moving outward.
They are formally gauge-dependent and these have been
calculated and plotted in the length gauge. (The mul-
ticonfiguration ansatz is gauge invariant; differences in
results for different gauges betray basis set error in the
primitive one-electron basis used to construct the or-
bitals.)

Fig. 5 shows the natural orbitals after the pulse, as the
system is ringing down, at ¢ =0, 1.75, and 3.5fs after the
end of the pulse. One can see the dominant wave num-
ber decreasing; higher mometa escape more quickly. We
have attempted to identify some pattern in Figs. 4 and 5,
by comparing these results to the natural orbitals from
calculations with different (# 2) numbers of orbitals. No

clear indication of the behavior depicted in the schematic
in Fig. 2, going from the middle to the right panel, pre-
sented itself, and showing these results from calculations
with different numbers (1, 3, 4, etc.) of orbitals seems
to convey no more information. This issue must rest un-
til a better method of analyzing the results is found, or
until the behavior is ameliorated through the coordinate
transformation described in the conclusion.

The analysis based on visual inspection of the natural
orbitals presented here is lacking, but we consider the
intuitive explanation of the step behavior at onset based
on wave fronts to be compelling and perhaps there is
evidence of it in our calculations, even in the figures here.
In the next section, we discuss the solution to the step
behavior problem, which should be clear at this point:
the modification of the nonadiabatic MCTDHF ansatz,
i.e., modifying the underlying coordinate system.
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FIG. 5: (Color online) Natural orbitals ¢(7;2.0) for 2-orbital propagation after the pulse, at ¢ =0, 1.75, and 3.75fs after the
end of the pulse, as the wave function is ringing down, plotted in the same way as Fig. 4. At R =2.0ao, the wave function is
absorbed via complex coordinate scaling starting at approximately r = 80ao.

IV. CONCLUSION

Although it produced results for bound vibronic (J =
0) states in good agreement with prior benchmark nona-
diabatic calculations, the application to dissociative ion-
ization has clearly strained this MCTDHF method for
diatomic molecules [17, 18]. Although the large-scale
behaviors of the Hy dissociative photoionization cross
sections calculated are accurate, for both parallel and
perpendicular polarization the region near onset is cal-
culated to contain a number of unphysical steps equal
to the number of orbitals used in the calculation. Near
onset, the total energy is the lowest possible for ioniza-
tion, and the momentum is being shared most equally
between electrons and nuclei. Therefore nonadiabatic ef-
fects are most important in this region [61, 70], and it is
not unsurprising that this is the point of failure.

We have argued that because the prolate coordinates
¢ and R are nonorthogonal, and therefore necessarily not
aligned with the moments of inertia of the system, the
outgoing wave describing the total breakup of the system
that is the best approximation to the true solution with

few orbitals will be fragmented. We did not elicit find this
behavior in the wavefunctions that we calculated, but our
analysis was visual and cursory and some evidence of it
may lie in our data.

The method used here [17, 18] for nonadiabatic elec-
tronic and nuclear dynamics of diatomic molecules makes
use of simplifications based on the prolate spheroidal co-
ordinate system. These are among the easiest coordi-
nates to program because the parametric dependence of
the orbitals upon the nuclear geometry (the single co-
ordinate R) is the simplest possible: their shape does
not change, only their size. For a diatomic molecule,
considering the triad of coordinates (n,&, R), improv-
ing the coordinates means that a nonorthogonal coor-
dinate transformation must be applied to these already-
nonorthogonal coordinates. Keeping the orbitals orthog-
onal as a function of geometry will probably not be the
most efficient ansatz for a diatomic nor polyatomic, so
slow variable-discretization [71] or another method for
operators differential in the nuclear coordinates will then
need to be applied to matrix elements between Slater de-
terminants at different geometries, and this issue presents
a significant barrier. However, with the technology based



on biorthogonalization described in Ref. [17] and [68],
and for small polyatomic vibrational motions excluding
dissociation, this barrier may be easily crossed.

When the coordinate system that is parametrically de-
pendent upon nuclear geometry is changed, the natural
orbital occupations (which are not functions of nuclear
geometry, the nuclear coordinates having been traced
out) will change, and different coordinate systems will
produce more efficient diatomic and polyatomic MCT-
DHF representations. We anticipate that an improved
coordinate system will reduce or eliminate the step be-
havior at onset seen here. We also expect that it will
reduce the number of orbitals that are required to con-
verge both the cross section calculation for all energies,
and the results for more-intense pulses for which Fermi’s
golden rule breaks down.

We conclude with two examples of coordinate systems
that would be expected to improve the representation,
based on the results and arguments we have presented in
the prior three sections. It should be clear that we seek
a coordinate system that, without loss of generality, ap-
proximately equals the spherical polar coordinate system
at long range (r >> R). Here we will consider modifying
only the ¢ prolate variable, defining a new variable ¢ such
that the coordinates are (¢, 7, ¢, R). The prolate coordi-
nate 7 is equal to cos f at long range. It is not clear what
the absolutely-best ¢ would be, but any of the following
might suffice. Whereas the old coordinate is

Vo B ey (1 )
R )

£ =

and can be written more compactly

two options for the new coordinate are ( =

(=8P,

\/r2+RT2—zR+ 7‘2+R72+2R—R>

=4
z (\/27“2 -2 2\/(7‘2 + %2)2 - R2z2>
(7)

Either of these two choices for the new coordinate ( re-
placing ¢ would make the coordinate system equal to

spherical polar coordinates in the asymptotic region, and
be amenable to a straightforward product grid. Any devi-
ation from prolate spheroidal coordinates will necessitate
separately calculating and storing the two-electron ma-
trix elements for every R, but this is manageable due to
the sparsity of these matrix elements. Which coordinate
transformation gives the electronic and nuclear kinetic
energy operator most easy to implement remains to be
seen.

It is important to develop an all-purpose tool for solv-
ing the Schrodinger equation for chemical systems be-
cause current developments in ultrafast laser technology
are beginning to open a new world of experiments ma-
nipulating and probing the structure of quantum matter.
Our initial results here on a difficult problem — accurately
computing the dissociative photoionization cross section
— for the simplest system have pushed our implementa-
tion [18] to the breaking point. The method with nuclear
motion is not useful presently due to the stability issues
that precluded the appearance of results with more than
three orbitals here. The cross sections calculated here are
good enough to be useful, especially with prior knowledge
of the pathology we have identified, and in fact were accu-
rate with few orbitals over most of the domain of the cross
section. Only at onset were they deficient. We have ar-
gued that the step behavior is the natural result of apply-
ing the present MCTDHF ansatz [17] with a coordinate
system skewed relative to the moments of inertia of the
system, as any set of nonorthogonal, Born-Oppenheimer-
like coordinates defined relative to the nuclei will be, and
presented several options for diatomic molecules that all
should perform better than prolate spheroidal coordi-
nates and that all are equivalent to spherical polar co-
ordinates in the asymptotic region. Implementation of
one or more of these coordinate transformations within
the code used here [18] is a task for the future.
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