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Abstract. We analyze the generation of linear optical cluster states (LOCS) via sequential addition of 
one and two qubits. Existing approaches employ the stochastic linear optical two-qubit CZ gate with 
success rate of 1/9 per operation. The question of optimality of the CZ gate with respect to LOCS 
generation has remained open. We report that there are alternative schemes to the CZ gate that are 
exponentially more efficient and show that sequential LOCS growth is indeed globally optimal. We find 
that the optimal cluster growth operation is a state transformation on a subspace of the full Hilbert space. 
We show that the maximal success rate of post-selected entangling n photonic qubits or m Bell pairs into 
a cluster is ( ) 11 2 n−  and ( ) 11 4 m− respectively with no ancilla photons, and give an explicit optical 
description of the optimal mode transformations. 

 
I. INTRODUCTION 

Cluster states [1] of photonic qubits are a 
fundamental resource for quantum information 
processing [2]. Constructing these states presents a 
major experimental and theoretical challenge because 
known physical implementations of optical multi-
qubit transformations are intrinsically probabilistic 
[3]. To evaluate the efficiency of such 
transformations the success probability of a desired 
measurement outcome is routinely used [3]. Thus, 
finding entangling photonic transformations that 
achieve the best possible success probability is of 
critical importance for progress in the field. 
Unfortunately, the problem of designing an optimal 
linear optical transformation is at least #P-complete 
[4]. Here we construct an analytical solution to this 
problem for the special case of linear optical cluster 
state generation via sequential addition of one- and 
two-qubit states.  

Optimization of Linear Optical Transformations. 
We define a linear optical device operating on M
modes as a unitary transformation U of photon 
creation operators from the input modes †

ia  to the 

output modes †
ia  
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The mode transformation matrix U induces a state 
transformation Ω  which generally is a high-
dimensional unitary representation of U [5]. For a 
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Next, we define logical qubit states ↑  and ↓  using 
two-mode Fock states 1,0↑ = and 0,1↓ =  which 

may conveniently be implemented as horizontal H  

and vertical V  photon polarizations in a single 
spatial mode. For an arbitrary N -qubit input state, 
the output state produced by the action of Ω  will not 
lie in the computational space { },

N
span H V

⊗⎡ ⎤
⎣ ⎦

 

but rather span a larger space of N  photons 
distributed over 2M N=  modes, i.e., 
 

2 2(out ) (out ) (out ) , 1I IIΨ α Ψ β Ψ α β= + + = ,  (2) 

where ( out )
IΨ  and ( out )

IIΨ  belong to the 
computational space and its complement, 
respectively.  
 

Our goal in general is to find a mode 
transformation matrix U such that the output state 

( out )
IΨ   is as close as possible to a target state 
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( tar )Ψ . The fidelity of the state transformation 
(in ) ( tar )Ψ Ψ→  is defined as 

( )
2(out) ( tar )

If Ψ Ψ=U . When the fidelity is equal 

to one the success probability of the post-selection 
onto the computational space can be defined as 

( ) 2s α=U . Physically this means that a photon 
coincidence pattern corresponding to the target state 

( tar )Ψ  is detected in dual-rail modes with the rate 

( )s U . The objective can then be restated as finding a 
mode transformation U that maximizes success 
probability while ensuring ( ) 1f =U  for the desired 
logical target state transformation. As an example, we 
consider a trivial two-qubit case where the input state 

(in)
1 2 3 41 2

1 0 1 0H HΨ = ⊗ =  is transformed by a 
50/50 beam splitter acting on dual-rail modes 2 and 
3. This mode transform results in the output state

(out)
1 2 3 4 1 2 3 41 2 1 0 1 0 1 2 11 0 0 .Ψ = +  Here the 

state 1 2 3 41 0 1 0  is in the computational space, whereas 

the state 1 2 3 411 0 0  is outside the computation space 

and 1 2α β= =  . If we define ( tar )Ψ  as 

1 2 3 41 0 1 0  , which is equivalent to saying we post 
select on detectors 1 and 3 firing, then the fidelity of 
the transformation is ( ) 1f =U  and the success rate 

is ( ) 2 1 2s α= =U .  
Formation of Linear Cluster States. Here we 

consider the problem of joining two linear cluster 
states nC  and mC  containing qubits ( )1,...,n  and 

( )1,...,n n m+ + . In particular, we are interested in 
implementing the state transformation 

n m n mC C C +→ , equivalent to a maximally 
entangling operation, that maximizes the success 
probability of the transformation and achieves unit 
fidelity. Existing experimental cluster state 
generation schemes closely follow the original 
proposal of Raussendorf, Browne, and Briegel [6] 
where separate photonic qubits or small clusters are 
fused into a larger cluster state by a sequence of 
probabilistic optical CZ gates [7]. The CZ gate is 
conditioned on simultaneous detection of all photons 
with an overall probability of success 1/9, implying 
the success probability of ( ) 11 9 n−  for joining n 
unentangled optical qubits into a linear cluster state. 
However, the optimality of the CZ gate for generating 
linear optical cluster states has not been analyzed 
previously. Our recent results revealed that this 

method is far from optimal [8]. Employing numerical 
optimization based on methods developed in [8,9], 
we have identified a technique for constructing a 
linear cluster state 1nC +  out of 1n +  unentangled 

qubits with maximal success probability of ( )1 2 n  
while maintaining unit fidelity. This is in stark 
contrast to previous analytical results on the 
optimization of the CZ gate [10] where it was 
demonstrated that the maximal success rate of the CZ 
gate is 1/9. In resolving this paradox, we introduce a 
new theoretical approach for constructing linear 
optical gates for creating arbitrary-length clusters.  

As revealed by numerical analysis [8], there exist 
various multi-mode (i.e. n-qubit) transformations that 
produce linear cluster states from an initial multi-
qubit product state with the same maximal success 
probability. The structure of these solutions is too 
complex to allow a straightforward decomposition 
into a sequence of two-qubit and single-qubit 
transformations. However, we theorized that such 
structure may exist for two special cases: the addition 
of a single qubit and the addition of a Bell pair to a 
linear cluster state. This supposition was based 
primarily on the power-law dependence of the 
success probability first found in our previous work 
[8]. We now demonstrate this sequential 
decomposition. 

 
II. ADDING A SINGLE QUBIT TO A 

LINEAR CLUSTER 
First, let us consider the case when the first linear 

cluster nC  contains n  qubits and the second cluster 

mC  is just a single qubit i.e., mC ≡ + , where 

( ) 2H V± ≡ ±  (see Fig. 1). In general, the 
optimization of a linear optical transformation that 
joins nC  and 1C  into 1nC +  involves the entire set 
of 2( 1)n +  dual-rail modes of 1n +  qubits. However, 
the numerical power-law result for the scaling of the 
success probability, ( )1 2 ns = , found in [8] for the 

bulk transform 11 1
... nn

C ++
+ + →  with 1, ,7n = K  

indicates that a concatenatable transformation acting 
only on two qubits at a time may exist. Each such 
operation acts only on the modes asscoiated with a 
single unentangled qubit and those associated with 
the last qubit of an existing cluster. We denote this 
operation as 1CZ%  , where the tilde indicates that this 
is not the standard CZ of [7] and the subscript stands 
for joining a single qubit to an existing cluster of 
arbitrary length. In other words, the addition of 1n +  
unentangled qubits into a linear cluster state is a 
product of n  identical two-qubit four-mode 1CZ%
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operations. From the above scaling, the success 
probability of the 1CZ%  operation must equal ½, which 
is significantly greater than the maximum success 
probability for the optical CZ gate.  

It may come as a surprise that the CZ gate and 

1CZ%  operation perform an identical task with 
different success probability. An explanation can be 
found in quantum control theory [11] where one 
distinguishes two types of control problems. The first 
type is aimed at constructing a desired transformation 
(generally referred to as an operator) acting on entire 
Hilbert space. For example, in 4C  the action of a CZ 
operator is formulated as , ,H H H H→ , 

, ,H V H V→ , , ,V H V H→ , , ,V V V V→ −  

with the Hilbert space being { },
N

span H V
⊗⎡ ⎤

⎣ ⎦
. 

The second type (called state control) requires 
designing a quantum transformation affecting only a 
specific initial state of the system. In contrast, we 
consider a hybrid type of transformation acting on a 
subspace of the entire Hilbert space. The 1CZ%  
operation is of the hybrid kind while the canonical 
CZ gate is an operator acting on the full two-qubit 

4C  space, and the success rates are manifestly 
different. 

Why is the full CZ gate not needed when adding a 
single qubit to an n-qubit cluster? Since the state of 
the (n+1)st qubit can be arbitrarily fixed, for example, 
to the +  state, all transformations, including CZ 

and 1CZ% , are acting only on 2
inC , the subspace of 4C  

spanned by states 
n

V +  and 
n

H + . The 2
inC  

space is being mapped onto two-dimensional 
subspaces of the full 4C  space. If the action of a 
transformation on 2

inC  is identical to the action of a 
CZ gate on 2

inC  then the transformation will add one 
qubit to any nC  cluster, forming a 1nC +  cluster state. 
This transformation must satisfy the set of equations 
determining its action on 2

inC : 

1

1

,

.

CZ H CZ H H

CZ V CZ V V

+ = + = +

+ = + = −

%

%
  (3a,b) 

In the context of linear optical entangling gates 
conditioned on coincidence multimode photon 
detection, one should further relax the requirement on 
the 1CZ%  operation by adding scaling factors α  and 
β  to reproduce Eq. (2). To distinguish an abstract 

1CZ%  operation satisfying equations (3a,b) from a 

linear optical transformation given by Eq. (2) we use 
the notation 1

LOCZ% : 

,

,

(out )
1

(out )
1

,

.

II H

II V

LO

LO

CZ H H

CZ V V

α β Ψ

α β Ψ

+ = + +

+ = − +

%

%
 (4a,b) 

To find an optical mode transformation matrix U  
generating 1

LOCZ% , Eqs. (4a,b) need to be combined 
with Eq. (1) resulting in a system of eight polynomial 
equations in matrix elements ,i jU . These equations 
can be solved analytically using the standard 
Buchberger's algorithm [12], providing the following 
4 4×  mode transformation matrix = ⋅ ⋅U A B C  
where, 

( ) ( ) ( ) ( )
( )2

21 2
12 2 1 4ˆ, ,

1 0 0 0
0 0 0 1

,
0 0 1 0
0 1 0 0

y
xz z

iixix ixe e e I e
π σσσ σ−= ⊕ = ⊕

⎛ ⎞
⎜ ⎟−⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎝ ⎠

A C

B
 (5) 

and ( ) ( )1,2 1,2
, ,

ˆ , x y zI σ  are the 2 2×  identity and Pauli 
matrixes acting on the H and V  modes of qubits 1 
and 2 respectively. The essential part of the 
transformation U  is the matrix B  which performs 
the following mode operation: 
( ) ( ) ( ) ( ) ( ) ( )† † † † † †

1,2 1,2 1 2 2 1
, ,H H V V V Va a a a a a→ → − → . 

Solutions of the form (5), where 1x  and 2x  are 
arbitrary real parameters, automatically guarantee 
fidelity ( ) 1f =U  and yield the maximum possible 

success probability ( ) 1 2s =U . We remark that the 
mode transformation is defined in Eq. (1) such that 
operation A  in Eq. (5) precedes operation B  and B
precedes operationC .  

The state transform corresponding to the mode 

operator 
( )2

1 xixe σ , when acting on the states H +  

and V + , only adds an overall phase since 

xσ + = + . The matrix 
( ) ( )1 2

2 2z zix ixe eσ σ−⊕ which 

corresponds to a local two-qubit operator 
( ) ( )( )1 2

2 z zix
e

σ σ−
, 

acts as the identity on the space spanned by H H  

and V V . Notice also that the space spanned by 

the states H V  and V H  is mapped outside the 
computational space by the next operation 
represented by the matrix B . Therefore, parameters 
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1x  and 2x  do not affect the state transformation and 
can be trivially set to zero. 

 
Figure 1. Adding a single qubit to a nC  cluster. 
 
We would like to emphasize that the sequential 

character of the transformation (which allows for the 
entangling of n  separable qubits as a sequence of 
four-mode 1

LOCZ%  operations) is important for cluster 
state generation. First, a sequential approach can 
reduce the number of physical resources (beam 
splitters and wave-plates) needed to generate a cluster 
state. To sequentially generate a linear cluster nC  
from a product state one only needs 1n −  
polarization-dependent and 1n −  50/50 beam splitters 
used repeatedly. In contrast, a generic 2n -mode 
transformation requires (2 1)n n −  beam splitters [13]. 

Secondly, unlike a global 2n -mode operation, a 
sequential transformation can be implemented 
simultaneously with one-way computation. If an 
operation fails before the computation is completed, 
the remaining unused photonic resources can be 
saved and reused for another attempt. This can be 
quantified as follows for construction of a nC  

cluster out of n  qubits. If s  is the success 
probability of a single gate, the probability that a 
failure first occurs at the m -th application of 1

LOCZ%  

(out of a total of 1n−  applications) is 1(1 )ms s− − , and 
1n m− −  photons are spared. Summing over m and 

noting that the overall success rate is 1 ns −  , we see 
that the average number of spared photons per 
successful computation is

( ) ( ) ( )12 1 1/ 1nn s s s s−− − − + −⎡ ⎤⎣ ⎦  . 
 
III. ADDING A BELL PAIR TO A LINEAR 

CLUSTER 
Let us now consider the more complex case 

2m =  when the cluster 2C  is added to nC . We 
again exploit the notion of hybrid operations and 
generalize the 1CZ%  operation to 2CZ% . The subscript 2 
now reflects the fact that two qubits are being added 
to the cluster. Recall that the state 2C  is, up to local 
rotations, equivalent to a Bell state: application of a 

Hadamard gate to the second qubit in the state +Φ  
transforms it into the cluster state 

( )2 2C − +≡ Φ + Ψ . 

The action of 2CZ%  is analogous to the action of 

1CZ%  given by Eqs. (3a,b), where the state +  is now 

replaced by the state 2C . Similarly, we can define a 

linear optical transformation 2CZ%  as follows, 
(out)

2 2 2

(out )
2 2 2

,

,

II H

II V

LO

LO

CZ H C H C

CZ V C V C

α β Ψ

α β Ψ⊥

= +

= +

%

%
  (6a,b) 

where state 2C CZ⊥ = − +  is orthogonal to the 

standard cluster state 2C CZ= + + . 
Unfortunately, a complete analytical optimization 

of 2
LOCZ%  is not possible due to the algebraic 

complexity of the problem. However, exploiting the 
idea of hybrid operations we can find an analytical 
solution, which reproduces our previous result 

2 1 4α =  obtained by numerical optimization [8]. 
This solution again provides a higher success 
probability than LOCZ  by factor of 9 4 [8]. 

To understand the analytic structure of this 
optimal solution, we start with an assumption that the 
addition of a Bell pair may be partitioned into two 
concatenated operations as indicated in Fig. 2: a 
polarization beam splitter (PBS) gate [14] acting on 
qubits n  and 1n +  followed by a “stretch” operation 
acting on qubits n+1 and n+2. 
Any size initial cluster state nC  has the form

( )1 1 2n n nn n
C C H C V− −= + % , where we use 

the notation ( )1
1 1 .n

n z nC Cσ −
− −=%  After the action of a 

PBS transformation on qubits n and n+1 (see Fig. 2), 
with success probability 1/2, the state (which is the 
input state for the stretch gate) can be cast in the 
following form, 
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Figure 2. Joining a Bell pair to a nC  cluster. 
 

( )in 1 11, 2 1, 2

1 , ,
2 n nn n n n n n

C H C V− −+ + + +
Ψ = + + + − −%

 
The final, or “target” state of the stretch gate is, 

( )( )1
tar 1 2 1 21, 2 1, 2

1
2

n
n n zn n n n n n

C H C C V Cσ +
− −+ + + +

Ψ = + %  

Interestingly, the stretch gate does not affect the 
spatial mode n; only modes n+1 and n+2 are involved 
in the required optical transformations. Therefore, we 
can consider the action of the stretch gate as a stand-
alone hybrid operation on two states:  

( )
2

1
2z

CZ C

CZ Cσ

+ + → + + ≡

− − → − + ≡
.   (7a,b) 

The four-mode transformation matrix for the stretch 
gate operation can be defined as = ⋅ ⋅U A B C , 

( ) ( )
( ) ( )

( ) ( )
( ) ( )

sin 8 0 cos 8 0

0 cos 8 0 sin 8

cos 8 0 sin 8 0

0 sin 8 0 cos 8

,

π π

π π

π π

π π

−

−

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎝ ⎠

B

 
( ) ( ) ( ) ( ) ( )1 2 2 1 2

4 4 4 4 4,z z y y xi i i i i
e e e e e

π π π π πσ σ σ σ σ− − −
= ⊕ = ⊕A C .

 
 
There is also a more general interpretation of the 
action of the stretch gate where the gate is considered 
as a tool for transporting entanglement along a linear 
cluster (see Fig. 3); the stretch gate implements the 
operation of moving the central qubit n one position 
while preserving any form of pre-existing 
entanglement of the central qubit with an arbitrary 
external system.  
 
 

IV. ADDING MORE THAN TWO QUBITS 
It is also possible to join larger linear clusters 

using the same approach. For instance, for the 
addition operations 3 3n nC C C ++ →  and 

4 4n nC C C ++ →  we numerically found maximal 
success rates of 1/4 and 0.153, respectively. Another 
example is adding a qubit to the middle of a linear 
cluster state (a “grafting” operation) which normally 
requires three CZ  gates resulting in a success 
probability of 31 9  0.00137≈ .  

 
Figure 3. Entanglement swapping by the stretch gate. 

 

When recast in the form of a hybrid operation this 
gate can be implemented with success probability of 

0.0417≈ . 
One counterintuitive result of our work is that the 

rate of production of the linear cluster states does not 
increase when more entanglement resources are 
invested in the preparation of the initial states. In 
particular, we have seen that adding a single photonic 
qubit 1C  to a cluster has success probability 1

2 , 
and thus adding two separable photonic qubits 
sequentially to a cluster can be implemented with 
probability 1

4 , which is the same as our optimal 

success probability for adding a Bell pair 2C  to the 
same initial cluster.  

The idea of hybrid operations developed here has 
applications beyond linear cluster state generation. 
For instance, in the case of 2D clusters, a weaving 
operation [15] can be recast in the form of a hybrid 
gate. 2D clusters can also be formed by a 
combination of our new transform and standard CZ 
by first creating long linear chains and then using the 
standard CZ gate to create the final cluster state. 

 
 

V. SUMMARY 
We performed an analytical analysis of the 

problem of photonic cluster-state generation. We 
suggested a new scheme that provides the most 
efficient method of cluster state generation and 
requires no ancilla photons. Our analytical results 
demonstrate that previous methods of cluster state 
generation are far from optimal. The success 
probability of our scheme in comparison with 
traditional CZ-gate-based schemes grows 
exponentially with the size of the cluster. We expect 
that future experiments with photonic clusters will 
exploit this scheme to provide the most efficient 
realization of linear optics and quantum information 
technology. 
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