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We improve upon a recently introduced efficient quantum state reconstruction procedure targeted
to states well-approximated by the multi-scale entanglement renormalization ansatz (MERA), e.g.,
ground states of critical models. We show how to numerically select a subset of experimentally
accessible measurements which maximize information extraction about renormalized particles, thus
dramatically reducing the required number of physical measurements. We numerically estimate the
number of measurements required to characterize the ground state of the critical 1D Ising (resp.
XX) model and find that MERA tomography on 16-qubit (resp. 24-qubit) systems requires the same
experimental effort than brute-force tomography on 8 qubits. We derive a bound computable from
experimental data which certifies the distance between the experimental and reconstructed states.
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The understanding of many-body quantum systems
has dramatically progressed recently, theoretically and
experimentally. New efficient numerical methods use the
properties of entanglement in many-body states, such as
the area law of entanglement entropy [1], to describe ef-
ficiently the many-body wave function of physical sys-
tems [2]. In parallel, experimentalists achieve a very high
degree of control over larger and larger systems [3, 4].
However, efficient methods to quantitatively compare
theoretical predictions to experimental realizations are
few.

Quantum state tomography [5] is a paradigm that aims
to reconstruct the quantum state of a system by perform-
ing multiple measurements on identically prepared copies
of the system. Since measurements perturb a quantum
system, many copies of the system are needed to extract
information about the many-body wave function. Once
the experimental data is extracted, a numerical proce-
dure determines which density matrix fits best the mea-
surements. This quantum state reconstruction can be
performed using different approaches, the most used be-
ing maximum likelihood estimation [6].

Generally, both the number of measurements and the
post-processing time of quantum state reconstruction
grows exponentially with the system size. This is not
surprising since the dimension of the Hilbert space of n-
particles grows exponentially in n. Note that we gener-
ically refer to the fundamental experimental objects of
the physical system of interest as particles. For instance,
for cold atoms in an optical potential, “particles” would
correspond to cold atoms. In an arbitrary many-body
wavefunction, there is an exponential number of coef-
ficients to estimate. Furthermore, for a (Haar)-random
quantum state, most coefficients have exponentially small
amplitudes in a local basis, so to distinguish any one of
those amplitudes from zero, one must take an exponential

∗ jlee2@caltech.edu
† olc@caltech.edu

number of samples. This simple reasoning hints towards
an experimental and numerical efforts that scales expo-
nentially with system size.

However, physical quantum states, for instance ground
states of local Hamiltonians, only constitute a very small
subset of all states in the Hilbert space [7]. A general
and very fruitful idea is to approximate those states of
interest by a suitable variational family of states. An
efficient family of states not only allows for a concise
description of states –the number of parameters needed
to represent them grows only polynomially with system
size– but also allows to efficiently compute physical quan-
tities, such as expectation values of local observables in
polynomial time.

Tensor network (TN) states are variational families of
states which are strong candidates to parametrize the
physical part of the Hilbert space [2]. TN states are
built to accommodate the structure of entanglement for
various physical states. For instance, the matrix product
states (MPS) representation is based on the property that
the entropy of a block of particles grows with the bound-
ary of the block. This property is called an area law,
see [8] for a review. Ground states of 1D gapped systems
follow an area law [1] and are well-approximated [9] with
matrix product states [10–13] (MPS). Moreover, conve-
nient numerical methods exist to find such a MPS ap-
proximation, such as the density matrix renormalization
group (DMRG) method [14, 15]. However, this area law
is violated by critical systems, i.e. ground states of quan-
tum systems near a quantum phase transition [16]. In-
deed, in 1D critical systems, the entanglement of a block
of n particles diverges as log(n). To reproduce this entan-
glement scaling, Multi-Scale Entanglement Renormaliza-
tion Ansatz (MERA) was introduced in [17]. A MERA
state is the output of a specific type of quantum circuit
whose gates arrangement generates an amount of entan-
glement. which grows logarithmically with block size.

Recently, the use of variational states has been applied
to tomography [18–20] and explicit state reconstruction
methods have been given. The pioneering work on MPS
tomography [19] provided the first demonstration that
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variational tomography could be performed efficiently.
Subsequent work [20] demonstrated that variational to-
mography was also possible for 1D critical systems de-
scribed by MERA states. MERA tomography offers the
perspective to be an extremely valuable tool in the exper-
imental characterization of quantum simulators, finely
controlled systems which experimentalists can tune to re-
produce the dynamics of a model Hamiltonian. Indeed,
the MERA can be straightforwardly extended to study
critical 2D models which are precisely the Hamiltonians
that quantum simulators [21, 22] offer to probe experi-
mentally.

In this paper, we revisit the idea of MERA tomography
in 1D and explicitly investigate some of the challenges left
open in the original proposal [20]. The original article
gave a proof of principle that the tomography protocol
only required a numerical and experimental effort scaling
polynomially with the size of the system. Schematically,
the idea is that the MERA transforms a highly-entangled
state into a trivial product state by applying a logarith-
mic number of renormalization steps, each correspond-
ing to a layer of gates in a quantum circuit. To identify
each gate, it suffices to identify the density matrix on a
block of renormalized particles of constant size. How-
ever, inferring information about renormalized particles
is done through renormalized observables. These renor-
malized observables are accessed using measurements on
the physical states and the knowledge of the previous
renormalization steps. To maintain accuracy about the
estimation value of a renormalized observable, the num-
ber of repeated measurements at the physical level is mul-
tiplied by a constant, the scaling factor, for each renor-
malization step. Since there are only a logarithmic num-
ber of renormalization steps, the overhead in the number
of measurements grows only polynomially with system
size.

While this result is crucial theoretically, it does not
guarantee that the number of measurement and the pro-
cessing time is reasonable in practice for moderately
small systems within experimental reach. Indeed, the
polynomial growth governs the asymptotic scaling in the
limit of very large system size, but experimentalists are
interested in the actual number of measurements required
to characterize a system of interest. Thus, identifying
the precise polynomial and in particular the power of the
leading term, along with its constant multiplicative coef-
ficient, is of paramount importance.

The analysis of [20] focused only on the scaling factor
λ of single particle observables and found that the over-
head in repeated physical measurements scaled as λ ∼ 6
for the critical Ising model. This naively lead to an esti-
mate of the total number of measurements needed that
increases slowly with system size. However, this analy-
sis failed to take into account that one needs to measure
many-body observables for MERA tomography. For a
ternary MERA on qubits, one needs to measure 5-body
observables whose scaling factor is λ5, resulting in an
overhead on repeated measurements which is beyond ex-

perimental capacities, even for moderately large systems.
Here, we i) assess the reasons why the overhead in

the number of measurements is much larger than naively
anticipated, ii) suggest strategies to minimize it and iii)
numerically demonstrate that those strategies lead to a
reasonable total number of measurements for the critical
Ising model on system size of experimental interest.

The article is organized as follows. In section I, we
recall the idea of variational tomography focusing on
MERA tomography. We discuss the concepts in the main
body of the article. The technical discussion about our
improved numerical algorithm for MERA tomography is
available in the Appendix A for the interested reader. In
section II, we investigate the scaling of the total num-
ber of experimental measurements needed to character-
ize an experimental state close to the groundtstate of
a critical Ising 1D chain. We show that the naive ap-
proach of [20] requires an unreasonable (yet polynomial)
amount of measurements. In section III, we suggest two
possible solutions to resolve the issue. In section IV, we
numerically show that the combinations of those two so-
lutions significantly reduces the number of experimental
measurements. In section V, we provide an analysis of
the source of errors in our tomography scheme and in-
fer the bound of the distance between experimental and
reconstructed states, based on a more detailed analysis
provided in the Appendix B.

I. MERA TOMOGRAPHY

A. Variational tomography

The core idea of variational tomography is to take ad-
vantage of the succinct description of variational states in
order to devise an efficient learning method. A learning
method consists of three parts: i) the measurement pre-
scription which identifies the measurements to perform,
ii) the data acquisition when the measurements are per-
formed and iii) the state reconstruction that infers the
compatible quantum state via post-processing. Note that
the measurement prescription can change adaptatively
due to data acquisition as preliminary data can improve
the choice of measurements. This is the case for MERA
tomography.

As mentioned in the introduction, the idea of varia-
tional tomography has been demonstrated on two vari-
ational class of states: MPS and MERA. In both cases,
quantum state tomography is performed on small sys-
tems and numerical processing is used to stitch the
density matrices of those small systems into a global
state. While this stitching is efficient for both MPS and
MERA, this procedure is expected to be very hard for
arbitrary state in the Hilbert space. Recent progress
has been made to understand the structure of quantum
states for which local measurements are informationally-
complete [23].

In MPS tomography [19], reduced density matrices σi
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FIG. 1. A matrix product state is obtained from a product
state by applying a staircase circuit. This structure allows to
sequentially infer the quantum gates.

on all blocks of a constant number (independent of sys-
tem size) of particles are estimated. Then, a classical
algorithm, inspired from ideas of compressed sensing, is
used to reconstruct the global state. Alternatively, one
could learn the quantum circuit preparing the state. In-
deed, any MPS can be prepared using a staircase circuit
with linear depth (see Fig. 1).

We now describe MPS tomography in more details
as it bears many similarities with MERA tomography,
which will be discussed in the next section. One can
learn the rightmost quantum gate U` of Fig. 1 by per-
forming tomography on a small number of particles and
then identifying a unitary gate which disentangles the
bottom particle and puts it in the state |0〉. We then

repeat this procedure on state U†` |ψ〉. To learn U`−1,
the original proposal of [19] was to experimentally ap-

ply the gate U†` . However, one can use the knowledge
of U` to see how it modifies the physical observables on
the physical state |ψ〉. In other words, the knowledge of
U` allows us to translate measurements on the physical
state |ψ〉 into what would be obtained by performing the
measurement of some renormalized observables on the
renormalized state U†` |ψ〉. Each physical observable will
be associated to a renormalized observable. As long as
renormalized observables span the support of the density
matrix, they are informationally complete. The power of
renormalized observables was not immediately realized
in [19], but became apparent when MERA tomography
was devised [20]. We now describe MERA tomography
in great details as our work builds upon it.

B. Learning MERA states

1. Quantum circuit for MERA states

The MERA is a variational family of states [17] aris-
ing from a real-space renormalization group approach
called entanglement renormalization [24]. Entanglement
renormalization creates a sequence of quantum states

FIG. 2. (Color online) (up) Example of binary 1D MERA
for a lattice of 16 particles. (periodic boundary) u is a disen-
tangler and w is an isometry. (down) An isometry w can be
decomposed into unitary v followed by a projector P. Uτ−1→τ
is the isometry of layer τ which coarse-grains a state at level
τ − 1 to a state at level τ whereas Uττ−1 is a the unitary part
of Uτ−1→τ . oτ−1 is an operator at level τ−1 and it is mapped
into oτ at level τ .

{ρτ}τ=0...T where ρ0 is the physical state (which we will
also refer to as the experimental state in the context of
tomography) and ρτ>0 are coarse-grained version of the
physical state which encode entanglement on a larger
scale. Intuitively, one can think of each renormalized
state ρτ as a state of a 1D chain of n/(kτ ) spins where
k = 2 for binary MERA and k = 3 for ternary MERA.
The crucial insight of MERA is that for critical states,
it is important to get rid of short scale entanglement be-
fore each renormalization step. Otherwise, the short scale
entanglement accumulates and the renormalization can-
not be carried anymore. This renormalization approach
translates into a quantum circuit, depicted on Fig. 2 that
turns the physical state ρ0 on n particles into the all zero
state |0〉⊗n (in the case of a pure state).

This MERA circuit consists of two sets of quantum
gates. The disentanglers are unitary transformations, de-
picted by squares on Fig. 2 and denoted u, whose goal is
to remove short scale entanglement. The isometries, de-
picted by triangles on Fig. 2 and denoted w, map several
particles into a single renormalized particle by applying a
unitary transformation v followed by projection operator
P , see bottom of Fig. 2. For instance, in binary MERA,
two particles whose individual quantum dimension is χ,
i.e., whose total quantum dimension is χ2, are mapped
into a single particle of quantum dimension χ. Note that
this transformation is only possible if the density matrix
before the isometry is (approximately) supported on a
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space of dimension χ rather than having full rank χ2. In
other words, the purpose of the disentanglers is precisely
to locally rotate the Hilbert space to concentrate the sup-
port of the density matrices. This remark is at the heart
of the numerical method to identify disentanglers.

Another important notion of a MERA circuit is the
past causal cone of a quantum gate and the future causal
cone of particles. Imagine that time flows from the bot-
tom of Fig. 2 to the top. In other words, the level index τ
plays the role of time. Level-0 corresponds to the physical
state while τ > 0 indices the states and lattices obtained
after τ step of renormalization. The transformation Uτ
from ρτ−1 to ρτ corresponds to a layer of quantum gates,
see Fig. 2. For any given quantum gate of the circuit (dis-
entangler or isometry), its past causal cone is the set of
physical particles whose change would induce a change of
the quantum gate. For any set of physical particles, its
future causal cone is the set of quantum gates such that
a particle belongs to the past causal cone of at least one
of the gates in the set.

2. MERA tomography procedure

Let us briefly describe the MERA tomography proce-
dure, taking the binary MERA geometry (see Fig. 2) as
example. The goal is to find a MERA circuit representing
a given experimental state. To do this, MERA tomogra-
phy repeatedly measures local observables to obtain the
reduced density matrices of 4 renormalized particles in
lattice Lτ which are the past causal cone of each isom-
etry mapping Lτ to Lτ+1 (see Fig. 3). We will often
refer to renormalized particles as sites on the renormal-
ized lattices. Hence, a density matrix on 4 renormalized
particles will be referred to as a 4-site density matrix.

For the physical level, i.e., τ = 0, those reduced den-
sity matrices are obtained by brute-force quantum state
tomography. This is efficient since brute-force tomogra-
phy is only performed on a block of constant size. For
higher layers, the density matrices can be inferred from
physical measurements and the knowledge of the quan-
tum gates in the previous layers. We will describe the
procedure in more details in Sec. II. For the moment, let
us assume that we know every 4-site density matrix ρi
corresponding to the past causal cones of every isometry
i in layer τ + 1 .

Given {ρτi }i, the goal is to find the disentanglers in
layer τ + 1. Let us focus on a single disentangler u = ui,
supposing that all other disentanglers in the layer are
fixed. The choice of u will affect the isometries, wi and
wi+1, respectively to the left and the right of u, see Fig. 3.

Thus, the objective function g splits into two parts

g(u, ρτi , ρ
τ
i+1) = fL(u, ρτi ) + fR(u, ρτi+1) (1)

where fL(u, ρi) corresponds to minimizing the rank of
the 2-site reduced density matrix that is the input of wi
and similarly for fR with respect to wi+1.

FIG. 3. (Color online) Each past causal cone of the isometry
wi is the 4 sites in state ρi. The choice of the disentangler ui
affects both isometries wi to its left and wi+1 to its right.

After applying the optimal disentanglers, the two-site
reduced density matrix at the input of the isometry wi
should have a rank at most χ so that the isometry keeps
the χ eigenvectors with largest eigenvalues. In other
words, we want the probability weight to be supported
on the χ largest eigenvalues. Thus, we maximize the ob-
jective function,

fL,R(u, ρτi ) =
∑
k≤χ

λk (2)

where ρτi is the reduced density matrix for the i-th block
at level τ and λk is k-th eigenvalue of the reduced density
matrix after the disentangler u has been applied.

Once all disentanglers have been obtained, the isome-
tries wi are obtained by diagonalizing the reduced den-
sity matrices σi = tr14 [ρi] at the input of the isometries
where tr14 implies tracing over site i1 and i4 after dis-
entanglers (see Fig. 12). Indeed, one can decompose the
isometry wi as an unitary transformation vi followed by
a projector P of rank χ. Given the diagonalization

σi =
∑
k≤χ

λk|φk〉〈φk|+
∑
k>χ

λk|φk〉〈φk| (3)

the unitary vi maps the first k eigenvectors |φk〉 to
|k〉⊗ |0〉. The way it acts on the other eigenvectors is ar-
bitrary, as long as vi is unitary. Afterwards, the projector
P = Iχ ⊗ |0〉〈0| throws away the irrelevant eigenvectors.
This procedure is repeated over each layer of the MERA
circuit.

In the original MERA tomography procedure de-
scribed in [20], a conjugate gradient method was used
to maximize the objective function given by Eq. (2). In
this paper, an alternative approach inspired by [25] was
used for this maximization. This numerical procedure is
discussed in details in Appendix A
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II. SCALING OF THE NUMBER OF
EXPERIMENTAL MEASUREMENTS

A. Ascending superoperator

As explained in Sec. I, MERA tomography infers the
quantum circuit preparing the experimental state from a
product state. To identify each gate, the numerical pro-
cedure takes as input the reduced density matrix on a
small block of particles. For the physical layer, denoted
L0 on Fig. 2, those particles correspond to experimen-
tally measurable particles. However, this is not the case,
for higher renormalized levels, Lτ for τ > 0. To get
access to the density matrices on block of renormalized
particles, we will assess how physical measurements will
be mapped into effective measurements at higher levels.
This mapping depends on the disentanglers and isome-
tries between the physical level L0 and the current level
τ . Thus, it depends on the information acquired by to-
mography on the previous layers.

1. First layer of renormalization

Let us consider the first layer of renormalization. Let’s
define U1

0 as the product of all the disentanglers u and
all unitary transformations v (see Fig. 2). Note that U1

0

is a unitary transformation since it does not contain P ,
the projection part of isometries, which reduces the di-
mension of the Hilbert space. Thus, before truncation,
the observable O0 at the physical level is mapped to the
semi-renormalized observables U1

0O0(U1
0 )† since

tr(ρ0O0) = tr(U1
0 ρ0(U1

0 )†U1
0O0(U1

0 )†) (4)

where ρ0 is a density matrix at the physical level.

However, the crucial step of the renormalization
scheme is to reduce the dimension of the Hilbert space.
Formally, the idea is that ρ̃1 = U1

0 ρ0(U1
0 )† is not full rank

but has the form ρ̃1 = ρ1 ⊗ |00 . . . 0〉〈00 . . . 0|. Thus, one
can keep only the relevant degrees of freedom by apply-
ing a projector P which removes the superfluous degrees
of freedom (see Fig. 2), i.e.,

P ρ̃1P
† = ρ1 (5)

Hence, the expectation value of the physical operator
O0 can be written as

tr(ρ0O0) = tr(P ρ̃1P
†PU1

0O0(U1
0 )†P †) (6)

= tr(ρ1A1
0 [O0]) (7)

where A1
0 [O0] is a renormalized observable. The action

of an ascending superoperator A1
0 is defined by

A1
0[...] = PU1

0 [...](U1
0 )†P †. (8)

2. Multiple layers of renormalization

The reasoning to go from the physical level to the first
renormalized level can be iterated. In that way, one de-
fines an ascending superoperator from level 0 to level m
Am0 =

∏m
k=1Akk−1, which maps operators at the physi-

cal level O0 to operators acting at level m obeying the
equation

tr(ρ0O0) = tr(ρmAm0 [O0]) (9)

Eq. (9) allows us to relate the renormalized state ρm to
the measurements tr(ρ0O0) once we know the ascended
observable Am0 [O0].

We can express the superoperator Am0 as a matrix Mij

by choosing bases of observables
{
Oi0
}

at the physical

level and
{
Ojm
}

at level m. Inferring the physical mea-
surement corresponding to an effective measurement on
renormalized particles then reduces to inverting this ma-
trix to get M−1,

Am0 (Oj0) =
∑
iMijO

i
m (10)

tr(ρmO
i
m) =

∑
iM
−1
ij tr(ρ0O

j
0) (11)

B. Overhead on the number of physical
measurements

The strategy to infer information about the renormal-
ized state at level m is now clear: one performs measure-
ments O0 at the physical level and then use the knowl-
edge of the gates in the circuit to compute the ascending
superoperator Am0 and thus the renormalized observables
Am0 [O0].

Let us illustrate this approach for scale-invariant
MERA in critical systems. In that case, translation-
invariance and scale-invariance guarantee that isometries
and disentanglers at all levels and sites are the same,
which means that the scaling behavior of operators does
not depend on the level considered. Moreover, in ternary
1D MERA, we can use one-site physical operators which
are mapped into one-site renormalized operators (see
Fig. 4). If O0 has a support in that site, then the ten-
sor network contraction for A(O0) can be simplified as
in Fig. 4. This simplifies the tomography procedure. In-
deed, to calculate the scaling, we only need information
about the isometry w.

We studied a few 1D critical models including Ising,
XX, and Potts using a ternary MERA code to study the
scaling behaviors of observables. Let us focus on the case
of the critical Ising model. Choosing the Pauli basis,
{Oi} = {I, σx, σy, σz} for observables, the matrix repre-
sentation of the descending superoperator M−1 reads

(
M−1
ij

)
=

1 1.1 0 1.7
0 2.01 0 1.55
0 0 2.41 0
0 0.3 0 2.41

 (12)
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FIG. 4. (Color online) Ascending super-operator and renor-
malized observable for a ternary MERA. The tensor network
contraction turns a single-site operator Oi at level τ into a
single-site operator A(Oi) at level τ + 1.

Let’s focus on the observable σy which is an eigenvector
of the ascending superoperator since

A1
0 [σy0 ] =

1√
λy
σy1 (13)

where
√
λy = 2.41.

Using Eq. 9, one gets that

tr(ρ1σ
y
1 ) =

√
λytr(ρ0σ

y
0 ) (14)

One crucial point to worry about is the statistical er-
ror on the expectation values due to the finite number of
measurements. Due to statistical fluctuations, the mea-
sured expectation value 〈σy0 〉ρ0 will be equal to the proper
expectation value tr(ρ0σ

y
0 ) up to some error ε0 which

scales like N
−1/2
0 where N0 is the number of repeated

measurements, i.e.,

〈σy0 〉ρ0 = tr(ρ0σ
y
0 )± ε0 (15)

When inferring the expectation value tr(ρ1σ
y
1 ), the un-

certainty will also be multiplied

〈σy1 〉ρ1 =
√
λy〈σy0 〉ρ0 (16)

=
√
λytr(ρ0σ

y
0 )±

√
λyε (17)

= tr(ρ1σ
y
1 )±

√
λyε (18)

Thus, to maintain the accuracy ε0 at the renormalized
level, one needs to perform a number of measurements

N = λyN0 (19)

More generally, if Oj1 is not an eigenvector of the ascend-
ing super-operator, the total number of measurements
need to be multiplied by

∑
i |M

−1
ij |2.

This overhead in the number of measurements (i) will
multiply with the number of particles unto which the ob-
servables act non-trivially and (ii) will multiply between
each layers. From a theoretical point of view, points (i)
and (ii) are not catastrophic since they only correspond

to a polynomial overhead. Indeed, for point (i), the num-
ber of particles in a tomography block is a constant, in-
dependent of system size. For point (ii), the overhead
depends on system size but is only polynomial. To go
from level 0 to level m, the multiplicative factor will be
λm0 =

∏m
k=1 λ

k
k−1 but there is only a logarithmic number

of layers in the MERA circuit. Thus, from an asymp-
totic scaling point of view, the method induces only a
polynomial overhead. However, for finite size system of
interest, this overhead on the number of physical mea-
surements can be dramatic. We will now see that the
naive approach outlined here leads to overhead which is
unreasonable for experimentalists, before suggesting two
improvements that will keep the total number of mea-
surements reasonable.

C. Prohibitive experimental cost for 1-site
observables

Returning to the example of the Ising model at critical-
ity, we see from Eq. (12) that maintaining the accuracy
at the renormalized level requires λ ≈ 6 times the num-
ber of measurements than the one at the physical level.
However, this analysis is appropriate only for one-site
observable. This fact, which had not been appreciated
in [20], has dramatic consequences.

Let us now briefly describe a way to perform brute-
forve tomography, before returning to MERA tomogra-
phy. In order to estimate the expectation value of observ-
ables, a practical method is the so-called 3n method [6]
where one measures observables which are tensor prod-
uct operators by measuring each individual operators on
the same copy of the system and then post-processing
classically the information. For instance, suppose we are
interested in a chain of qubits and want to estimate the
expectation value of σz1⊗σz2 , an operator which acts non-
trivially, but as a tensor product, on qubits 1 and 2.
Rather than measuring σz1 ⊗ σz2 at once, we can measure
σz1 , record the eigenvalue s1 we measured and then mea-
sure σz2 on the same copy and record the eigenvalue s2.
That way, we get a sample not only of σz1σ

z
2 , but also

some information on σz1 ⊗ I. This method only requires
to perform measurements of 3n operators which are non-
trivial on all n particles of the chain, rather than 4n. Of
course, there is additional information in the partial mea-
surements. The key property here is that observables are
tensor product of single-body observables.

In MERA tomography using the ternary geometry, we
can use this procedure since renormalized observables can
be chosen to be tensor product of renormalized single-
body observables. To measure renormalized operators,
one only needs to measure the corresponding physical ob-
servables on the physical state. However, the number of
repeated measurements will be multiplied by λ, for each
single-body observable. Thus, for an observable which
is the tensor product of 5 single-body observables, the
overhead Sblock in the number of repeated measurements
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for block Sblock will be

Sblock = λ5 (20)

Thus, to obtain the five-site reduced density matrix
on renormalized particles while keeping the same preci-
sion as brute-force tomography on physical particles, the
number of repeated measurements is multiplied by λ5.

Furthermore, for a block of renormalized particles at
the third layer, the multiplicative overhead is (λ2)5. For
λ = 6 as in our case, this amounts to 610 ' 6 × 107.
This lead to an unreasonable overhead on the number of
measurements for experimentalists. Thus, the approach
for MERA tomography needs to be improved in order to
be of practical interest for experimentalists.

In the next section, we will suggest two improvements
to limit the overhead on the number of measurements.
We will then see in Sec. II that those improvements dra-
matically reduce the overhead for the critical Ising model.

III. IMPROVED APPROACH FOR MERA
TOMOGRAPHY

A. Optimizing the choice of physical observables

While using tensor product of physical observables
which are eigenvectors of the ascending superoperator
was appealing from a theoretical point of view, this choice
leads to an unreasonable number of measurements for ac-
curacy. Instead, one can vary over the physical observ-
ables and select a subset of them which maximizes in-
formation extraction. From a tomography point of view,
any set of physical observables whose renormalized ver-
sions span the space of density matrices on the renormal-
ized block is admissible. We expect that many sets of
admissible physical observables exist since the number of
physical particles in the past light cone of a renormalized
block is much larger than the number of renormalized
particles in the block. The problem thus becomes to pick
the optimal admissible set.

Of course, one needs to vary over physical observ-
ables which are experimentally accessible. In the case
of qubits, we restrict ourselves to Pauli observables, i.e.,
tensor product of Pauli operators. When we map those
Pauli observables to renormalized operators, they will be-
come a set of non-orthogonal operators, each of which
has different length and direction in the operator space.
Among those renormalized operators, we can find a set
of operators that give maximum information about the
renormalized layer.

This procedure is schematically explained in Fig. 5. In
this example, we assume the physical Hilbert space with
two qubits is renormalized into a Hilbert space with one
qubit. Without loss of generality, we choose the Pauli
observables P = {Ik, Xk, Yk, Zk} as a basis of observables
for each qubit k ∈ {1, 2}. By taking tensor product, we

obtain 16 orthogonal operators of the form {Oi1 ⊗ Oj2}

(a) (b)

Renormalize 

FIG. 5. (Color online) Schematic diagram for the selection of
optimal renormalized operators. In this example, two qubits
are mapped unto a single renormalized qubit. Without loss
of generality, we choose the Pauli observables as a basis of
observables for each qubit. The Pauli observables are rep-
resented as arrows on the Bloch spheres in a). By taking
tensor product, we obtain 16 orthogonal operators. Each of
those 16 operators will be mapped to a renormalized opera-
tor. The identity operator (represented by big dot at origin)
is mapped to the identity operator, but all the other 15 op-
erators are mapped into some renormalized operators with
different directions and magnitude, which are represented on
the Bloch sphere of the renormalized qubit in b). Our task is
to find 4 renormalized operators which span the renormalized
Hilbert space and which are the most efficient in tomographic
procedures. Intuitively, this optimal choice correspond to the
4 renormalized operators whose determinant is the largest,
which are represented in red in b).

where Oi1, O
j
2 ∈ P. Each of those 16 operators will be

mapped to a renormalized operator {A(Oi1⊗O
j
2)}. Each

of those 16 operators will be mapped to a renormalized
operator {A(Oi1 ⊗O

j
2)}.

In order to span the renormalized Hilbert space, we
only need four renormalized operators out of the sixteen
available renormalized operators. Since A(I1 ⊗ I1) = I,
we already have the renormalized identity operator so
we need three more. Along with the identity operator,
the three additional renormalized operators need to span
the renormalized Hilbert space. Furthermore, we would
like them to have a large determinant so that they cover
the renormalized Hilbert space “well”, in the sense that
an arbitrary state in the renormalized Hilbert space can
be reconstructed tomographically by a small number of
repeated measurements. Thus, we choose the most infor-
mationally efficient set of operators to be the one with
maximal determinant. In the example of Fig. 5, the set
of operators with red-colored arrows maximize the deter-
minant. As we will see in Sec. II, we will face the problem
of renormalizing operators on 8 qubits into operators on
4 qubits, i.e., we will have to choose 44 observables out of
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FIG. 6. (Color online) Tensor contraction in a binary MERA
geometry. The observable Oτ−1 acting on 8 sites at level τ−1
is renormalized into a four-sites operator Oτ = A(Oτ−1).

48. The task of choosing the set of operators with max-
imal determinant turns out to be numerically intensive.
In Sec. IV, we will introduce a heuristic to perform this
task and show that this approach significantly reduces
the overhead on the number of physical measurements.

B. Changing the MERA geometry

Another possible improvement to MERA tomography
is to use the binary MERA geometry rather than the
ternary MERA geometry. The ternary MERA geometry
is unfavorable since it requires to identify the 5-site re-
duced density matrix in the past light cone of each isom-
etry, while for the binary MERA, one needs to identify
only 4-site reduced density matrix (see Fig. 3). This can
make a significant difference on the number of measure-
ments needed.

Moreover, the binary MERA geometry has a structure
which well-suited to apply the algorithm to select the op-
timal set of renormalized observables. Indeed, the past
light cone of the 4-site reduced density matrix at level τ
is 10 sites at level τ − 1 for the binary MERA geome-
try, much fewer than the 17 sites required in the ternary
MERA geometry. Thus, we chose to select among the 410

Pauli observables on 10 qubit a subset of 44 which give
maximal information about the 4-qubit density matrix at
the next level using a heuristic which will be presented
in details in Sec. IV A 1. Numerically, we found that re-
stricting the Pauli observables to act only on the 8 qubits
indicated on Fig. 6 gave satisfactory results and made the
running time and memory requirements of the heuristic
more reasonable. In the next section, we describe the
numerical results obtained by optimizing the choice of
physical observables on a binary MERA geometry.

IV. NUMERICAL RESULTS

A. Optimizing the choice of physical observables

To optimize the choice of physical observables, we used
a heuristic approach. We tested our approach on a 24-
qubit ground state of the critical Ising and XX models.
The state used to represent the experimental state is a

χ = 2 binary MERA approximation to the ground state,
which is obtained by a MERA energy minimization pro-
gram.

1. Greedy algorithm to maximize the determinant

Given the disentanglers and isometries between levels
τ − 1 and τ (which would have been identified thanks
to tomography procedures), we calculated the 48 renor-
malized operators corresponding to Fig. 6. The task is
now to choose a subset of 44 renormalized operators that
(i) span the space of the 4-qubit density matrix and (ii)
span it in a way that maximizes the information acquisi-
tion (and thus minimize the number of repeated measure-
ments). Criterion (ii) would be interesting to investigate
from a theoretical point of view. In our work, we chose
to maximize the absolute value of the determinant of the
set of renormalized operators as a proxy to maximizing
the information acquisition. The intuition is that a large
determinant will correspond to a set of renormalized op-
erators which spans well the space of the 4-qubit density
matrix.

To maximize the determinant, we used the following
heuristic. We first chose the renormalized observable
with the largest norm (choosing the norm induced by
the Hilbert Schmidt inner product). Then, we vary over
the remaining renormalized observables to find one that
maximizes the determinant with the first one. We repeat
this procedure over and over, obtaining a greedy algo-
rithm to select the 44 renormalized operators. This algo-
rithm, named ‘Longest residual vector selection (LRV)’
in [26], is one approach for the classic signal processing
problem called matching pursuit.

The LRV algorithm is a heuristic which can be sub-
optimal. Let’s illustrate such a situation by consider-
ing a simple two-dimensional space spanned by the or-
thonormal vectors ê1 and ê2. Consider the candidate set

{ê1,
(1−ε)√

2
(ê1 + ê2), (1−ε)√

2
(ê1 − ê2)} where ε > 0 is small.

We want to choose 2 vectors which maximize the abso-
lute value of the determinant. By inspection, the best

choice is { (1−ε)√
2

(ê1 + ê2), (1−ε)√
2

(ê1− ê2)} which has deter-

minant (1 − ε2). However, the LRV algorithm will first
select ê1 which has maximal norm and then select either
one of the two remaining vector resulting in he choice

{ê1,
(1−ε)√

2
(ê1 + ê2)} which has determinant 1−ε√

2
. For a

non-zero small ε, the choice made by the LRV algorithm
is dramatically worse than the optimal choice. In [26], an
algorithm called ‘one by one replacement’ is introduced
to improve a (suboptimal) set of vectors by iteratively
identifying bad choices in the current set and replacing
it by a better vector from the candidate set of vectors.

In our work, we first use the LRV algorithm to select 44

renormalized operators from the candidate set made of
48 operators A(Oτ−1) of Fig. 6. We then use the ‘one by
one replacement’ algorithm to improve this initial choice.
We now discuss how the choice of renormalized operators
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impacts the number of repeated measurements of physi-
cal observables needed to maintain accuracy.

2. Maintaining the accuracy level using renormalized
operators

From now on, let us consider the set of chosen renor-
malized operators {Oi1} = {A(Oi0)}. Since the renor-
malized operators Oi1 are not orthogonal, it is convenient
to construct a set of orthogonal operators, following the
approach introduced in [20]. We first define the Gram-

matrix Gij = tr[Oi1(Oj1)†], and diagonalize it to obtain
the matrices Z and D such that G = ZDZ†. Then, we
obtain a set of orthogonal operators {Ri, i = 1, 2, 3, ...},
which are eigenvectors of G, i.e.,

Ri1 =
4√
Dii

∑
j

Z†ijO
j
1 =

∑
j

βijO
j
1 (21)

where we introduced a normalization factor of 4 in order
for the operators Ri1 to have the same trace norm as 4-
site Pauli observables. Using Eq. (21), we can relate the
expectation value of the orthogonal operators Ri1 to the
expectation values of the physical observables by

tr(ρ1R
i
1) =

∑
j

βijtr(ρ1O
j
1) =

∑
j

βijtr(ρ0O
j
0) (22)

To assess how the number of repeated physical measure-
ments Nj on Oj0 is increased, consider that the measure-
ment of Ri1 is a random variable whose variance is V(Ri1).
Since physical measurements are performed on different
copies of the states, the physical measurements corre-
spond to independent variables and

V(Ri1) =
∑
j

|βij |2V(Oj0) (23)

Let Mi(ε) be the number of measurements needed to
achieve a desired variance ε for ith renormalized observ-
able. The variance V(Oj0) is proportional to the inverse

of the number of physical measurements Nj of Oj0. Thus,
Eq. (23) becomes

∀i (Mi(ε))
−1 =

∑
j

|βij |2N−1
j (24)

Let’s define the matrix Bij = |βij |2. We want to min-
imize the total number of measurements

N =
∑
j

Nj (25)

while maintaining the minimum precision 1/M0 for any
orthogonal operator Ri1. We thus want minimizeN under
the condition

∀i
∑
j

BijN
−1
j ≤ 1

M0
Nj > 0 (26)

Note that we cannot simply choose to minimize the Nj
independently since the precision level of different opera-
tors are not independent under the condition Ni > 0. We
found numerically that in most instances we looked at,
we cannot avoid the situation in which some observables
have better precisions than the others.

Introducing the normalized variables Ñj = Nj/M0, we
are faced with the optimization problem of minimizing∑

j

Ñj (27)

under the constraint

∀i
∑
j

BijÑ
−1
j ≤ 1 Ñj > 0 (28)

For the 44 × 44 matrix Bij , considering the maximal
element γj = maxiBij for every column, we know that

∀j
∑
i

Bij(γj)
−1 ≤ 44 (29)

Thus, a naive choice of Ñj would be to choose 44γj . Al-
ternatively, we calculated Kj =

∑
iBij(γj)

−1 which is
guaranteed to be smaller than 44 and consider the biggest
of them K = maxj Kj . We can then take Ñj = Kγj to
guarantee that Eq. (28) is satisfied.

The total number of measurements N is

N =
∑
i

ÑiM0 (30)

where Ñi can be interpreted as a multiplicative factor
which ensures that the estimation of the expectation
value using renormalized operators has the same pre-
cision as the one obtained using M0 measurements on
physical Pauli measurements. To report a single num-
ber, we introduce the conditioning factor S, defined as
the average multiplier in the number of measurements

S ≡
∑
i Ñi
44

(31)

3. Estimation of the conditioning factor

We wrote a simulation code to estimate the condition-
ing factor Sk→k+1 corresponding to the multiplicative
factor needed to estimate the 4-site density matrix at
level k + 1 using Pauli measurement at level k.

Note that, experimentally, we are interested in the mul-
tiplicative factor S0→τ between physical Pauli measure-
ment, i.e. measurement at level 0, and renormalized op-
erator {Riτ} at level τ > 0, defined by Eq. (21). Let’s
consider τ = 2 for concreteness.

We would like to argue that

S0→2 ' S0→1 × S1→2 (32)
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FIG. 7. (Color online) The tensor product of OA⊗OB renor-
malize under the superoperator A into the operator resulting
from the tensor network contraction. In the upper figure, the
distributive law (33) holds so that the renormalized operators
A(OA) and A(OB) can be computed independently and then
multiplied. For the figure below, disentanglers within the blue
box mixes the renormalized operators and Eq. (33) does not
hold.

where the approximation comes the fact the ascending
superoperator is not distributive, as we now explain.

Since the {Ri1} are orthogonal operators with the same
normalization as Pauli operators {Σi1}, there is a unitary
transformation mapping between those two set of oper-
ators. Thus, mapping {Ri1} or Pauli operators {Σi1} at
level 1 to {Ri2} will have the same overhead because of
unitarity. However, when mapping Pauli observables at
level 1 to renormalized operators at level 2, we take the
tensor product of Pauli operators on two blocks to com-
pute S1→2. The renormalized operators {Ri1} on two
neighboring block do not obey this tensor product struc-
ture. This is illustrated in the bottom figure of Fig. 7.

If the ascending superoperator were distributive, i.e.,

A(OA ⊗OB) = A(OA)⊗A(OB) (33)

for physical operators OA and OB , Eq. (32) would be
exact. However, this is not true for if OA and OB are
8-sites Pauli operators and there will be a deviation E
from the distributive law

A(OA ⊗OB) = A(OA)⊗A(OB) + E (34)

resulting from the mixing of operators at the blue box in
Fig. 7. However, since E results from the perturbation of
2 sites, we expect its effect on Eq. (32) to be small since
the operators prior to normalization act on 16 sites. We
will now see that this intuition is backed by numerical
smiulations.

To test the quality of the approximation in Eq. (32),
we performed a simulation to get the exact scaling factor

S0→2 between the physical level and the second renormal-
ized level and compared it to the product S0→1 × S1→2

using a 16-qubit MERA approximation to the ground-
state of the critical Ising model. The scaling factor S0→2

was obtained by following procedure (see Fig. 7) : for
each block TA and TB , we considered the 46 six-site
Pauli operators OiA (resp. OiB) and their renormalized
counterparts A(OiA) (resp. A(OiB)) to find the opti-
mal basis (44) maximizing determinant. Then, we have
two basis sets with 44 operators {A(OiA), i = 1, 2, ..., 44}
and {A(OiB), i = 1, 2, ..., 44}. Now, to estimate the re-
duced density matrix on 4 sites at the second renormal-
ized level, we need to find the best 44 operators out of
{A(OiA ⊗ O

j
B)}. The distributive law (33) holds for OiA

and OjB since they were based on non-interfering six-site
operators at the physical level, we can easily calculate
the 48 operators A(OiA ⊗O

j
B) = A(OiA)⊗A(OjB). Now,

out of these 48 operators, we renormalize them again us-
ing the second renormalized layer, and then find the 44

optimal operators.
We ran the simulation several times and obtained val-

ues for the scaling factor S0→2 ranging between 23 and
27, which is comparable to S0→1 × S1→2 which range
between 25 and 36. Therefore, we consider the approxi-
mation in Eq. (32) to be valid. In fact, the method used
to test this assumption gives a scalable way to obtain
the optimal set of physical Pauli operators to estimate
reduced density matrix at higher renormalized level.

Now that we assessed the quality of the approximation
in Eq. (32), we will use the formula

S0→` '
`−1∏
k=0

Sk→k+1 (35)

to approximate the total number of measurements
needed for MERA tomography at level `.

We estimated the conditioning factor for MERA to-
mography on a 24-qubit translation-invariant binary
MERA approximation of the ground state of the criti-
cal Ising model with periodic boundary condition. Note
that the finite system size is too small to reach scale-
invariance, which we expect to hold rigorously in the
thermodynamic limit. However, translation invariance
guarantees that disentangler and isometries are the same
in a given layer of the MERA circuit. Since a 24-qubit bi-
nary MERA circuit contains 3 renormalization layers, we
obtained three conditioning factor Sk→k+1 for k = 0, 1, 2.

Results for S0→` for ` = 1, 2, 3 are presented on Fig. 8
for 10 different MERA approximation of the ground state
of the critical Ising model for 24 qubit. Since the dis-
entanglers and isometries are different for every energy
minimization, the condition factors also vary.

The important feature of the numerical result is that
our improvements, in particular the heuristic choice of
observables, dramatically improve the scaling of the num-
ber of measurements. Indeed, the multiplicative over-
head is about λ = 6 between each layers, which is a dra-
matic improvement over the the multiplicative overhead
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FIG. 8. (Color online) The behavior of conditioning factor
S0→` between level ` = 1, 2, 3 and the physical level for dif-
ferent reconstruction of a 24-qubit groundstate of the critical
Ising model. We can see that S0→` scales roughly like 6`.
Interestingly, the conditioning factor S0→1 quantity between
the physical level and the first level is very uniform. This is
much better than (λblock)k ' 2400` scaling obtained by using
the naive ternary MERA approach.

of 2400 in the case of the naive ternary approach.

B. Estimates of the total number of measurements
required for MERA tomography

1. System size up to 100 qubits

We are now in position to give an estimate of the to-
tal number of physical measurements needed to perform
MERA tomography. We estimate these numbers by us-
ing the conditioning factor and by choosing the reference
number of measurements to be M0 = 100. This is the
number of measurements used to estimate the expecta-
tion value of every physical Pauli operators in the tomog-
raphy of an 8-qubit W state on cold atoms [3].

In Fig. 9, we compare the total number of measure-
ments N for binary and ternary MERA, in both cases
for the groundstate of the critical 1D Ising and critical
1D XX models, as a function of the size of a quantum
system n, i.e., the number of qubits. For ternary MERA,
we use the naive approach based on observables which
are eigenvectors of the ascending superoperator of Fig. 4.
For binary MERA, we used the heuristic choice of ob-
servables which maximizes the determinant, obtaining a
condition factor S varying between 5 and 6 for critical
Ising and between 3 and 3.5 for XX model.

For the system with total number of qubits N = D ·2m
and scaling factor S, the total number of measurements
was calculated through the formula

N = 100×

[
44

m−3∑
τ=0

2m−τ+1Sτ + 4DSm−2

]
(36)

where m is the total number of layers, 2m−τ+1 is the
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FIG. 9. (Color online) The number of measurements required
versus the number of qubits in MERA tomography. For bi-
nary MERA, we selected the renormalized operators using
the heuristic described in Sec. IV A 1 and for ternary MERA,
we used the naive approach of taking one-site operators. The
error bars account for the uncertainty in the condition factor.
We used 5 < SIsing < 6 and 3 < SXX < 3.5

number of isometries between level τ and τ + 1 and the
last term comes from the fact that at level m − 2 there
are D ≤ 4 renormalized particles. The formula was de-
rived in the following way: we assumed that each phys-
ical observable was measured with an accuracy of 100
measurements and that this accuracy for maintained for
renormalized observables. Thus, for the renormalized ob-
servables at layer τ , we need 100 ·Sτ number of measure-
ments where S is the (average) scaling factor between
layers. For each layer, we need to perform brute force to-
mography on 2m−τ+1 number of 4-sites density matrices,
each of which having 44 observables. This explains the
term inside the summation. The last term arises from
the top level of the MERA circuit whose number of sites
D is smaller than 4.

On Fig. 9, we also indicated the scaling of brute-force
quantum state tomography using the 3n approach of [6].
The figure confirms the asymptotic advantage of MERA
tomography whose polynomial scaling N ∝ nlogS out-
performs the exponential cost of brute-force tomography.
Crucially, it also shows this advantage for small system
size.

2. Focus on system size up to 24 qubits

To better appreciate the performance of MERA tomog-
raphy for system size relevant to experiments, we plot-
ted the total number of measurements needed for binary
MERA of the critical Ising and XX models on Fig. 10. We
compared the number of measurements to the 656,000
measurements used in the largest tomography experi-
ment performed to date, on a 8-qubit system [3].

Fig. 10 shows that MERA tomography outperforms
brute-force tomography for system sizes that are accessi-
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FIG. 10. (Color online) Magnified version of Fig. 9 for binary
MERA tomography on the critical Ising and XX models. The
black dotted line represents the number of measurements re-
quired for qubyte (8 qubits) by brute-force tomography. By
optimizing the choice of physical observables, MERA tomog-
raphy can perform tomography on 16 qubit system (Ising) and
24-qubit system (XX) for the similar number of measurement
as brute-force tomography on 8 qubits.

ble experimentally, and requires a reasonable experimen-
tal effort. More specifically, using our scheme we can
perform MERA tomography on a 16-qubit ground state
of the critical Ising model and a 24-qubit ground state
of the critical XX model with at most twice the num-
ber of measurements of the qubyte experiment [3] on 8
qubits. Hence, MERA tomography, for a comparable ex-
perimental effort, allows to probe quantum systems twice
to three times larger than brute-force quantum tomog-
raphy. Moreover, the numerical processing required by
MERA tomography is very simple and requires at most a
few hours of running time, which is a dramatic improve-
ment over the running time of the Maximum Likelihood
Estimation (MLE) used to infer the quantum state com-
patible with the experimental data [27].

V. PROPAGATION OF ERRORS

In this section, we analyze how errors accumulate
and propagate in our MERA tomography scheme. The
MERA tomography procedure aims to reconstruct a
MERA state ρtomo that approximates the experimental
state, defined by

ρtomo = U†0→mρ
trunc
m U0→m (37)

where U0→m=
∏m−1
τ=0 Uτ→τ+1

is the product of every layer

transformation Uτ→τ+1, i.e, the global MERA circuit and
ρtrunc
m is the output after the final m-th layer. However,

our reconstructed state will deviate from the experimen-
tal state ρ0 due to (1) imperfect estimation of expectation
values of physical observables and (2) truncation errors
since each isometry throws out part of the Hilbert space.

A detailed analysis of the impact of truncation errors is
presented in the Appendix. We will highlight the key re-
sults in this Section and refer the reader to the Appendix
for the technical proofs.

Loss of information in the MERA circuit is due to trun-
cation errors. For every level τ ≥ 1, consider ρτ to be the
state obtained from the experimental state ρ0 by apply-
ing every gates of the quantum circuit before truncation
at level τ . Define ρtrunc

τ to be the normalized state ob-
tained by keeping the eigenvectors corresponding to the
χ largest eigenvalues of ρτ . Those different states are
represented on Fig. 11.

FIG. 11. (Color online) A single layer of a MERA circuit
which unitarily transform the state ρ̂truncτ−1 to ρτ before trun-
cating it to ρ̂truncτ . Red line represents subspace thrown out
by isometries.

We prove in the Appendix (see Lemma B.1) that

D(ρ0, ρ
tomo) ≤

m∑
τ=1

D(ρτ , ρ
trunc
τ ) (38)

where we use the trace distance D(ρ, σ) = 1
2‖ρ−σ‖1 and

‖A‖1 is the sum of the singular values.
However, the disentanglers and isometries are com-

puted on blocks of the state ρrecτ which is reconstructed
for evaluating how expectation values physical observ-
ables relate to expectation values of ascended operators
on renormalized particles. Because of truncation errors,
the ascended operators will be erroneous and the esti-
mated ρrec

τ will differ from ρτ . We can use the triangle
inequality to get

D(ρ0, ρ
tomo) ≤

m∑
τ=1

D(ρτ , ρ
rec
τ )+

m∑
τ=1

D(ρrec
τ , ρtruncτ ) (39)

The second term of Eq. (39) is straightforward. It is
the intrinsic error introduced by truncation errors and
we prove that

m∑
τ=1

D(ρrec
τ , ρtrunc

τ ) ≤
m∑
τ=1

∑
k

ετk (40)

where k indexes the different isometries at level τ and ετk
is the probability weight being removed by the trunca-
tion. Note that this term is simply the sum of all trun-
cation errors and will scale linearly with the size of the
system.

The first term of Eq. 39 is due to the relations between
renormalized operators and physical observables. It will
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be related not only to truncation errors at level τ but
also to all truncation errors at previous levels. We prove
that

m∑
τ=1

D(ρτ , ρ
rec
τ ) ≤ 1

2

m∑
τ=1

τ∑
`=1

∑
k

ε`k‖
∑
i,j

βijRi‖1 (41)

where the matrix βij and the Ri are defined in Sec. A.
Note that this term will scale quadratically with system
size since truncation errors in previous levels influence
truncation errors in subsequent levels. However, since
the truncation error ε gets dramatically smaller for higher
layer (see Fig. 13), and we observed numerically that the
summation ‖

∑
ij βijRi‖ has the order of unity for critical

Ising, we expect this contribution to be comparable to the
Eq. (40).

The final bound will simply be the sum of Eq. (41)
and Eq. (40). Crucially, every term that appears in this
bound can be estimated during the tomographic proce-
dure. Thus, it can be used as a certificate to check a pos-
teriori if the reconstructed MERA state is indeed close to
the experimental state. We expect this to give reasonable
bounds in the limit where the truncation errors are very
small. Alternatively, one can directly estimate fidelity to
assess the closeness between the experimental state and
the state obtained by MERA tomography using Monte
Carlo fidelity estimation [28, 29].

VI. CONCLUSION

In this work, we investigated and improved upon the
original MERA tomography method introduced in [20].

We showed that the scaling of the number of measure-
ments required to maintain accuracy presented in [20]
was only valid for single site observable and that its
straightforward application to multi-site observables led
to an unreasonable overhead. To circumvent this issue,
we suggested to use a different MERA geometry, namely
binary MERA, which required performing brute-force to-
mography on block of 4 renormalized sites (instead of 5

for the ternary MERA case). Furthermore, we intro-
duced a heuristic to identify the physical measurement
which give the most information about renormalized par-
ticles, in order to minimize the number of physical mea-
surement required. We tested this approach numerically
and found that the total number of physical measure-
ments needed to perform MERA tomography on mod-
erate size system is reasonable for experimentalist. For
instance, performing MERA tomography on the ground
state of the critical Ising model on 16 qubits requires
only twice the number of physical measurements needed
to perform brute-force quantum state tomography on 8
qubits. Finally, we gave a deeper understanding of prop-
agation of error in MERA tomography. We bounded the
distance between the experimental state and the state
reconstructed by MERA tomography in terms of quan-
tities that are estimated locally troughout the tomogra-
phy procedure. In particular, the propagation of error
when using renormalized observables was quantified, and
turned out to be closely related to the scaling factor S.
Since the deviation of the reconstructed state from the
experimental state is bounded by a quantity which can be
estimated during the tomography procedure, this bound
can be used as a certificate to justify a posteriori that
the experimental state was close to a MERA state.
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Appendix A: Numerical technique to identify
disentanglers

The conjugate gradient approach used in [20] to find a
disentangler and an isometry from a set of measurements
data is a standard method for such optimization problem.
However, the method is prone to identifying local minima
rather than global minima and is hard to extend to large
bond dimension χ. Here, we improve the algorithm for
optimization by borrowing an algorithm developed for
efficient MERA energy minimization procedure in [25].
In this new numerical technique, the objective function
remains the same but we interpret it as a tensor contrac-
tion

f(u, ρi) = tr(uΓRu + uΓLu ) (A1)

where Γu is the environment of disentangler u, shown on
Fig. 12. Since an isometry W keeps only the χ eigenvec-
tors with largest eigenvalues, contraction of this small
part of a MERA circuit gives the sum of first χ singular
values of a reduced density matrix for two sites.

The optimization of tr(uΓu) is analytically hard as
Γu also depends on disentangler through u†. It is a
quadratic optimization problem but we will consider its

FIG. 12. (Color online) Tensor network contraction corre-
sponding to the objective function f on a ternary MERA.
The blue box surrounding the five circles represents the re-
duced density matrix ρi on five sites. The tensor network
outside the quantum gate u is the environment Γu (which
includes u†).

linearized version. We linearize the objective function
by fixing u† and thus Γu and only varying the disentan-
gler u. For a fixed Γu, the optimal u can be found by
standard singular value decomposition (SVD) technique.
One finds the SVD decomposition of the environment,
Γu = NSM†. The trace in Eq. A1 is extremized by the
choice of u = MN†. Let u0 be an initial guess (random)
unitary transformation. Then, starting with k = 1 and
for increasing values k = 2, 3, ..., we obtain uk from uk−1

by optimizing tr(ukΓuk−1
).

Optimizing a disentangler also depends on the neigh-
boring disentanglers. Thus, the optimization not only
iterates the above process to optimize the disentanglers,
but also sweeps over all the disentanglers of a given layer.
An optimization algorithm can choose to balance the
number of iterations and the number of sweeps in dif-
ferent ways. Numerically, we find that a single iteration
and multiple sweeps gave satisfactory results. Although
the objective function is not guaranteed to improve at
each step, nor to converge, we find that this method typ-
ically converges faster than the previous method based
on a conjugate gradient technique.

To check the validity of our algorithm, we generated
random MERA states by choosing the quantum gates
of the MERA circuit at random according to the Haar
measure. We then performed our quantum tomography
algorithm to find MERA circuits for the states. The al-
gorithm was tested on the binary MERA geometry with
24 qubits. In order to check the numerical optimization
algorithm, we assumed brute-force tomography to be per-
fect, implying that the 4-sites reduced density matrices
ρi are accurate. At the end, the fidelity

F (ρ0, ρr) ≡
(

tr
√√

ρ0ρtomo
√
ρ0

)2

(A2)

between the original state ρ0 and the reconstructed state
ρtomo was computed. The infidelity 1− F (ρ0, ρ

tomo) ob-
tained on average was 10−13. There were few cases which
took more than hundred seconds to reach that fidelity,
but it was only one out of twenty. In Fig. 13, we can see
that 20 runs all gave convergence in 100 iterations, which
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FIG. 13. (Color online) Convergence of the average value of
the objective function f(u) for different layers using MERA
tomography on 24 qubits and a binary geometry, as a function
of the number of sweeps. (up) Results for 10 random MERA
states. (down) Results for 10 superpositions of a MERA state
and a Haar-random state of magnitude δ = 0.1 (see Eq. A3).

take only ten seconds. We conclude that, for states with
an exact MERA representation, our method requires rea-
sonable processing time and yields a very accurate recon-
struction result.

Also, we examined how our algorithm performed if the
experimental state does not admit an exact MERA rep-
resentation. For this, we considered the experimental
state |ψ〉 to the be the superposition of a MERA state
|ψMERA〉 and a Haar-random state |ψe〉

|ψ〉 =
√

1− δ2|ψMERA〉+ δ|ψe〉 (A3)

Results for that case are given in the bottom plot of
Fig. 13. In that case, the optimization performs poorly
on the first layer, converging around 10−2 and improves
for the second layer (around 10−6) and the third (around
10−8). The infidelity between the input state and the
reconstructed state was around 10−2 ≈ δ2, which is con-
sistent with the intuition that the reconstructed state is
the MERA part of the state. Our interpretation is that
the isometries of the layers progressively filter out the
non-MERA part of the state.

Appendix B: Error analysis

We want to assess how the errors accumulate through-
out the tomography procedure. One source of errors is
the imperfect estimation of expectation values of physi-
cal observables due to the finite number of repeated mea-
surements, fluctuations in the state preparation and mea-
surement errors. This source of errors is common to all
tomography schemes and putting meaningful error bars
on brute-force tomography is a complex issue which is
an active area of research [30, 31]. We will not address
this issue here, assuming that expectation values of phys-
ical observables are perfect. However, introducing those
errors would be straightforward in our analysis.

Instead, we will focus on the errors which are intro-
duced by the idea of MERA tomography itself. More
precisely, the truncation errors at the level of every isom-
etry will introduce i) intrinsic errors since part of the
information on the state is thrown away and ii) recon-
struction errors since the relationship between renormal-
ized operators and physical observables is not exact.

We will first focus on intrinsic errors by assuming that
any reduced density matrix in the circuit can be obtained
exactly in Sec.B 1. In a second step, we will estimate
the error introduced by using renormalized operators to
extract information about density matrices in higher level
of the MERA circuit in Sec.B 2.

1. Intrinsic errors

We first analyze the error propagation at the level of
a single isometry in Sec.B 1 a in order to infer the propa-
gation of errors for a single layer in Sec.B 1 b and finally
analyze the error propagation for the global MERA cir-
cuit in Sec.B 1 c.

a. Error for a single isometry

The experimental state not being a MERA state or
imperfection in the numerical optimization of the ob-
jective function given by Eq. 2 results in the probabil-
ity weight of the density matrix not being fully in a χ-
dimensional subspace (remember that we are discussing
the case χ = 2 in all numerical examples).

Let V be the Hilbert space for a particle of quantum
dimension χ, i.e., V = Cχ. The isometry w maps V⊗k
to V⊗1 where k = 2 for a binary MERA. It can be con-
veniently expressed as the product of a unitary transfor-
mation v followed by a projector P which maps |0〉⊗k to
V. In the ideal case, the role of v is to rotate the basis so
that a k-site reduced density matrix ρ is diagonalized and
only has support on the space |0〉⊗k−1 ⊗ V. In practice,
v rotates the first µ = 1 . . . χ eigenvectors to |0〉⊗k−1|µ〉
as represented on Fig. 14.

Let ρ be the (virtual) k-sites reduced density matrix di-
agonalized through the isometry, ρr be the reduced den-
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FIG. 14. (Color online) Tensor contraction for virtual two-
sites reduced density matrix ρ. ρ represents transformed the
density matrix after it passes through the unitary parts of
isometries which diagonalizes it. The blue box represents the
part of the density matrix which is kept and passed to the
next layer of MERA while the red box represents the density
matrix that is truncated out.

sity matrix supported on |0〉⊗k−1 ⊗ V and ρe = ρ − ρr
be the density matrix that would be thrown out by the
isometry. Under this setting, let 1−f(u) =

∑
i>χ λi = ε.

The MERA reconstruction procedure to do not lose
any information if all entries of ρe is zero, i.e., ε = 0.
The renormalization relation for observables, Eq.9, was
derived under this assumption. However, if the renor-
malized state has a non-zero ρe, i.e.,

ρ1 = u1ρ0u
†
1 = ρr + ρe (B1)

the renormalized observable also as support on the vir-
tual space that is truncated by the MERA circuit

O1 = u1O0u
†
1 = A(O0) + E (B2)

For convenience, let’s consider the normalized states
ρtrunc ≡ ρr/(1−ε) and ρ̂e ≡ ρe/ε. Then, in the imperfect
MERA setting, Eq.9 is modified and reads

tr(ρ0O0) = (1− ε)tr
(
ρtruncA(O0)

)
+ εtr(ρ̂eE) (B3)

Because we truncate out ρe and measure ρtrunc in
next layer for actual MERA tomography, there will be
a discrepancy |εtr(ρ̂eE)| between the measured quantity
tr(ρ0O0) and the quantity of interest tr (ρtruncA(O0)).

In the rest of the discussion, we consider εtr(ρeE) as a
random error about which only ε is known.

b. Error analysis for a layer

Having understood how an error ε affects a single isom-
etry, we will now assess how the errors for each isometry
combine inside a layer. Let’s consider the global state
ρ after it goes through the isometries in Fig. 11. As we
discussed above, if the MERA circuit is not perfect, the
global state ρ would decompose as

ρ = ρr + ρe (B4)

Since only ρr is passed through the MERA circuit and ρe
is thrown away, ρe is informationally inaccessible in the
later step of tomography. However, we want to quantify
ρe in order to bound the distance between ρ and ρr.

To achieve our purpose, we will divide ρe into smaller
parts. We will label the isometry with an index i =
1 . . . `. Let Ci = |0〉⊗k−1⊗V be the correct χ-dimensional
subspace kept by the MERA circuit, and Ei = V⊗k\Ci be
the incorrect subspace, indicated by red lines on Fig. 11.
Now let ρi be the reduced density matrix before the i-th
isometry. Then, the density matrix at the input of the
i-th isometry is

ρi = ρir + ρie = trī(ρ) (B5)

where trī represent the partial trace on all sites except
the input of the i-th isometry and ρir ∈ Ci and ρie ∈ Ei
(cf. Fig. 14).

While the globally correct state ρr is locally in the cor-
rect subspace Ci for all i, the globally incorrect state ρe
contains part which are locally correct for some i and lo-
cally incorrect for some non-empty set I ⊂ [1; `]. We will
denote ρeI the part of ρe having support on the subspace
(⊗i∈IEi) (⊗i/∈ICi). Thus,

ρe =
∑
I

ρeI (B6)

Note however, that ρeI is locally correct for i /∈ I. The
terms of the density matrix at the input of the i-th isom-
etry of Eq. (B5) decomposes into

ρir = trī(ρr +
∑
i/∈I

ρeI) (B7)

ρie = trī(
∑
i∈I

ρeI) (B8)

The density matrices ρi are estimated by physical mea-
surements and the numerical optimization gives the trace
of the locally incorrect state tr(ρie) = 1 − f(U) = εi.
Knowing this error for each isometry on the layer allow
us to estimate the weight of the globally incorrect state

εe ≡ tr(ρe) =
∑
I

tr(ρeI) (B9)

≤
∑̀
i=1

∑
i∈I

tr(ρeI) (B10)

=
∑̀
i=1

tr(
∑
i∈I

ρeI) =
∑
i

εi (B11)

The normalized truncated state ρtrunc = ρr/(1− εe) is
the one we are interested in learning in the next step of
variational tomography. The distance between the state
before truncation ρ and the normalized truncated state
ρtrunc can be bounded in fidelity and in trace distance.
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For the fidelity, one can observe that

F (ρ, ρtrunc) = ‖
√
ρtrunc

√
ρ‖1 = ‖

√
ρtrunc

√
ρr‖1 =

√
1− εe

(B12)
and for the trace distance

‖ρ− ρtrunc‖1 ≤
εe

1− εe
‖ρr‖1 + ‖ρe‖1 ≤ 2εe (B13)

Using those relations and Eq. B11, we get

1− F (ρ, ρtrunc) ≤ 1

2

∑
i

εi (B14)

1

2
‖ρ− ρtrunc‖1 ≤

∑
i

εi (B15)

c. Error analysis of the global circuit

The final goal is to estimate the distance between the
physical state ρ0 and the reconstructed MERA state

ρtomo = U†0→mρ
trunc
m U0→m (B16)

where U0→m =
∏m−1
j=0 Uj→j+1 is the global MERA cir-

cuit and ρtrunc
m is the output after the final m-th layer.

The idea is to relate this distance to the truncation er-
ror d(ρj , ρjrec) introduced after each layer j of the MERA
circuit when the state ρj is truncated to ρtrunc

j . We will
use the following lemma.

Lemma B.1. For any distance d(σ, ρ) which obeys the
property d(UσU†, ρ) = d(σ, U†ρU†) and the triangle in-
equality, the following inequality holds

d(ρ0, ρ
tomo) ≤

m∑
τ=1

d(ρτ , ρ
trunc
j ) (B17)

Proof. For m=1, we have

d(ρ0, U
†
0→1ρ

rec
1 U0→1) = d(U0→1ρ0U

†
0→1, ρ

1
rec) (B18)

= d(ρ1, ρrec
1 ) (B19)

For arbitrary m > 1, we have

d(ρ0, U
†
0→mρ

trunc
m U0→m) ≤ d(ρ0, U

†
0→m−1ρ

trunc
m−1U0→m−1)

+d(U†0→m−1ρ
trunc
m−1U0→m−1, U

†
0→mρ

trunc
m U0→m) (B20)

The last term can be rewritten as

d(Um−1→mρ
trunc
m−1U

†
m−1→m, ρ

trunc
m ) = d(ρm, ρ

trunc
m )

(B21)
Recursively applying this inequality proves the lemma.

We will now apply this lemma to the distance corre-
sponding to the fidelity and the trace distance.

The fidelity can be used to define the distance

θ(ρ, σ) = arccosF (ρ, σ) (B22)

For every layer, we assume that the error is small enough
for the approximation cos(θ) ≈ 1 − θ2/2 to hold. Com-
bined with Eq. B15, we get

∀j θ(ρj , ρ
trunc
j ) ≈

(∑
i

εji

)1/2

(B23)

where εji is the error for the i-th isometry in layer j.
Applying the lemma, we get

θ(ρ, ρtomo) ≤
m∑
j=1

θ(ρj , ρ
trunc
j ) ≈

m∑
j=1

(∑
i

εji

)1/2

(B24)

To relate the distance to the fidelity, we use the in-
equality cos(θ) ≥ 1− θ2/2 which implies

1− F (ρ, ρtomo) ≤ 1

2

 m∑
j=1

(∑
i

εji

)1/2
2

(B25)

=
1

2

∑
ij

εji +
∑
j<j′

√∑
i,i′

εji ε
j′

i′ (B26)

where the first term in Eq. (B26) is the incoherent
sum of all truncation errors whereas the second term of
Eq. (B26) are due to coherent interference of errors in
different layers and isometries.

We can also directly apply the lemma to the trace dis-
tance, applying Eq. B15 to relate the terms to the trun-
cation errors to obtain:

D(ρ, ρtomo) ≤
m∑
j=1

∑
i

εji (B27)

Fig. 15 compares the upper bound obtained by
Eq.(B25) to the (in)fidelity between simulated experi-
mental states which are the superposition of a random
MERA state with a Haar-random state of magnitude ε.
The results on the figure show that the theoretical upper
bound for 1− F (ρ, ρtrunc) is a useful proxy.

Note that the magnitude of the Haar-random state ε
sets the value of the (in)fidelity between the experimental
state and the tomographically reconstructed state since
the MERA tomography seems to reconstruct the MERA
part of the experimental state, leading to 1 − F ≈ ε2,
which appears clearly on Fig. 15.

The upper bounds of Eqs. (B25) and (B27) can be es-
timated directly from tomographic data obtained during
the reconstruction. Thus, they are a certificate on the
distance between the experimental state and the one re-
constructed by MERA tomography.

The error analysis until now assumed that we had ac-
cess to perfect tomographic estimate of the reduced den-
sity matrices on small blocks of particles. However, when
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FIG. 15. (Color online) Fidelity between the experimental
state and the reconstructed state as a function of the ampli-
tude ε of the Haar-random state added to a 24-qubit random
MERA state (see Eq. A3. The upper bound was calculated
using values of εji obtained through the tomographic proce-
dure. Simulation was performed ten times for each amplitude
of error.

we use the structure of the MERA circuit to relate physi-
cal measurements to renormalized observables, the trun-
cation error will inevitably introduce errors on the tomo-
graphic estimates. We now discuss those type of errors
and see how they modify our error bounds.

2. Error introduced by renormalizing physical
measurements

As described in Sec B 1 a, the truncation errors will
not only introduce an intrinsic error, but also lead to an
erroneous reconstruction of the reduced density matrix
in renormalized layer. Indeed, Eq. B3 which relates the

expectation value of the physical observable tr
[
ρ0O

j
0

]
to

the expectation value of Aτ (Oj0), the renormalized ob-
servable at level τ , on the state we want to reconstruct
ρtrunc
τ contains a random error term

∆τ
j = ετe tr

[
ρ̂τeE

j
]

(B28)

where ετe is bounded thanks to Eq. (B11). This erroneous
reconstruction will introduce an additional term in the
error bound (B27) which we now analyze.

The reduced density matrix at a renormalized level ρτ

will be reconstructed using the the orthonormal operators
Ri, see Eq.21, which span the entire Hilbert space for
density operator. Due to the erroneous terms ∆j

τ , we
have

ρτ =
∑
i

tr[ρτRi]Ri =
∑
i,j

βijtr[ρτO
j
τ ]Ri (B29)

=
∑
i,j

βij

(
tr[ρτ−1O

j
τ−1]−∆j

τ

)
Ri (B30)

=
∑
i,j

βij

(
tr[ρ0O

j
0]−

τ∑
`=1

∆j
`

)
Ri (B31)

=
∑
i,j

βijtr[ρ0O
j
0]Ri −

∑
i,j

τ∑
`=1

∆j
`βijRi (B32)

Thus, the density matrix reconstructed by our method
ρtrunc
τ will be

ρrecτ =
∑
i,j

βijtr[ρ0O
j
0]Ri = ρτ +

∑
i,j

τ∑
`=1

∆j
`βijRi (B33)

where the last term quantifies the error due to the erro-
neous reconstruction, leading to the inequality

D(ρτ , ρ
trunc
τ ) =

1

2
‖
∑
i,j

τ∑
`=1

∆j
`βijRi‖1 (B34)

≤ 1

2

τ∑
`=1

∑
k

ε`,k‖
∑
i,j

βijRi‖1 (B35)

Note that this error term depends not only on the trun-
cation errors at level τ , but also depends on all the trun-
cation errors in previous levels. Thus, this term will in
general scale quadratically with the size of the system.
However, it appears to be well-behaved numerically.


