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We give a necessary condition that a separable measurement can be implemented by local quantum
operations and classical communication (LOCC) in any finite number of rounds of communication,
generalizing and strengthening a result obtained previously. That earlier result involved a bound
that is tight when the number of measurement operators defining the measurement is relatively
small. The present results generalize that bound to one that is tight for any finite number of
measurement operators, and we also provide an extension which holds when that number is infinite.
We apply these results to the famous example on a 3× 3 system known as “domino states”, which
were the first demonstration of nonlocality without entanglement. Our new necessary condition
provides an additional way of showing that these states cannot be perfectly distinguished by (finite-
round) LOCC. It directly shows that this conclusion also holds for their cousins, the rotated domino
states. We also introduce a class of problems involving the unambiguous discrimination of quantum
states, each of which is an example where the states can be optimally discriminated by a separable
measurement, but according to our new condition, cannot be optimally discriminated by LOCC.
These examples nicely illustrate the usefulness of the present results, since our earlier necessary
condition, which the present result generalizes, is not strong enough to reach a conclusion in any of
these cases.
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I. INTRODUCTION

In a recent publication [1], we proved a necessary condition such that a quantum measurement can be
implemented by local operations on subsystems and classical communication between parties (LOCC) in any
finite number of rounds of communication.1 We also demonstrated that there exist examples of separable
measurements for which the condition is extensively violated, this violation growing without limit as the
number of parties increases. A class of the examples given in [1] was later shown [2] to be applicable to the
optimal unambiguous discrimination of certain sets of quantum states, and includes an infinite number of
cases for each number of parties where each case is such that separable measurements are strictly better than
finite-round LOCC. We also discussed in [1] why we believe that these results apply to all LOCC, including
those using an infinite number of rounds, but to date a proof remains elusive.
Each quantum measurement involves a set of operatorsKj where, for the jth outcome of the measurement,

the state of the measured system changes as ρ→ KjρK
†
j /pj, with pj = Tr(ρKj), where the associated ‘POVM

element’ is defined as Kj := K†
jKj . A measurement on P parties is separable [3] if and only if each Kj

is a product operator, in which case the POVM elements are also product, Kj = K
(1)
j ⊗ . . . ⊗ K

(P )
j . It is

well-known that every LOCC measurement is separable, but there exist separable measurements that are not
LOCC [4–7]. In an effort to better understand the difference between separable measurements and LOCC
[8–15], we have undertaken a series of works [1, 2, 16, 17] aimed at finding conditions on the sets of POVM
elements that could serve to distinguish between these two important classes of quantum measurements.
In [16], we showed how to construct an LOCC protocol for a given bipartite separable measurement

whenever such a protocol exists in a finite number of rounds. This result was generalized to any number of
parties in [17]. The approach in these papers involves looking for intersections of convex cones generated by

subsets of the local operators K
(α)
j associated with the measurement under consideration, and the starting

point is to consider subsets that each consist of a single operator. Each operator K
(α)
j generates a ray

{λK
(α)
j |λ ≥ 0}, any collection of these rays generates a convex cone, and the extreme rays of these cones are

those associated with operators in that collection which cannot be written as a positive linear combination

of the others in the same collection. Clearly, if for each party α, every K
(α)
j is extreme in the cone of the full

set of these operators for a given measurement and no two K
(α)
j are proportional, then the starting point

mentioned above will fail, as no two cones involving just a single operator will intersect. More generally, it
appeared that (loosely speaking) too many extreme rays would make it difficult to find enough intersections
to build a full LOCC protocol for the measurement. Motivated by this idea, we proved the following theorem
in [1].

Theorem 1. [1] For any finite-round LOCC protocol of P parties implementing a separable measurement

corresponding to the N distinct POVM elements {Kj = K
(1)
j ⊗ . . .⊗K

(P )
j }Nj=1, it must be that

P
∑

α=1

eα ≤ 2(N − 1), (1)

where eα is the number of distinct extreme rays in the convex cone generated by operators {K
(α)
j }Nj=1, and

the sum includes only those parties for which at least one of these local operators is not proportional to the
identity. The upper bound in (1) can be achieved with equality when N ≤ 2P .

The last line in this theorem, that the upper bound in (1) is tight for N ≤ 2P , is rather restrictive.
In general, N will be larger, in many cases significantly so. For example, any measurement aimed at
discriminating a full basis of states will consist of N = d1d2 . . . dP operators (dα is the dimension of the
Hilbert spaceHα for subsystem α), which exceeds 2P unless all subsystems are qubits, the smallest nontrivial
system. Therefore, it would be of interest to have an upper bound that is tight for N > 2P , as well. At
the time of writing of [1], we had been able to prove that for bipartite systems,

∑

α eα ≤ 3N/2, which is a
tight bound whenever N ≥ 2P = 4. We had suspected that an upper bound of 2N(1− 2−P ) might be valid

1 We define each round of communication as consisting of one party broadcasting the result of her measurement to all the other
parties.
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for all P , but our method of proof for bipartite systems could not be generalized to more than two parties
and at the time, we saw no way of approaching it differently. Recently, we realized that the techniques of
[1] could be used to prove this conjectured upper bound, which is tight for N ≥ 2P and any P . We present
the results of this approach in Theorems 2, 3, and 4, below, where the latter two theorems apply to the case
of infinite N .
Theorem 2 is quite similar in form to Theorem 1, which may give the impression that the former represents

only a very small improvement over the latter. This is misleading, however, as the newer theorem is able
to prove LOCC impossibility for a much wider range of problems since, as just observed, N ≤ 2P is a quite
restrictive condition. In Sec. III, we give examples of separable measurements for which Theorem 1 is too
weak a condition and does not allow one to reach a conclusion, but where Theorem 2 directly demonstrates
that these measurements cannot be implemented by finite-round LOCC. We do this in the context of (i) a
well-known problem commonly referred to as the domino states [4], along with its generalization, the rotated
domino states [12]; and (ii) a continuous class of problems involving the optimal unambiguous discrimination
of states on two qubits.
In unambiguous state discrimination, a quantum system is prepared in one of a set of possible non-

orthogonal states, and the aim is to measure the system in a way that identifies the chosen state without
ever making an error. Since the states are not mutually orthogonal, this cannot be achieved with unit
probability, so there must be an outcome of the measurement that leads to an inconclusive result; that is, for
this outcome, the state of the system remains unknown, but for all other outcomes, the state can be identified
with certainty. The study of unambiguous state discrimination was pioneered by Ivanovic [18], Dieks [19],
and Peres [20], with important further results obtained in [21], where it was shown that the set of states
must be linearly independent. This study was extended to the case of LOCC in [22], and further results for
LOCC in this context were obtained in [23–25]. The study of optimal unambiguous state discrimination,
where the probability of obtaining an inconclusive result is minimized, received attention in [26–28]. In [26],
it was shown that LOCC is as good as global measurements for discriminating any set of two states that are
given with equal a priori probability, and this was generalized [27] to the case of any a priori probabilities,
again with only two states. A two-qubit example involving a specific, symmetric set of states given with
equal a priori probabilities and for which LOCC is as good as general separable measurements but weaker
than global measurements, was given in [28]. The examples we introduce here go beyond these earlier results
in that they each involve a set of four (non-symmetric) states on two qubits, where the a priori probabilities
for each example can vary over a continuous range, and for which we can use Theorem 2 to demonstrate that
the best separable measurement is better than the best LOCC protocol, while Theorem 1 does not lead to
a conclusion for any of these examples. We have elsewhere [2] given a different class of unambiguous state
discrimination problems for each of which the best separable measurement is also better than LOCC, but
this is shown by a violation of Theorem 1, so that our present generalization to Theorem 2 is not needed for
those cases.
In the following section, we state and prove the finite-N result, Theorem 2. Its infinite-N counterparts,

Theorems 3 and 4, are also stated in this section, and their proof is given in Appendix A. In Section III, we
present physically motivated tasks for which Theorem 2, but not Theorem 1, can be used to demonstrate
directly that these tasks cannot be accomplished by finite-round LOCC. Finally, in Section IV, we offer our
conclusions. As with Theorem 1, we also conjecture that these theorems need not be restricted to finite-round
LOCC, but rather apply to infinite-round LOCC, as well.

II. MAIN RESULTS

Our starting point in obtaining Theorem 2 is to represent any given LOCC measurement by a canonical
LOCC tree, as defined in [1], a representation which is possible for any measurement implemented by LOCC.
In these trees, each node is labeled by the POVM element corresponding to the cumulative action, to that
point in the protocol, of the party for whom that node represents one outcome of a measurement by that
party. If that party who measured is α, we refer to that node as an α-node. A canonical LOCC tree is
then one where every nonleaf node has exactly two child nodes, and for any given node, the pair of POVM
elements labeling its two child nodes are not proportional to each other.2 Given this structure, these are full

2 A brief reminder about terminology: A tree is a collection of nodes, each node has one parent node except the root, which has
no parent, and every node has some number of children. Siblings are the set of nodes that are children of the same parent.
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FIG. 1. Illustration of the two types of removals used in pruning a canonical LOCC tree. (a) A type-1 removal,
where the parent np is removed along with the maximal keeperless subtree T . This type of removal is used when

there is at least one K̂j leaf in T whose corresponding keeper is not in T ’s sibling subtree, T ′. The root of T ′ is nc,
which may be the only node in T

′, in which case it turns out that nc is itself a keeper leaf. (b) A type-2 removal
where nc, which is the root of the sibling subtree of T , is removed with T . This type of removal is used when every
leaf in T has its corresponding keeper leaf in either T1 or T2. Under these circumstances, nc cannot be a leaf. Figure
reproduced from Ref. [1]

binary trees, so if they have N leaf nodes, they will also have a total of 2N − 1 nodes in all [29].
In [1], we showed how any canonical LOCC tree can be pruned down to a full binary tree that has one and

only one leaf for each distinct Kj in the corresponding separable measurement, but nonetheless still has at

least one appearance of each of the K
(α)
j that is an extreme ray, for every party α. In addition, the method

of pruning the tree is such that descendants of a given node in the final tree were also descendants of that
node in the original tree. We now briefly review this method of pruning. For each j, find the right-most Kj

leaf and choose this as the keeper leaf for that j. Then, starting from the left-most non-keeper leaf in the
full tree, determine the largest complete subtree containing that leaf and not containing a single keeper leaf.
Remove this “maximal keeperless” subtree along with one other node. The latter node is chosen to ensure
the remaining tree is still full binary, and such that there is still at least one instance of every extreme ray
in the fully pruned tree. There are two types of removals, illustrated in Fig. 1 and determined by which
additional node is removed with the maximal keeperless subtree. See Ref. [1] for additional details of the
pruning procedure, along with an explanation of why the two types of removals must be chosen in this way.
For our present result, consider an arbitrary canonical LOCC protocol represented as a canonical LOCC

tree. We want to count the number of extreme rays in this tree. The first step will be to prune the tree as

A leaf node terminates a branch and so has no children. A subtree consists of a node in the tree, which is the root of that
subtree, along with all descendants of that root node, where a descendant of a given node is a node that can be reached by
starting at the given node and repeatedly proceeding from parent to child. An ancestor is defined similarly, but in this case,
one repeatedly proceeds in the opposite direction, from child to parent.
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described in [1], after which we rearrange the remaining nodes as follows: If a node is an extreme ray and
at least one of its children is not extreme, swap positions of these two nodes, which moves the extreme node
closer to the leaves of the tree. If both children are non-extreme, just choose either one to swap with its
parent. Continue this process until no extreme node has a child that is not extreme, which means that any
descendant of an extreme node must itself be extreme.
The resulting tree remains full binary and every extreme node lies in a subtree within which every node is

extreme. Using integer index s, denote each maximal such subtree as Ts. If for given s, Ts has ls leaf nodes,
then as it is still full binary, it also has 2ls − 1 nodes in total, each of which is extreme. Suppose there are S
of these subtrees. Then the total number of extreme nodes in this tree is equal to the total number of nodes
in the collection of these subtrees, which is

S
∑

s=1

(2ls − 1) = 2

S
∑

s=1

ls − S ≤ 2N − S, (2)

where we have used the fact that the total number N of leaf nodes is at least
∑

s ls (this sum can be strictly
less than N if there is one or more subtrees that have no extreme rays in them at all, since in this case the
leaves in these subtrees are not counted in the sum). Even though no two leaves are the same Kj , it is still
possible that some extreme rays are repeated at different nodes in this tree.3 However, since every extreme
ray appears at least once in the tree, the number of extreme rays is no greater than the number of extreme
nodes, which is itself no greater than the quantity 2N −S on the right-hand side of (2). Therefore, we have
that

P
∑

α=1

eα ≤ 2N − S. (3)

If we can find the smallest possible value of S, this will give a good upper bound on the total number of
distinct extreme rays. Recall from [1] that the root node of the original tree is always present in the pruned
tree and is not extreme. It should be clear that this node is still the root of the entire pruned and rearranged,
final tree, implying S ≥ 2. In fact S = 2 is possible, occurring when the root is the only non-extreme node
in the pruned tree, and then no re-arrangement is necessary. In this case,

∑

α eα ≤ 2(N − 1), and we recover
Theorem 1.
It turns out, however, that S = 2 is not always possible, depending on how many parties are involved

in the protocol. We will presently show that the number of leaf nodes in any one of these subtrees cannot
exceed 2P−1. Now, S is minimized when each subtree has this maximum number of leaf nodes, which occurs
for these full binary subtrees when every branch has the same maximum height (height is the number of
edges between the root and the leaf). The height of these subtrees is limited by the fact that every node
in each of them is extreme, along with the fact that extreme α-nodes have no α-node descendants. The
latter point is true of the original tree, by Lemma 5 of [1], and as is pointed out there, this remains true
for the pruned tree. It also applies to the final, rearranged tree, since our rearrangement, like the pruning,
does not create new descendants of any extreme node, but rather only turns some of its descendants into
non-descendants. Therefore, no branch in these subtrees can have more than one α-node, for each of the P
parties α, which directly implies there are no more than P nodes along any branch within any one of these
subtrees, whose height h must therefore satisfy h ≤ P − 1. It is well-known for a binary tree with l leaves
and height h that l ≤ 2h [30], so we can conclude that the number of leaves in any one of these subtrees
cannot exceed 2P−1. Since there are a total of N leaves in the full collection of these subtrees, there must
be at least N/2P−1 subtrees in this collection. Hence,

S ≥

⌈

N

2P−1

⌉

, (4)

where ⌈x⌉ is the smallest integer not less than x, and from (3) we have

P
∑

α=1

eα ≤ 2N −

⌈

N

2P−1

⌉

, (5)

3 For example, it may be that K
(1)
1 = K

(1)
2 is a (single) extreme ray, and these operators appear as two different leaves, one

being the unique K1 leaf, the other being the unique K2 leaf. In this case, both these leaf nodes represent the same extreme
ray in the first party’s set of rays, and the number of extreme nodes in the tree is strictly greater than the number of extreme
rays.
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Combining this with Theorem 1, we have

Theorem 2. For any finite-round LOCC protocol of P parties implementing a separable measurement

corresponding to the N distinct POVM elements {Kj = K
(1)
j ⊗ . . .⊗K

(P )
j }Nj=1, it must be that

P
∑

α=1

eα ≤ 2N − ⌈2Nδ⌉ , (6)

where δ = max
(

N−1, 2−P
)

, eα is the number of distinct extreme rays in the convex cone generated by

operators {K
(α)
j }Nj=1, and the sum includes only those parties for which at least one of these local operators

is not proportional to the identity. The upper bound in (6) can be achieved with equality for any finite N
and P .

We showed in [1] how the upper bound can be achieved when N ≤ 2P . The discussion above indicates how
it can be done for all finite N . First consider the special case that N = 2P−1n with integer n ≥ 3. One party
measures first with n distinct outcomes. For each of her outcomes, each of the other P − 1 parties measures
once with a two-outcome measurement along every branch, conditioning their measurements on the previous
parties’ outcomes. As a result, descended from each of the n outcomes of that initial measurement, there is
a full binary subtree having 2P−1 leaf nodes and 2P − 1 nodes. This gives a total of N = 2P−1n leaves in
the entire tree, which also has a total of

(

2P − 1
)

n = 2N(1 − δ) nodes, not counting the root of the tree.
The parties can choose their measurements so that all of their local outcomes are distinct from each other,
and so that each such outcome is extreme in the cone of its collection of local outcomes. Then every node
in the tree is extreme apart from the root of the tree, and the bound is achieved with equality.
If the last measurement along a single branch of the preceding protocol is omitted, this removes two leaf

nodes, but the node that was the parent of those two removed leaves becomes a new leaf, so N is decreased
by one to N = 2P−1n− 1. At the same time, the total number of nodes is decreased by two, as is the total
number of extreme rays. Now, ⌈2Nδ⌉ =

⌈

2N/2P
⌉

doesn’t change when N decreases by one, so the upper
bound in (6) also decreases by two, and is again achieved with equality. This process can be continued
sequentially, at each step omitting a single measurement in the same chosen subtree. The quantity ⌈2Nδ⌉
remains unchanged as N decreases by one and the number of extreme rays decreases by two, with the upper
bound always being achieved with equality, until there is only one node left in that subtree. When that
subtree’s last node is removed, N has decreased by 2P−1 in all, which is the point at which ⌈2Nδ⌉ decreases
by one. This last removal decreases N by one, the number of extreme rays also by one, and the upper
bound by one, so the upper bound is again achieved with equality. At this point we are effectively back
where we started but with one less outcome in the first party’s initial measurement, so start again omitting
measurements in another subtree. By continuing this process even into the last remaining subtree, we see
that the bound is tight for any finite N .
Let us now turn to the case of a separable measurement having an infinite number of distinct POVM

elements. Begin by choosing an ordering of these POVM elements. Let eαN be the number of distinct
extreme rays for party α in the first N of those POVM elements. Define the density of extreme rays as

De = lim
N→∞

1

N

P
∑

α=1

eαN , (7)

and we only include in the sum on the right, those parties for which at least one of its local operators is not
proportional to the identity. This quantity, De, depends on the ordering chosen. Then we have the following
theorem.

Theorem 3. For any finite-round LOCC protocol of P parties implementing a separable measurement

corresponding to an infinite number of distinct POVM elements {Kj = K
(1)
j ⊗ . . . ⊗ K

(P )
j }, there exists an

ordering of those POVM elements such that

De ≤ 2(1− 2−P ). (8)

There exist separable measurements with an infinite number of distinct POVM elements for which the upper
bound in (8) can be achieved with equality.
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The proof is given in Appendix A. The idea is that the LOCC protocol that implements the measurement
induces an ordering for which De satisfies the bound. One first prunes and rearranges the tree in a way similar
to what was done for finite N , and then the leaves of the resulting tree can be enumerated. This enumeration
provides the desired ordering. Actually, there is a great deal of freedom in choosing this enumeration, so our
proof actually demonstrates that there are an infinite number of orderings for which (8) is satisfied, and we
can strengthen Theorem 3 to some degree as follows.

Theorem 4. Consider any finite-round LOCC protocol of P parties implementing a separable measurement

corresponding to an infinite number of distinct POVM elements {Kj = K
(1)
j ⊗ . . . ⊗ K

(P )
j }. Then, for any

finite integer M , and for any choice and ordering of the first M of these POVM elements, there exists an
ordering of the remaining POVM elements such that De ≤ 2(1− 2−P ).

The proof of this result is included in Appendix A.
One can show that the bound in (8) is tight by the following discussion, which closely mirrors that given

above on how to achieve the upper bound with equality in the case of finite N . The first party makes an
initial measurement with an infinite number of outcomes, each of which is followed by a sequence of P−1 (one
for each of the other parties) two-outcome measurements along every branch. This means each outcome of
that initial measurement has descended from it 2P−1 leaf nodes and a total of 2P −1 nodes in its descendant
subtree. Choose these measurements such that all nodes are extreme rays and distinct from each other—this
is not difficult to do—and then order the POVM elements in the overall separable measurement by following
a right-to-left enumeration of the leaves of this LOCC tree. Considering the subtrees descendant from the
rightmost S outcomes of the initial measurement, one has N = 2P−1S leaf nodes and (2P −1)S extreme rays
for all P parties. As S → ∞, also N → ∞, and we see that De of (7) is equal to (2P −1)/2P−1 = 2(1−2−P )
for this P -round LOCC protocol, saturating the upper bound in (8).

III. APPLICATION TO RANK-1 MEASUREMENTS

For finite-N measurements in which every operator is rank-1, it is a simple process to apply Theorem 2
to determine if these measurements are candidates for LOCC. Each rank-1 product operator is a product
of rank-1 local operators, and rank-1 operators, being extreme rays in the full set of positive semidefinite
operators, are necessarily extreme in any subset of that full set. Therefore, one need only count the number of
distinct local operators in these measurements, and then violation of the bound in Theorem 2 automatically
rules out any possibility of implementation by finite-round LOCC.
Rank-1 measurements arise in the context of quantum state discrimination of a full basis of any multipartite

Hilbert space. When the basis is mutually orthogonal, the only4 measurement that can perfectly discriminate
the set of states consists of rank-1 projectors onto the states of that basis. When the basis is non-orthogonal,
it may still be the case that an optimal measurement consists of rank-1 operators. Clearly, these measurement
operators must be product for there to be any hope of accomplishing this task by LOCC, and if they are
product, Theorem 2 further restricts what may be possible. Examples illustrating the usefulness of Theorem 2
are given in the following two subsections.

A. Domino states

A well-known example of perfect discrimination of a full product basis where our results can be profitably
applied is that of Bennett, et. al., which was the first demonstration of the existence of separable measure-
ments that are not LOCC [4]. This set of nine states on a 3× 3 system, often referred to as domino states,
is (omitting normalization factors)

|Ψ1〉 = |1〉|1〉 |Ψ2〉 = |0〉(|0〉+ |1〉) |Ψ3〉 = |0〉(|0〉 − |1〉)

|Ψ4〉 = |2〉(|1〉+ |2〉) |Ψ5〉 = |2〉(|1〉 − |2〉) |Ψ6〉 = (|1〉+ |2〉)|0〉

|Ψ7〉 = (|1〉 − |2〉)|0〉 |Ψ8〉 = (|0〉+ |1〉)|2〉 |Ψ9〉 = (|0〉 − |1〉)|2〉. (9)

4 We restrict to measurements acting only on the original Hilbert space. While enlarging the Hilbert space creates the possibility
of using other measurements, these other measurements are effectively identical to the “only” measurement discussed here; see
Lemma 5 of [2]. Therefore, enlarging the Hilbert space does not allow accomplishment by LOCC of a task that is impossible
by LOCC acting only on the original Hilbert space.
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There are seven distinct local states for each of the P = 2 parties, so the N = 9 separable measurement that
perfectly discriminates these states involves seven distinct rank-1 local projectors on each side. This means
that whereas e1 = 7 = e2 and e1+e2 = 14, the upper bound on this sum in Theorem 2 is 2N−

⌈

N/2P−1
⌉

= 13.
Hence, this measurement violates Theorem 2, implying directly (the well-known result) that this set of states
cannot be perfectly discriminated by finite-round LOCC. The same conclusion immediately follows for any
set of “rotated domino states” [12], for which an arbitrary rotation is applied to each pair of superposition
states (such as |0〉+ |1〉 → cos(θ)|0〉+sin(θ)|1〉, |0〉− |1〉 → sin(θ)|0〉− cos(θ)|1〉). Note that for the result we
had obtained previously in [1], in which δ = N−1 instead of the value δ = 2−P > N−1 used here, we have
a bound of 2(N − 1) = 16, which does not allow a conclusion to be drawn for these states (rotated or not).
Therefore, these examples demonstrate the usefulness of the extension obtained in the present paper.

B. Unambiguous state discrimination on two qubits

Here, we provide a class of unambiguous state discrimination problems that can be optimally solved by a
unique4 separable measurement that cannot be implemented by finite-round LOCC, this latter conclusion
requiring our generalization to Theorem 2, because the conditions of Theorem 1 do not allow for a conclusion
to be reached. For unambiguous state discrimination of a set of states {|Φj〉}

N
j=1, we require a positive

operator-valued measure, or POVM, whose first N elements Πk satisfy

〈Φj |Πk|Φj〉 = pjδjk, (10)

and one last element

ΠN+1 = I −

N
∑

k=1

Πk ≥ 0, (11)

which represents the inconclusive outcome of the measurement. Consider the following set of four linearly
independent states on two qubits, S = {ηj , |Φj〉}, each given with a priori probability ηj ,

|Φ1〉 =
1

√

|β3|
2
+ |α3β1|

2
(β∗

3β
∗
1 |00〉+ β∗

3α
∗
1|01〉 − α∗

3β
∗
1 |10〉) ,

|Φ2〉 =
1

√

|β3|
2 + |α3β1|

2
(β∗

3β
∗
1 |00〉 − β∗

3α
∗
1|01〉 − α∗

3β
∗
1 |10〉) ,

|Φ3〉 = |10〉,

|Φ4〉 = |11〉, (12)

where for j = 1, 3 we require that αj 6= 0, βj 6= 0, and |αj |
2
+ |βj |

2
= 1, and we also require that |α1| ≤ |β1|

and η1 = η2. Finally, we apply one additional restriction to these coefficients, which as shown in Appendix B,
will ensure there is a unique measurement that is optimal for unambiguously discriminating these states.
This final restriction is,

(

1−

∣

∣

∣

∣

α1β3
β1

∣

∣

∣

∣

2
)2

≥
η3
4η1

∣

∣

∣

∣

α3

β1

∣

∣

∣

∣

2
(

|β3|
2 + |α3β1|

2
)

. (13)

We note that these restrictions leave a wide range of allowed values for the coefficients.

Since the states of (12) form a basis of the full Hilbert space, the only operators satisfying (10) are those
proportional to a projector onto one of the reciprocal set of states, {|Ψk〉}, which are uniquely determined
by the condition

〈Ψk|Φj〉 = δjk. (14)
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For the states of (12), the (generally non-normalized) reciprocal set consists of

|Ψ1〉 = q|0〉 (α1|0〉+ β1|1〉) ,

|Ψ2〉 = q|0〉 (α1|0〉 − β1|1〉) ,

|Ψ3〉 =

(

α3

β3
|0〉+ |1〉

)

|0〉,

|Ψ4〉 = |11〉, (15)

where q =

√

|β3|
2
+ |α3β1|

2

/

(2α∗
1β

∗
1β

∗
3). Therefore, the first four POVM elements in any measurement

that succeeds in unambiguously discriminating S must be proportional to a projector onto one of these
states. That is, our measurement consists of operators

Πk = pk [Ψk] , k = 1, . . . , 4

Π5 = I −
4
∑

k=1

pk [Ψk] , (16)

and we have defined [ψ] = |ψ〉〈ψ|. Optimization of our measurement consists of minimizing the probability
of obtaining an inconclusive result, where this probability is given by

p5 =

4
∑

j=1

ηj〈Φj |Π5|Φj〉 = 1−

4
∑

j=1

ηjpj, (17)

and we have used (14) to obtain the final expression in the preceding equation. Thus, we wish to maximize
∑

j ηjpj subject to the constraint that Π5 ≥ 0.

From (15) and the second line of (16), we can write Π5 in the computational basis as

Π5 =









1− |qα1|
2
(p1 + p2)− |α3/β3|

2p3 − |q|
2
α1β

∗
1 (p1 − p2) −p3α3/β3 0

− |q|
2
α∗
1β1(p1 − p2) 1− |qβ1|

2
(p1 + p2) 0 0

−p3α
∗
3/β

∗
3 0 1− p3 0

0 0 0 1− p4









. (18)

Now, Π5 ≥ 0 if and only if every one of its principal minors is non-negative. To begin with, it is clear that
p4 ≤ 1 and p1 + p2 ≤ 1/ |qβ1|

2. Since all principal minors are either independent of p4 or proportional to
1− p4, we see (unsurprisingly, since |Φ4〉 is orthogonal to all other |Φj〉) that p4 = 1 is always achievable, no
matter what values are taken by the other pj .

Let us first consider what happens when p1+p2 = 1/ |qβ1|
2
. Then, the (1, 2) principal minor (that involving

the first and second rows and columns) is negative unless p1 = p2 = 1/2|qβ1|
2, which must therefore hold.

From the (1, 3) principal minor, we then have that

p3 ≤
|β3|

2
[

1− |qα1|
2 (p1 + p2)

]

1− |qα1β3|
2
(p1 + p2)

=
|β3|

2
(

1− |α1/β1|
2
)

1− |α1β3/β1|
2 ≡ p̂3. (19)

Note that since |β3| < 1, the upper bound in this expression is strictly less than unity, and one can readily
check that Π5 is positive semidefinite when p3 saturates this bound. When this is the case, we have that

p5 = 1−
η1

|qβ1|
2 −

η3|β3|
2
(

1− |α1/β1|
2
)

1− |α1β3/β1|
2 − η4. (20)

In fact, it turns out that for these choices of the pj , Π5 = [π5]⊗ [0] is a rank-1 product operator, where

|π5〉 = µ|0〉+ ν|1〉, (21)



10

with

µ = eiθ
√

1− |α1/β1|
2 − |α3/β3|

2 p̂3,

ν = eiφ
√

1− p̂3. (22)

Up to an unimportant overall phase, we may choose θ = 0, and then −φ must be the same as the phase of
α3/β3, yielding a unique POVM for these choices of the pj. We can show, see Appendix B, that the value of

p5 cannot be less than that given in (20), and that this value of p5 requires that p1+p2 = 1/ |qβ1|
2
. Therefore,

the foregoing choices of the pj yield the unique, optimal measurement for unambiguous discrimination of the
states in (12), which is a manifestly separable measurement, as all POVM elements are product operators.
Hence, separable measurements are as good as global ones for this task. On the other hand, we can use
Theorem 2 to immediately see that this separable measurement cannot be implemented by finite-round
LOCC. Since each of the Πj is a rank-1 product operator, each is a tensor product of two operators that
are themselves each an extreme ray in the full convex cone of positive operators for their respective spaces.
Therefore, we can simply count the number of distinct such operators to obtain the desired number of extreme
rays, e1 and e2. For the first party, we have operators [0], [π3], [1], and [π5], where |π3〉 = α3|0〉+ β3|1〉, so
e1 = 4. Similarly for the second party, we have operators [π1], [π2], [0], and [1], with |π1〉 = α1|0〉+β1|1〉 and
|π2〉 = α1|0〉− β1|1〉, so e2 = 4, as well. The measurement consists of N = 5 distinct operators, so we have a
violation of the conditions of Theorem 2 with 8 = e1 + e2 > 3N/2 = 7.5. On the other hand, 2(N − 1) = 8,
so the conditions of Theorem 1 are not violated. Hence, while Theorem 1 is not strong enough to allow a
conclusion to be drawn about the LOCC implementation of this measurement, Theorem 2 tells us that it is
indeed impossible by finite-round LOCC. As the αj , βj are constrained only by the conditions given below
(12), we thus have a continuous class of optimal unambiguous state discrimination problems each achievable
by a separable measurement, but for which Theorem 2 tells us directly that this is impossible by finite-round
LOCC. Since Theorem 1 is too weak to allow a conclusion to be drawn, these examples demonstrate the
importance of the extension to Theorem 2. Note also that this class includes a wide range of possible a
priori probabilities for each set of the other coefficients defining the set S.

IV. CONCLUSIONS

In summary, we have proved a necessary condition for any finite-round LOCC protocol, which provides
an upper bound on the number of extreme rays appearing in the collection of POVM elements associated
with a separable measurement, see Theorem 2 and the accompanying discussion. We have shown that the
upper bound in Theorem 2 is tight for all measurements having a finite number of distinct POVM elements
by providing examples of measurements for which the upper bound is achieved with equality. This has been
further extended in Theorems 3 and 4 to cover cases of measurements with an infinite number of distinct
POVM elements, and the bound in this case can also be achieved with equality. These results extend a
previous result obtained in [1], restated here as Theorem 1, but the corresponding upper bound in that
theorem is tight only when there are relatively few distinct POVM elements.
In Section III, we have shown that the well-known separable measurement of [4] violates the necessary

condition of Theorem 2, providing one more way of showing that this measurement cannot be implemented
by finite-round LOCC. We also introduced a new class of unambiguous state discrimination problems, each
of which can be optimally discriminated by a separable measurement, but for which Theorem 2 implies they
cannot be optimally discriminated by finite-round LOCC. In all these cases, the corresponding separable
measurement does not violate the condition of Theorem 1, demonstrating the importance of the extension
obtained in Theorem 2.
We have conjectured elsewhere that Theorem 1 also applies to infinite-round LOCC protocols, and we

continue to believe this conjecture holds. Similarly, we also believe that Theorem 2 holds for infinite-round
protocols, but we have yet to find a proof. We feel less confident this will also be the case for Theorems 3 and
4, though it is certainly a possibility. If these conjectures turn out to be true, we will have found yet another
way of proving that there is a finite gap between what can be achieved by the separable measurement which
successfully distinguishes the nine states of [4], as opposed to what can be achieved by LOCC. We will also
then have shown a similar finite gap for each example in the class of optimal unambiguous discrimination
problems introduced in Sec. III.
Acknowledgments — We would like to thank Li Yu and Dan Stahlke for very helpful discussions. This work
has been supported in part by the National Science Foundation through Grant No. 1205931.
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Appendix A: Proof of Theorems 3 and 4

Our proof of Theorems 3 and 4 will be very similar to that of Theorem 2, except that we will not start
with a canonical LOCC tree, since such a tree, being full binary, would require the infinite-leaf tree to have
infinite height, whereas we wish to work with trees of finite height. According to Lemmas 2 and 4 of [17],
we may nonetheless assume that our LOCC tree is such that every nonleaf node has at least two children
and that, of the POVM elements labeling its children, no two are proportional to each other.
Although the following lemma applies only to trees with a finite number of leaf nodes, it will play an

important role in our arguments.

Lemma 5. For any tree of height h in which every nonleaf node has at least two children, the ratio of the
total number of nodes n to the number of leaf nodes l in the tree satisfies

n

l
≤ 2

(

1− 2−(h+1)
)

, (A1)

as long as l, and hence n, is finite.

Proof. The proof is by induction on the height h. For h = 1, the tree has a root node and l ≥ 2 leaf nodes,
for a total of n = l+1 nodes in all. Then, n/l = 1+1/l ≤ 3/2 = 2

(

1− 2−(h+1)
)

. Now assume (A1) holds for
h = H − 1, and let us show that it then holds for h = H . Let TH be a tree of height H obtained from TH−1

by adding children to some of the leaf nodes of TH−1. Those leaf nodes to which we do not add children are
terminal at H − 1, let there be tH−1 of these terminal leaves. If we add the number of leaf nodes from TH
to the total number of nodes in TH−1, we overcount the total number of nodes in TH because those terminal
leaves have been counted twice. Therefore, the total number of nodes in TH is nH = nH−1 + lH − tH−1.
In addition, since we consider only trees for which each nonleaf node has at least two children, we have
lH ≥ 2 (lH−1 − tH−1) + tH−1 = 2lH−1 − tH−1. Hence, defining x = tH−1/lH−1, we have

nH

lH
= 1 +

nH−1 − tH−1

lH
≤ 1 +

nH−1 − tH−1

2lH−1 − tH−1
= 1 +

nH−1/lH−1 − x

2− x

≤ 1 +
2
(

1− 2−H
)

− x

2− x
= 2−

2−(H−1)

2− x
≤ 2− 2−H = 2

(

1− 2−(H+1)
)

, (A2)

where the first inequality on the second line is by the induction assumption, and this completes the proof.�
Proof of Theorem 3. Consider any finite-round LOCC tree implementing a separable measurement defined
by the infinite set of POVM elements {Kj}. This tree has an infinite number of leaf nodes, at least one for
each Kj . We prune this tree following the technique of [1], except that if at any stage of this process we
are removing a subtree whose root has more than one sibling, then we simply remove that subtree without
removing an additional nonleaf node (since in [1] the tree was full binary, the subtrees considered there
always had one and only one sibling; it was then necessary to remove an extra nonleaf node in order to keep
the tree full binary; see [1] for details). If that subtree has only one sibling, then remove it according to the
rules used in [1]. The pruning is complete when there is one and only one leaf for each of the Kj . According
to this procedure, every nonleaf node in the resulting tree still has at least two children.
The next step is to rearrange the resulting tree in the same way we did for the finite-N case, exchanging

an extreme node with one of its non-extreme children, if there is one, and continuing this process until no
extreme node has a non-extreme descendant. The tree that remains has all its extreme nodes in subtrees
within which every node is extreme, and just as in the finite-N case, these subtrees can have height no
greater than P − 1.
Choose any one of these subtrees and set S = 1. If this is a finite subtree we can include it in its entirety

from the outset, so add another subtree to the collection and increment S. If instead it is an infinite subtree,
we will need to count its nodes using some kind of a limiting procedure. Hence for each infinite subtree,
instead of starting with the entire subtree, add it in as a “skeleton” of itself, one which is a full binary
tree. Any such skeleton will do, as long as every branch in it is also a branch in the original subtree. These
skeletons may be obtained from their corresponding subtree by removing all but two children from every
node that has more than two, while also removing the complete branches descended from those removed
children. At each subsequent step, include another subtree in the collection and increment S. At the same
time, for each skeleton of an infinite subtree Ts, add a full binary branch to that skeleton, by which we mean
a branch for which every nonleaf node has two children, where the added branch is either one that was in
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the original Ts, or a skeleton of one that was. Add these skeletal branches in the order indicated by index
s, starting at the infinite subtree with smallest s and proceeding to the one with next smallest s, and so on.
Continue this process of adding subtrees and branches indefinitely. In the limit of an infinite number of steps
of this procedure, each Ts will be fully reconstructed and every subtree will be included in the collection. If
all subtrees are finite, there will be an infinite number of subtrees to include, one at each step. Otherwise,
there may be a finite or infinite number of subtrees to include, but reconstruction of the infinite subtrees will
always require an infinite number of steps. In any case, at each step of this infinitely long process, we have
a finite number S of subtrees, each having ls leaf nodes and ns nodes in total, with both ls and ns finite.
We need to identify a precise ordering of the Kj . Such an ordering may be obtained directly from the

procedure described above of including more and more subtrees, while at the same time reconstructing
each infinite subtree in a step-by-step fashion. In fact, this procedure generates an infinite number of such
orderings. The index s, which can be assigned arbitrarily, provides a kind of coarse-grained order for the
Kj , indicating when each finite subtree is added, when each infinite one is begun as a skeleton, and also the
order in which each additional skeletal branch is added to those infinite subtrees previously begun. There
still remains the task of ordering the set of Kj within each of these “coarse-grained” objects. Note that each
of the Kj appears in one and only one of the subtrees (recall that the pruned tree has one and only one
appearance of each Kj), so this fine-grained ordering will be unambiguous. For each skeletal branch then,
choose any ordering that has the Kj that appear within it ordered one right after another, which then ensures
that there is no more than one branch at a time in the entire collection of (partially reconstructed) subtrees
that is not full binary. This means that at each step of this procedure, every nonleaf node in the entire
collection has at least two children, except those nodes in the branch that is presently being constructed.5

At any given point, let s∗ denote the one subtree that has a branch that is not yet partially completed
to full binary. Let δn be the number of nodes on the skeletal branch in this subtree that is presently being
constructed and is not yet part of a full binary skeleton, and let δl be the corresponding number of leaves.
Given that these branches have height no greater than P − 1, then the number of leaf nodes in the skeletal
branch that is not yet full binary must satisfy δl ≤ 2P−1. Define nC = ns∗ − δn and lC = ls∗ − δl. Then
since nC , lC count the nodes and leaves that lie in branches for which every nonleaf node has at least two
children, we have from Lemma 5 that nC/lC ≤ 2

(

1− 2P−1
)

. Now, each time one adds a leaf, one adds no
more than P nodes, strictly fewer than this if that leaf is attaching to a subtree already begun. Therefore,
δn/δl ≤ P .
Define N =

∑

s ls, which is the number of distinct Kj appearing in the collection of subtrees at this stage
of the process. The total number of extreme rays appearing in this collection is no greater than the total
number of nodes,

∑

α eαN ≤
∑

s ns. Then, for any ordering as described above, we have

1

N

∑

α

eαN ≤

S
∑

s=1

ns

/ S
∑

s=1

ls

=

S
∑

s6=s∗

ls

(

ns

ls

)/ S
∑

s=1

ls + lC

(

nC

lC

)/ S
∑

s=1

ls + δl

(

δn

δl

)/ S
∑

s=1

ls

≤ 2
(

1− 2−P
)





S
∑

s6=s∗

ls + lC





/ S
∑

s=1

ls + Pδl

/ S
∑

s=1

ls

= 2
(

1− 2−P
)

+
(

P − 2 + 2−(P−1)
)

δl

/ S
∑

s=1

ls

≤ 2
(

1− 2−P
)

+
(

P − 2 + 2−(P−1)
)

2P−1

/ S
∑

s=1

ls. (A3)

5 To be more precise about this, for each new subtree, start with any one leaf that was at the end of a branch of height
h ≤ P − 1, the same as that of the original subtree, adding this solitary leaf along with its h − 1 ancestors, one of which is
the root of that subtree. The next leaf is chosen as one whose branch attaches to that preceding branch (which will add no
more than h− 1 nodes to this subtree, including that leaf, since it must share at least one node with the preceding branch to
which it attaches). Subsequent leaves are chosen to attach to this same skeleton in a way such that no node in it has more
than two children, and this continues until every nonleaf node has two. Then, move on to the next subtree. If a subtree has
already been started, then it has a full binary skeleton already present, so add any additional leaf to start the next skeleton.
This leaf attaches to that full binary skeleton at a node that already had at least two children, so will now have more than
two, but in general, this new leaf will have ancestors that have only one child node. Continue adding leaves to the skeleton
consisting of that leaf and its ancestors until it is also full binary, and then move on to the next subtree, continuing this
process indefinitely.
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where the third line follows from Lemma 5, which tells us that ns/ls ≤ 2
(

1− 2−P
)

for all s 6= s∗ and that

nC/lC ≤ 2
(

1− 2−P
)

, along with the fact that δn/δl ≤ P , as argued above. The last line follows from

δl ≤ 2P−1, which was also argued above. Now as S → ∞, N =
∑S

s=1 ls → ∞. Hence in this limit, we see

that the second term in the last line approaches zero, and we recover De ≤ 2
(

1− 2−P
)

. This completes the
proof of Theorem 3. �

Proof of Theorem 4. Theorem 4 follows almost immediately from the proof of Theorem 3. For any ordering
of the first M of the Kj , fill in the subtrees constructed from those M leaves until they are full binary.
Then, for the remaining leaves, continue precisely as described in the proof of Theorem 3. The result follows
directly. �

Appendix B: Proof of optimality for the measurement found at the end of Sec. III B

We wish to show that the probability p5 given in (20) is optimal for unambiguous discrimination of the

states in (12), and that the measurement found at the end of that section, having p1 = p2 = 1/2 |qβ1|
2
and

p3 = p̂3 is the unique optimal measurement. To do this, let us consider all other measurements, for which
we can write

p1 =
1 + δ1

2 |qβ1|
2 ,

p2 =
1 + δ2

2 |qβ1|
2 , (B1)

and then Π5 becomes

Π5 =







1− |α1/β1|
2 [1 + (δ1 + δ2)/2]− |α3/β3|

2p3 −α1(δ1 − δ2)/2β1 −p3α3/β3 0
−α∗

1(δ1 − δ2)/2β
∗
1 −(δ1 + δ2)/2 0 0

−p3α
∗
3/β

∗
3 0 1− p3 0

0 0 0 1− p4






. (B2)

We first notice immediately that Π5 ≥ 0 implies that δ1+ δ2 ≤ 0, and if δ1+ δ2 = 0, then it also implies that
δ1 = 0 = δ2, in which case we are back to the measurement found in Sec. III B. We are trying to determine
if there exists a measurement different from, but which performs at least as well as, the one of Sec. III B.
Therefore, let us assume that δ1 + δ2 < 0 and see if there exists p3, δ1, δ2 such that this new measurement
does at least as well as the previous one, which translates to the condition,

1−
η1

|qβ1|
2 −

η3|β3|
2
(

1− |α1/β1|
2
)

1− |α1β3/β1|
2 ≥ 1−

η1

|qβ1|
2 −

η1 (δ1 + δ2)

2 |qβ1|
2 − η3p3, (B3)

or

p3 ≥
|β3|

2
(

1− |α1/β1|
2
)

1− |α1β3/β1|
2 −

η1 (δ1 + δ2)

2η3 |qβ1|
2 . (B4)

However, from the (1, 3) principal minor of (B2), we also have that

p3 ≤
|β3|

2
(

1− |qα1|
2
(p1 + p2)

]

1− |qα1β3|
2
(p1 + p2)

=
|β3|

2
(

1− |α1/β1|
2
[1 + (δ1 + δ2) /2]

)

1− |α1β3/β1|
2
[1 + (δ1 + δ2) /2]

. (B5)

We thus have that the right-hand side of (B4) can be no greater than that of (B5), a condition which reduces
to

(δ1 + δ2) |α1α3β3|
2 ≤

(δ1 + δ2) η1
|q|2η3

(

1− |α1β3/β1|
2
)(

1− |α1β3/β1|
2 [1 + (δ1 + δ2) /2]

)

. (B6)
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Since by assumption, δ1 + δ2 < 0, this can be rearranged to give

(δ1 + δ2)

2

∣

∣

∣

∣

α1β3
β1

∣

∣

∣

∣

2

≥ 1−

∣

∣

∣

∣

α1β3
β1

∣

∣

∣

∣

2

−
η3 |qα1α3β3|

2

η1

(

1− |α1β3/β1|
2
) . (B7)

This is impossible, since the left-hand side of this is negative but by (13), the right-hand side is non-
negative. We can therefore conclude that there is no measurement that does as well as that found at the
end of Sec. III B, which is therefore the unique optimal measurement for unambiguously discriminating the
states of (12). This is the result we set out to prove, so we are done.
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