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Single quantum dots (QDs) are frequently used as single-photon sources, taking advantage of
the final exciton decay in a cascade that produces energetically detuned photons. We propose and
analyze a new concept of single photon source, namely a few-QD microcavity system driven close to,
but below the lasing threshold under strong excitation. Surprisingly, even for two or three QDs inside
a cavity, antibunching is observed. To quantify the results, we find that a classification of single-
photon emission in terms of antibunching in the autocorrelation function g(2)(0) is insufficient and
more details of the photon statistics are required. Our investigations are based on a quantum-optical
theory that we solve to obtain the density operator for the quantum-mechanical active medium and
radiation field.

Single-photon sources are key components in quantum-
information technologies. They enable the realization
of fundamental quantum-mechanical concepts in cur-
rent applications [1], such as quantum key distribution
(QKD), quantum teleportation, and Bell measurements.
To generate single photons, in many practical applica-
tions sources based on parametric down conversion are
used [2–4]. Alternatively, a single emitter can be driven
with a pump pulse to emit exactly one photon on demand
per excitation cycle like a turnstile device [5]. Semicon-
ductor quantum dots (QDs) possess distinct properties
that make them suited for applications as single-photon
sources, such as the possibility of electrical pumping [6].
Resonant excitation schemes have been used to get closer
to the ideal case of an isolated “atom-like” single-photon
emitter [7]. When using a single QD, a preceding photon
from the biexciton recombination can be used to her-
ald the single photon from the exciton recombination,
which is always second in the cascade. The extremely
high single-photon purity (close to the ideal single-photon
Fock-state) obtained from these sources comes at the cost
of low repetition rates that are limited by the free-space
radiative lifetime of hundreds of ps [1, 8].

QD microcavity laser devices have been demonstrated
to exhibit non-classical features in the light emission
around threshold [9, 10]. In the following, we explore
this quantum-regime for single-photon operation from a
single- to few-emitter QD medium. The presence of a
cavity enhances the emission rate via the Purcell effect
[11], and operation in the GHz regime has been demon-
strated for a single QD in a micropillar resonator [12].
The prospect of achieving single-photon emission with
several QD emitters coupling to the cavity reduces the
requirement on device fabrication to rely on samples with
only a single QD.

For single-QD microcavity devices, we identify an op-
timal balance between cavity-loss rate and light-matter
coupling strength that maximizes the emission rate and
the degree of antibunching seen in g(2)(0). Next, we ex-
plore devices with up to three QDs and quantify their
performance in terms of achievable repetition rates, pu-
rity of single-photon emission, and antibunching. We
see that g(2)(0) fails in uniquely classifying single-photon

emission, as the same degree of purity of single-photon
emission can be reflected by different values of g(2)(0).
Before results are presented, we begin by reviewing the
definition and interpretation of g(2)(0) and present the
theoretical model.
From the density operator ρ(t) one can obtain the pho-

ton statistics for a single mode of the quantized electro-
magnetic field

pn = ρphotnn , (1)

where ρphotnm = trel ρjj′nm is the photonic density matrix
obtained by tracing out the electronic degrees of freedom.
The photon statistics contains direct information on the
single-photon emission probability p1 and is therefore of
central interest. Frequently single-photon performance is
expressed in terms of the autocorrelation function g(2)(0)
[13–15]. This is for good reason, since measurements of
the second-order photon correlation function g(2)(τ) are
well-developed using Hanbury-Brown and Twiss (HBT)
setups. The single-mode second-order photon correlation
(or autocorrelation) function g(2)(0) = (〈n2〉 − 〈n〉)/〈n〉2

is determined by the first two moments (k = 1 and 2)

〈nk〉 =

∞∑

n=0

nkpn (2)

of the photon statistics. We emphasize that g(2)(0) is
therefore an averaged quantity that can only be inter-
preted correctly in regimes where the photon statistics
is known (either from other indicators, or from intu-
ition). A well known example is where the single field
mode is represented by a Fock state |n〉. In this case,
g(2)(0) = 1−1/n, which implies that a single-photon Fock
state exhibits g(2)(0) = 0, and a two-photon Fock state
g(2)(0) = 0.5 [16]. For single and few-emitter microcav-
ity systems, especially below and around threshold, the
photon statistics is neither Poissonian, nor corresponds
to a Fock state, and the probability of realizing a single-
photon state in comparison to multi-photon states cannot
be directly inferred from the autocorrelation function. In
quantum-optics, the identification of non-classical states
of light is an active research branch, and various methods
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have been suggested to obtain access to the probability
distribution beyond the grasp of second-order HBT mea-
surements [10, 17–21].
a. Theory. Our theoretical investigations are based

on a microscopic semiconductor model that describes the
coupled system of few-QD emitters and cavity mode. We
solve the von Neumann-Lindblad equation

∂ρ

∂t
= −i[H, ρ] +

∑

X

LX(ρ) (3)

for the density operator ρ of the coupled electronic and
photonic degrees of freedom numerically. As a basis, we
use the direct product |j1, . . . , jN , n〉 of the configurations
|j1, . . . , jN 〉 of the electronic states of N QDs and the
Fock states |n〉 of the cavity mode. The light-matter in-
teraction is created by the Tavis-Cummings Hamiltonian
H = H0 + g

∑
α,{ij}(b

†Qα
ij + h.c.), where g is the cou-

pling strength, b† is the photon creation operator with
respect to the cavity mode, and Qα

ij = |i〉α〈j|α is a pro-
jection operator acting on the configurations i and j of
QD α. The summation over {ij} encompasses all tran-
sitions between configurations that involve a recombina-
tion of a QD s-shell electron-hole pair. The free part
H0 =

∑
α,i ε

α
i Q

α
ii + ~ωb†b contains the cofiguration en-

ergies in all QDs and the contribution from the electric
field. The last term in Eq. (3) gives the Lindblad contri-
butions describing dissipative influences of the environ-
ment, which will be discussed later.
The size of the Hilbert space grows rapidly with in-

creasing QD number, but allows for a numerical solution
of a small number (≈ 4-5) of emitters fully accounting
for correlations between the multi-exciton states of each
emitter and amongst emitters, as well as emitter-photon
and photon-photon correlations. Correlations between
electrons in the QD states and photons determine the
statistical properties of the emitted radiation. The fea-
sibility of factorization-based methods, where these cor-
relations are taken into consideration, have been demon-
strated for the calculation of threshold-properties of mi-
crolasers [9, 22]. Correlations between carriers in differ-
ent QD emitters are responsible for superradiant coupling
effects [23]. Factorization-based approaches rely on a de-
creasing contribution of correlations between an increas-
ing number of particles in order to facilitate a truncation.
In a system with only a few QD emitters, this criterion is
not fulfilled. For the present work, we have verified the
necessity to use the numerically much more demanding
direct solution of the von Neumann-Lindblad equation.
In the following calculations, we use typical material

parameters for InGaAs/GaAs QDs, see the caption to
Fig. 1. For each QD emitter we account for two con-
fined single-particle states each, for electrons and holes.
The ground state configuration is given by the filled
valence- and empty conduction-band states. By consid-
ering different possibilities to place electron-hole pairs in
the single-particle states, one arrives six possible configu-
rations for each QD: two bright states close to the s-shell

transition energy, three dark states, and the ground state
[24, 25]. All N emitters are connected by the light field
(radiative coupling), so that 6N configurations represent
the coupled system and are used in the calculation. We
assume the contributing QD transitions to be fully res-
onant with the cavity mode. Off-resonant coupling and
line broadening have been shown to facilitate efficient
coupling at high carrier densities and to compensate for
slight detunings from the cavity [26–28].
The embedding of self-assembled QD emitters in

the surrounding semiconductor material enables capture
and relaxation of charge carriers due to Coulomb- and
phonon-mediated scattering processes. Each scattering
process X is accounted for by a reservoir-interaction
Lindblad term

LX =
γX
2

(2XρX† −X†ρX − ρX†X) (4)

in the von Neumann-Lindblad equation (3). Here, γX is
the associated rate, ρ is the density operator of the cou-
pled many-emitter-photon system, and the operators X
act either on the electronic configurations or the cavity
photons, depending on the nature of the dissipative pro-
cess. The Lindblad formalism ensures a consistent treat-
ment of scattering and dephasing, i.e. scattering into and
out of a state causes dephasing of coherent polarizations
involving this same state [29].
Off-resonant excitation into the wetting layer is mod-

eled as capture of electron-hole pairs into the highest con-
fined QD states at rate γP . Scattering from p- to s-shell
takes place at rate γr, and photons leave the cavity at rate
κ. The Lindblad-forms are constructed accordingly [24].
As intra-QD carrier relaxation rates, we use γr = 0.1/ps.
For the situation under study, i.e. strong excitation into
saturation at elevated temperatures, this value lies in the
range between 3–10ps confirmed by recent experiments
and quantum-kinetic calculations [30, 31].
The limitation to four localized single-particle states

per QD serves well for the suggested scenario. It incor-
porates the main features of multi-level QD systems in-
stead of two-level systems. Since excitation is strong, the
system emits from a higher multi-exciton state, whereas
the interplay of different multi-exciton states is not so
relevant. In this respect, increasing the number of local-
ized states will not add any new physics, but will make a
numerical solution unnecessarily challenging, as we solve
the full von-Neumann equation for the full state space of
a coupled 3-QD (six configurations each)-photon system.
b. Emission from a single QD in a cavity. In Fig. 1

we characterize different operational regimes for a sin-
gle QD in a microcavity by showing input/output curves
and the photon autocorrelation function versus pump
rate. Consistent with most experiments, operation in the
weak-coupling regime is assumed, i.e. dissipation exceeds
the light-matter coupling. The blue curves depict essen-
tially perfect single-photon operation, with g(2)(0) ≈ 0
for the entire excitation range. This is possible because
with a cavity loss rate of κ = 5/ps, much faster than the
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FIG. 1. Left: Mean photon number and Right: zero-delay
second-order photon correlation versus pump rate. Cavity
losses are 0.005, 0.05, 0.5, and 5/ps from top to bottom. Other
parameters are the light-matter coupling constant g = 0.1/ps,
and carrier relaxation rate γr = 0.1/ps. The results in all
remaining figures are obtained for a pump rate of 10/ps, which
is far into the saturated regime.

optical recombination time, there is practically no cavity-
storage effect. The down side is a low photon emission
rate, as given by

r = κ〈n〉 . (5)

The second lowest input/output curve (κ = 0.5/ps)
shows improvement in the emission rate from a stronger
cavity effect. As long as the cavity lifetime is sufficiently
short, no significant photon population can build up in
the cavity mode. Thus, photon statistics remains close
to that of the cavity-less single emitter. The top two
curves in Fig. 1 for κ = 0.05/ps and 0.005/ps show that
while photon number further increases with lower κ, anti-
bunching (quantified by g(2)(0) < 1) is severely degraded.
The combination of low cavity loss and high excitation
can even drive the single emitter into lasing [15, 24], indi-
cated by the black curves approaching g(2)(0) = 1 and a
mean photon number above unity at high pump rates. It
is worth noting that in all cases, saturation of the single
QD emitter is reached, above which emission properties
remain unchanged even if the pump rate is further in-
creased.
Since strong excitation maximizes the photon emission

rate r, we now focus on this regime and compare the at-
tainable degree of antibunching as a function of the at-
tainable emission rate. With the correct combination of
cavity-Q and light-matter coupling strength, it is possible
to maximize the emission rate far beyond the free-emitter
case without cavity, and yet maintain a desired level of
antibunching. For the single emitter, represented by the
black curve in Fig. 2, results indicate g(2)(0) < 0.5 for
emission rates up to 40GHz (0.04/ps), which relates to
the pulse-repetition rate for photon-on-demand sources.
As an advantage, this result is insensitive to variations
in pump rate.
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FIG. 2. Autocorrelation function g(2)(0) as a function of the
photon output rate for N=1,2,3 emitters. Each curve is ob-
tained from a series of calculations where the cavity-Q is var-
ied. From left to right, κ = 10, 6.3, 4, 2.5, 1.6, 1, 0.63, 0.4,
0.25, 0.16, 0.1, 0.063, 0.04, 0.025, 0.016, 0.01/ps, open circles
indicate κ = 2.5/ps on each curve. High excitation is used to
drive the system into saturation.

c. Emission from multiple QDs in a cavity. It is
widely believed that single-photon purity degrades dras-
tically when there is more than one emitter, to the extent
that photon statistics becomes totally classical. This has
e.g. been demonstrated by Agarwal et al. when study-
ing resonance fluorescence in atoms [32]. Even in state-
of-the-art QD-microcavity samples, background emitters
are often present and couple even non-resonantly to a
cavity mode [15, 26, 27, 33]. In the following we address
the question whether such samples can still constitute
efficient single-photon sources. To obtain a quantitative
assessment of the problem, we repeat the calculations for
two and three identical QDs that are all resonant with
the cavity mode. The results are summarized by the up-
per two curves in Fig. 2. Naturally, the emission rate
increases beyond that of the single-QD limit when two
or three QDs emit at the same time. It is interesting
to see that both cases exhibit non-classical antibunching
with g(2)(0) as low as 0.6 in the two-QD case.
In the following, we reexamine the results in terms of

single-photon purity η (the inverse η−1 is the error)

η =
p1∑
i≥2 pi

, (6)

which we define by separating the probability p1 to have
a single photon from the probability to find multiple pho-
tons. Accessing all elements pn of the photon statistics
is possible in the density-matrix formalism. In contrast
to g(2)(0), this quantity, together with the emission rate,
allow to assess single-photon performance irrespective of
the underlying photon statistics. Note that similar pa-
rameters have been considered elsewhere, e.g. in [34, 35].
In the left panel of Fig. 3 the purity is compared to

g(2)(0) on the horizontal axis. For a microcavity with
one, two or three QDs single-photon production with
η > 1000 is possible. However, there is no one-to-one
correspondence between η and g(2)(0) for systems of dif-
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FIG. 3. Single-photon purity η vs. g(2)(0) (left) and vs.
output rate r (right) for N=1,2,3 emitters in a cavity. From
high to low η, κ = 10, 6.3, 4, 2.5, 1.6, 1, 0.63, 0.4, 0.25, 0.16,
0.1, 0.063, 0.04, 0.025, 0.016, 0.01/ps, open circles indicate
κ = 0.63/ps on each curve.

ferent QD numbers. As an example, a three-QD micro-
cavity system exhibiting g(2)(0) ≈ 0.7 is as good as a
single-QD microcavity system exhibiting g(2)(0) ≈ 0.4
in terms of purity/error. This demonstrates that in a
few-emitter microcavity system, where statistical proper-
ties of the emission are subject to cavity-QED and few-
emitter effects, g(2)(0) fails as measure for the perfor-
mance of single-photon emission and may, in fact, even
give misleading results when used as sole indicator.

Device relevant and central result is the right panel
of Fig. 3 showing η versus emission rate r. Comparing
the cases for one, two and three emitters, all exhibit the
possibility of large η (here > 103) in the limit of vanish-
ing cavity effects, and achieved at the expense of lower
emission rate. Higher purity can only be obtained with
the single-QD system (η > 105 in the same limit). For
practical applications, such high values of the purity are
often not required, especially if the emission rate can be
increased at the same time. For example, for a value of
η ≈ 100, which can be achieved with one, two or three
QDs, the two and three-emitter microcavity systems even

offer an enhancement in emission rate up to a factor of
two in comparison to the single-emitter system. At the
highest output rates, η becomes smaller than unity for
any number of emitters, showing that the photon statis-
tics evolves into a Poisson distribution where the peak
resides no longer at the origin. Then lasing takes place
and puts a boundary on the single-photon operational
regime.
d. Conclusion We have investigated the potential of

strongly excited few-QD microcavity systems as single
photon sources. Strong excitation ensures highest possi-
ble repetition rates and insensitivity to pump-rate fluctu-
ations. We map out the tradeoff in device performance in
terms of emission rate and single-photon purity for cavi-
ties with different Q factors. Surprisingly, single-photon
purity up to 1000 (1h of the emitted photons come in
bunches of two and more) can be achieved with two and
three emitters coupling to the same cavity mode. Puri-
ties around 100 and less even benefit from a few-emitter
gain medium in terms of emission rate, and we predict
an attainable rate of up to ≈ 70GHz. Our results on
single-photon purity in the presence of several emitters
(single emitter plus few additional ”unwanted” emitters)
has practical value, as it indicates that the requirement
for samples to be free of residual emitters is less strict
than typically assumed.
While antibunching is characterized in terms of g(2)(0),

it fails to quantify the performance of the proposed few-
QD microcavity single-photon source. There is no one-
to-one correspondence between single-photon purity and
g(2)(0) for different number of QDs in the cavity. For
the two- and three-QD case, g(2)(0) exhibits non-classical
values above 0.5, whereas for the same degree of single-
photon purity, the single-emitter case satisfies g(2)(0) <
0.5. The origin of this failure lies is the fact that in
the proposed operational regime, strong cavity-QED and
few-emitter effects let the photon statistics deviate from
that of a pure Fock, thermal or coherent state.
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