
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Nonlinear fluctuations and dissipation in matter revealed
by quantum light

Shaul Mukamel and Konstantin E. Dorfman
Phys. Rev. A 91, 053844 — Published 22 May 2015

DOI: 10.1103/PhysRevA.91.053844

http://dx.doi.org/10.1103/PhysRevA.91.053844


Nonlinear fluctuations and dissipation in matter revealed by

quantum light

Shaul Mukamel∗ and Konstantin E. Dorfman†

Department of Chemistry, University of California,

Irvine, California 92697-2025, USA

Abstract

Quantum optical fields offer numerous control knobs which are not available with classical light

and may be used for monitoring the properties of matter by novel types of spectroscopy. It

has been recently argued that such quantum spectroscopy signals can be obtained by a simple

averaging of their classical spectroscopy counterparts over the Glauber-Sudarshan quasiprobability

distribution of the quantum field; the quantum light thus merely provides a novel gating window for

the classical response functions. We show that this argument only applies to the linear response

and breaks down in the nonlinear regime. The quantum response carries additional valuable

information about response and spontaneous fluctuations of matter that may not be retrieved

from the classical response by simple data processing. This is connected to the lack of a nonlinear

fluctuation-dissipation relation.
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I. INTRODUCTION

Quantum optical fields offer many types of unique control knobs (parameters of the

photon wavefunction) that may be used to simplify, manipulate and display spectroscopic

signals. The quantum nature of light is widely used for quantum computing and information

processing where the key goal is the manipulation of complex light fields by simple matter

systems (qubits) [1–8]. Common spectroscopic applications on the other hand use classical

light in order to learn about matter by varying pulse frequencies, delays and polarizations.

Spectroscopy with quantum light, known as quantum spectroscopy [9–13], is made possible

by recent progress in photon quantum state engineering [14–21]. Quantum spectroscopy had

been applied to overcome the time/frequency Fourier uncertainty in Raman signals [22] to

control two-exciton states in photosynthetic complexes [11] and to obtain nonlinear signals

with weak fields, thanks to the improved scaling of signals with light intensity: e.g. two pho-

ton absorption with entangled photons scales linearly rather than quadratically with pump

intensity [9, 10]. The classical response functions (CRF), which describe the response of a

quantum system to classical fields, are causal; the field affects the material system but the

system does not affect the field. The situation is fundamentally different when two quantum

systems (matter and field in our case) interact. Now the response and spontaneous fluctu-

ations of both systems mix and causality does not apply [23]. Quantum signals thus carry

matter information other than the CRF, and consequently quantum nonlinear spectroscopy

signals may not be retrieved merely by data processing of classical signals. This is good

news making the quantum response much more exciting; quantum light reveals new types

of information and phenomena related to the interplay of response and fluctuations, which

is not accessible by classical light [24].

In a series of publications on quantum spectroscopy in semiconductors [25–27] it has been

argued that the underlying matter information revealed by quantum fields is the same as in

the classical field case. The argument starts with the Glauber Sudarshan P representation

which expresses the field density matrix as an integral over coherent state density matrices

|β〉〈β| weighted by a quasi-probability distribution P (β)

ρ̂ =

∫
d2βP (β)|β〉〈β|. (1)

A quasiprobability distribution is a representation of the density matrix that allows to recast

observables as a classical-looking average over that distribution [28]. However this function

2



is not a genuine probability distribution since it can have both positive and negative values.

Such distributions are common in quantum optics, most notably in the theory of the laser

[29]. It has been suggested [25–27] that since the response of a material system to a field

initially prepared in a coherent state |β〉 is given by the classical response function CRF,

the quantum response RQM may be recast as an average of the classical response R|β〉 with

respect to this quasi-probability

RQM =

∫
d2βP (β)R|β〉. (2)

The thrust of this representation is that the quantum field merely provides a novel gating

window for the classical response function (CRF); a complete knowledge of the CRF is

enough to compute the response to any quantum field, and the quantum response function

(QRF) may be then recovered from the classical response function (CRF) by simple data

processing. If correct, this makes quantum spectroscopy less interesting since it does not

carry fundamentally new matter information.

Here we show that Eq (2) only holds for the linear response, and does not apply to the

nonlinear response. In Section II we illustrate the additional information about quantum

paths provided by the quantum response, which is missed by classical fields by an example

calculation of third order nonlinear response to the quantum field. We then use superoper-

ators in Section III to connect this more broadly to the absence of a nonlinear fluctuation

dissipation theorem: spontaneous fluctuations and response are only uniquely related in the

linear regime [30], but not when they are nonlinear. Some nonlinear fluctuation-dissipation

relations have been proposed for specific models under limited conditions [31–33] but there

is no universal relation of this type [34].

II. THIRD ORDER NONLINEAR RESPONSE TO THE QUANTUM FIELD

We start by a simple example that illustrates why Eq. (2) fails. Consider a multilevel

quantum system that interacts with a quantum optical field E(t) via the dipole operator

H(t) = E(t)V (t), (3)

where E(t) = Ẽ(t)+ Ẽ†(t) is the electric field operator that annihilate (fist term) and create

(second term) a photon. The dipole operator V (t) = Ṽ (t)+Ṽ †(t) similarly contains lowering
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FIG. 1. (Color online) Loop diagrams for the third order nonlinear response. The time runs along

the loop forward in left branch and backward in the right branch. Time translation invariance

enforces ω − ω1 − ω2 − ω3 = 0. For diagram rules see [35]. Since we do not invoke rotating

wave approximation, field-matter interactions depicted by blue lines do not have arrows indicating

whether it is creation or annihilation operator. Interaction with ω has an arrow as it represents

the signal in the form of Eq. (4) where having negative frequency component is necessary.

and raising operators. The frequency dispersed transmission of the field is given by a rate

of change of photon number which can be recast as

S(ω) = I〈Ẽ†(ω)P (ω)〉f , (4)

where I denotes imaginary part, 〈...〉 = Tr[...ρf (t)] is the trace over the quantum field

degrees of freedom in the space of quantum field that is created by field-matter interaction

and P (ω) =
∫
dueiωtP (t) is a Fourier transform of the polarization operator. The third

order nonlinear response of the system is given by four loop diagrams shown in Fig. 1 (for

rules see [35]) and can be read as

SQM(ω) = Si(ω) + Sii(ω) + Siii(ω) + Siv(ω), (5)

where

Si(ω) = I
∫
dω1

2π

∫
dω2

2π

∫
dω3

2π
〈Ẽ†(ω)E(ω1)E(ω2)E(ω3)〉fFi(−ω;ω1, ω2, ω3), (6)
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Sii(ω) = I
∫
dω1

2π

∫
dω2

2π

∫
dω3

2π
〈E(ω3)Ẽ

†(ω)E(ω1)E(ω2)〉fFii(−ω;ω1, ω2, ω3), (7)

Siii(ω) = I
∫
dω1

2π

∫
dω2

2π

∫
dω3

2π
〈E(ω3)E(ω2)Ẽ

†(ω)E(ω1)〉fFiii(−ω;ω1, ω2, ω3), (8)

Siv(ω) = I
∫
dω1

2π

∫
dω2

2π

∫
dω3

2π
〈E(ω3)E(ω2)E(ω1)Ẽ

†(ω)〉fFiv(−ω;ω1, ω2, ω3), (9)

where matter pathways are given by

Fi(−ω;ω1, ω2, ω3) = 〈V G(ω)V G(ω − ω1)V G(ω3)V 〉2πδ(ω1 + ω2 + ω3 − ω), (10)

Fii(−ω;ω1, ω2, ω3) = 〈V G†(ω3)V G(ω − ω3)V G(ω2)V 〉2πδ(ω1 + ω2 + ω3 − ω), (11)

Fiii(−ω;ω1, ω2, ω3) = 〈V G†(ω3)V G
†(ω − ω1)V G(ω1)V 〉2πδ(ω1 + ω2 + ω3 − ω), (12)

Fiv(−ω;ω1, ω2, ω3) = 〈V G†(ω3)V G
†(ω − ω1)V G

†(ω)V 〉2πδ(ω1 + ω2 + ω3 − ω) (13)

and G(ω) = 1/~[ω −H0/~ + iε] is the retarded Hilbert space Green’s function that governs

the forward time propagation whereas G†(ω) = 1/~[ω − H0/~ − iε] is the corresponding

advanced Green’s function that governs the backward time propagation.

For classical fields one can replace field operators E by their expectation values E = 〈E〉.

In this case the four field correlation functions in Eqs. (6) - (9) are the same and the total

signal is given by

Scl(ω) = I
∫
dω1

2π

∫
dω2

2π

∫
dω3

2π
Ẽ∗(ω)E(ω1)E(ω2)E(ω3)χ

(3)(−ω;ω1, ω2, ω3), (14)

where χ(3)(−ω;ω1, ω2, ω3) =
∑

j Fj(−ω;ω1, ω2, ω3) is the third order nonlinear susceptibility

that represents the response of the system to classical fields.

The key difference between Eqs. (6) - (9) and Eq. (14) is that in the quantum response

each of the four pathways (Eqs. (10) - (13)) is gated by a different field correlation function

whereas in the classical response the gates are identical allowing to combine the four diagrams

into a single classical response function (χ(3) in this case). The four gates differ by the

position of the detected field Ẽ†(ω) along the loop (fourth, third, second and first along the

loop for diagrams i, ii, iii, and iv, respectively).
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To explain the above result we note that a classical (coherent) state of the field does not

change in the course of field-matter interactions. It is therefore independent of the ordering

between field operators. The matter dynamics is then decoupled from the field and can be

studied separately by CRF. In the case of quantum field the state of the field does change in

the course of the process, as is evident from the fact that different diagrams contain different

correlation functions of the field operators. We must therefore do the calculation in the joint

field-matter space, whereas in the classical case the field factorizes out since the state of the

classical field is unchanged. By working in the joint field plus matter space one keeps track

of the both matter and the field.

We can alternatively explain the difference as follows. In general, the quantum nature

of the field enters the QRF in two ways (i) through the initial quantum distribution of the

field, and (ii) through the fact that both the field and the matter states vary during the

course of their coupled evolution that generates the response. Field and matter become

entangled via a path integral in their joint space. Eq. (2) only accounts for (i) but ignores

(ii). The response to a field initially prepared in a coherent state |β〉 coincides with the

classical response only if all the field operators involved in the specific signal are normally

ordered. A coherent field state then remains unaltered in the course of the evolution and

only point (i) applies. However this is not generally the case. The CRF totally misses point

(ii) and consequently does not carry all the information about field/matter entanglement

that enters into the QRF.

The experiments reported in [25–27] are nonlinear pump probe with classical light. They

do not involve quantum light so that the experimental data are fine. The classical signals

were then expanded in the form of Eq. (2) using various P (β) and it has been argued that the

resulting RQM is the QRF as explained above. This approach only takes into account point

(i) but not (ii). The initial state of the field can be always represented by Eq. (1). However

it does not take into account the entanglement of matter and field that affects the quantum

response as shown in Eqs. (6) - (9). The claim that by decomposing the classical signals

using the Glauber-Sudarshan distribution it is possible to extract the quantum response is

an unjustified conjecture that has not been tested by the above experiments.
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III. CONNECTION TO NONLINEAR FLUCTUATION-DISSIPATION RELA-

TIONS

We now use superoperator notation [10, 24] to show more broadly why the quantum

response is different from the classical one so that Eq. (2) is violated. With each quantum

operator V we associate two superoperators V+ (anti-commutator) and V− (commutator)

defined by their action on another operator X

V+X =
1

2
(V X +XV ), V−X = V X −XV. (15)

For the spectroscopy applications considered here V is the dipole operator. The interact-

ing Hamiltonian superoperator is given by

Hint− = E+V− + E−V+ (16)

We now consider a system of two noninteracting atoms 1 and 2. The response of the

subsystem, e.g. atom 1 can be calculated by taking an expectation value of operator O1

tr[O1ρ(t)] = tr

[
O1T exp

(
− i
~

∫ t

[E+(t′)V1−(t′) + E−(t′)V1+(t′)]dt′
)

× exp

(
− i
~

∫ t

[E+(t′)V2−(t′) + E−(t′)V2+(t′)]dt′
)
ρ10ρ20ρph0

]
(17)

where we factorized the initial density operator into a product of parts corresponding to atom

1, atom 2, and field. For a classical field E− = 0 (the commutator vanishes) and therefore

there are only V2− operators for atom 2. Any order correlation function of atom 2 would

be given in the form of 〈V2−V2−...V2−〉 = 0, since the trace of commutator is zero. However,

for a quantum field the correlation function of the field will involve E− and therefore the

matter correlation function of atom 2 involves V2+ and does not vanish.

The time evolution of two coupled quantum systems and the field is generally given by

a sum over Feynman paths in their joint phase space. Order by order in the coupling,

dynamical observables can be factorized into products of correlation functions defined in

the individual spaces of the subsystems. These correlation functions represent both causal

response and non-causal spontaneous fluctuations [23, 24].

〈V+V+〉 and 〈V+V−〉 are the only two quantities that contribute to the linear response

(〈V−V−〉 vanishes since it is the trace of a commutator). However, the two are not indepen-
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dent since they are related by the universal fluctuation -dissipation relation [30].

C++ =
1

2
coth(β~ω/2)C+−(ω). (18)

Here

C+−(ω) =

∫
dτ〈V+(τ)V−(0)〉eiωτ (19)

Is the response function whereas

C++(ω) =

∫
dτ〈V+(τ)V+(0)〉eiωτ (20)

represents spontaneous fluctuations.

The classical response function C+−(ω) thus carries all relevant information about linear

radiation matter coupling, including the quantum response. In the nonlinear regime the

CRF is a specific causal combination of matter correlation functions given by one “+” and

several “-” operators. e.g 〈V+V−V−V−〉 for the third order response. However, the quantum

response may also depend on the other combinations. To nth order in the external field the

CRF 〈V+(ωn+1)V−(ωn)...V−(ω2)V−(ω1)〉 is one member of a larger family of 2n quantities

〈V+(ωn+1)V±(ωn)...V±(ω2)V±(ω1)〉 representing various combinations of spontaneous fluctu-

ations (represented by V+ ) and impulsive excitations (represented by V−). For example,

an ”all +” quantity such as 〈V+V+V+V+〉 represents purely spontaneous fluctuations. The

CRF does not carry enough information to reproduce all 2n possible quantities which are

accessible by quantum spectroscopy. The deep reason why the CRF and QRF are not simply

related in is the lack of a fluctuation-dissipation relation in the nonlinear regime [31–34].

Note, that the example considered in section II is related to the fact that due to the

change of the state of quantum field in the course of the optical process different components

of the nonlinear response are multiplied by different detection windows governed by field

correlation functions. This effect involves both E+ as well as E−, which appears if we try

to reorder field operators in correlation functions, corresponding to different diagrams and

superoperator algebra is another way to described quantum field effects in the clear way.

The commutator of the field E− is intrinsically related to vacuum modes of the field which

may induce coupling between noninteracting parts of the system. One example where such

an effect arising from E− is combined with the appearance of collective resonances, which

occurs for E+ has been recently investigated in the context of harmonic systems [36]. The
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response of classical or quantum harmonic oscillators coupled linearly to a classical field is

strictly linear; all nonlinear response functions vanish identically. We have recently shown

that quantum modes of the radiation field that mediate interactions between harmonic

oscillator resulted in nonlinear susceptibilities. A third order nonlinear transmission of the

optical field yields collective resonances that involve pairs of oscillators and are missed by

the conventional quantum master equation treatment [37].

IV. CONCLUSIONS

In summary, the relevant matter information in classical spectroscopy may be recast

in terms of nonlinear response functions 〈V+V−...V−〉 (one “+” and several “-” operators).

These represent R|β〉in Eq. (2). The classical response is causal (the field affects the system

only at later times). Quantum spectroscopy signals carry qualitatively richer information

that combines causal response with noncausal spontaneous fluctuations 〈V+...V+V−....V−〉

(several “+” and “-”) and is missed by classical signals. The signals reflect the entangle-

ment of field and matter in the course of their coupled evolution. Quantum spectroscopy

signals may not be obtained by a simple data processing of their classical spectroscopy coun-

terparts. It follows from the fluctuation dissipation theorem (Eq. (18)) that linear quantum

and classical spectroscopy signals carry the identical information. The new information in

nonlinear quantum spectroscopy stems from the absence of such universal theorem in the

nonlinear regime. Quantum spectroscopy experiments may be thus designed to help under-

stand the interplay of response and fluctuations in many body systems. This qualitatively

novel information is totally missed by the classical response.
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