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We use theoretical analysis and numerical simulation to investigate the operation of a laser oscillating from gain 
supplied by stimulated Brillouin scattering (SBS) in a microresonator. The interaction of the forward, backward, and 
density waves within the microresonator results in a set of coupled-mode equations describing both the laser’s phase 
and amplitude evolution over time. Using this coupled-mode formalism, we investigate the performance of the SBS 
laser under noise perturbation and identify the fundamental parameters and their optimization to enable low-noise SBS 
operation. The intrinsic laser linewidth, which is primarily limited by incoherent thermal occupation of the density 
wave, can be of order hertz or below. Our analysis also determines the SBS laser’s relaxation oscillation, which results 
from the coupling between the optical and density waves, and appears as a resonance in both the phase and amplitude 
quadratures. We further explore contributions of the pump noise to the SBS laser’s performance, which we find under 
most circumstances to increase the SBS laser noise beyond its fundamental limits. By tightly stabilizing the pump laser 
onto the microcavity resonance, the transfer of pump noise is significantly reduced. Our analysis is both supported and 
extended through numerical simulations of the SBS laser.  
 

I. INTRODUCTION 

Narrow linewidth lasers serve as the essential enabler for a 
variety of applications in high-precision spectroscopy [1], 
remote sensing [2], low-noise microwave signal generation 
[3], and coherent optical communications [4]. One common 
technique used to produce narrow linewidths is through 
stabilization of a seed laser to a high-Q cavity. This 
technique is capable of reducing the laser linewidth below   
1 Hz but comes at the added cost of system complexity. 
Furthermore, the locking bandwidth that is typically 
achievable is < 1 MHz and thus prevents stabilization of the 
laser noise beyond this range. For many applications, an 
intrinsically low-noise laser source is often desirable. 

Lasers with intrinsically narrow linewidth are 
commonly achieved through an external cavity 
configuration [5–12]. The additional passive cavity length 
increases the density of resonant modes within the laser’s 
gain bandwidth and thus reduces the amount of noise power 
coupled into each mode [13, 14]. By taking advantage of 
this property, semiconductor external cavity lasers operating 
at 1550 nm wavelength typically achieve linewidths in the 
range of 10 kHz to 100 kHz [9, 15–17]. Although fiber 
lasers exhibit linewidths below that of their semiconductor 
counterparts [18], their larger footprint makes them 
incompatible with a full chip-integrated solution.  

While an external cavity configuration is beneficial for 
reducing laser noise, the cavity length cannot be extended 
indefinitely due to the eventual appearance of sidemodes 
that cannot be rejected by an intracavity filter. Another 
possible route towards producing narrow linewidth lasers is 
to reduce the intracavity losses, thereby clamping the noise 
at a lower lasing threshold, while still maintaining a high-
power oscillation signal. This strategy generally applies to 
all lasers but is especially effective in lasers which rely on 
the nonlinear stimulated Brillouin scattering (SBS) process 
[19] for generating the gain necessary for self-oscillation 

[20–22]. The SBS gain is unique as its gain bandwidth is 
only ~10 to 100 MHz for typical dielectric materials used in 
confining light, which can be many orders of magnitude 
narrower than conventional intracavity grating filters. This 
narrow gain bandwidth enables single-mode operation for 
cavity lengths on the order of 10 m. Since the cavity mode 
spacing is ideally designed to be larger than the gain 
bandwidth, approximately all of the noise within the 10 to 
100 MHz span couples into the oscillating cavity mode   
[13, 23, 24].  

Recently, the potential for low-noise SBS oscillation 
was predicted and demonstrated in high-Q CaF2 [25] and 
silica microresonators [26–29] and also in highly-nonlinear 
chalcogenide waveguides [30]. Unlike conventional SBS 
lasers requiring ~10 m of cavity length to yield enough SBS 
gain to compensate for losses [22], oscillation was made 
possible in [25–29] due to the low intrinsic losses (high Q) 
of the microresonator cavity. These low losses reduce the 
requirements for the SBS gain at threshold, further clamping 
the level of injected SBS noise. To generate significant SBS 
gain, the Stokes wave must be precisely matched to fall 
within the gain bandwidth of the nonlinear interaction. This 
condition is readily achieved in microresonators through the 
ability to accurately control cavity dimensions. These 
properties make the SBS microresonator laser an ideal 
choice for a compact, narrow linewidth laser source. 

The goal of this work is to formulate a description of 
the SBS laser through a set of coupled-mode equations for 
the forward, backward, and density waves. To our 
knowledge, no comprehensive investigation of the SBS 
laser exists for either bulk or microcavity operation. 
Although our analysis will be specifically directed to the 
case of a microresonator SBS laser, our obtained results can 
be extended to any laser operating via SBS gain. We use the 
developed coupled-mode equations to analyze the steady-
state operation of the SBS laser and to determine the 
response of the laser to small-signal noise perturbations.  



Conventionally, the SBS laser noise is treated either by 
deriving an equivalent Schawlow-Townes linewidth relation 
to account for SBS lasing [25, 28] or by analyzing the SBS 
laser from the perspective of a filter that acts to reduce 
pump fluctuations [22, 31]. Building on the previous work, 
we solve the noise of the SBS laser by treating the laser’s 
response to perturbations of the density wave. In contrast to 
traditional lasers, the frequencies of the pump, SBS, and 
density waves are all correlated with one another which 
results in feedback when one of the waves is perturbed. This 
feedback modifies the fundamental noise limit of the laser 
and also induces the transfer of pump noise into the SBS 
wave [25, 32], an effect that gives the pump the appearance 
of being filtered. In this regard, we view the SBS laser to be 
similar to the Erbium fiber laser in which the intrinsic noise 
limits of the SBS laser can be reached only if the transfer of 
pump noise to the oscillation signal can be made small.  

In the second half of our work, we develop our noise 
model of the SBS laser investigating the laser’s intrinsic 
noise limits and also the conversion of pump noise into SBS 
noise. We find that the combination of a high-Q cavity 
along with a nonlinear noise process that preferentially 
favors high optical powers allows the SBS laser’s intrinsic 
noise to be significantly lower than that of typical lasers. 
Furthermore, we show that the coupling between waves 
results in a relaxation oscillation resonance in both 
amplitude and phase that acts to damp noise fluctuations at 
high frequencies. We conclude with numerical simulations 
of the SBS laser, which serve to both support our analysis 
and to highlight the fundamental noise performance of the 
system. In particular, we show that the ratio of noise to 
signal in SBS lasers allows for oscillation linewidths in the 
range of hertz or below. Our results are supported by 
experimental demonstrations of SBS microresonator lasers 
found in the literature [27�29] and by recent measurements 
of the SBS laser’s noise properties [33]. 

II. SBS RESULTS SUMMARY 

In Sections III to VI, we present a detailed analysis of 
both the SBS laser’s operation in steady state and also the 
laser’s response to noise. Since the main results of our 
analysis can often be lost within our derivations, we use this 
section to highlight the central equations of our work. 

In Section IV, Eqs. (14) and (15) summarize the 
coupled-mode equations governing the (noiseless) 
interaction of the forward propagating, SBS, and density 
waves. To the level of the physics captured, the entirety of 
the SBS laser’s operation can be solved using either Eq. (14) 
or (15). Thus these equations serve as a useful starting point 
for numerical simulations or detailed analysis. 

Equations (20) and (23) describe the steady-state 
operation of the SBS laser. In particular, Eq. (20) quantifies 
the amplitudes of the forward and SBS waves as a function 
of the laser’s bias point. Under steady-state conditions, the 
forward wave becomes clamped, and the excess pump 
power is used to fuel the SBS oscillation. Equation (23) 

solves for the fundamental input-output relation that governs 
the behavior of every oscillator system. The SBS output 
power varies linearly with the power coupled into the 
microresonator with a characteristic slope and threshold that 
can be determined from Eq. (23). 

In Section V, we investigate the amplitude noise 
induced on the SBS laser through (1) noise fluctuations of 
the pump and (2) thermally-excited fluctuations of the 
density wave. The pump noise case allows us to analyze the 
transfer of pump noise into the SBS wave, while our 
treatment of phonon perturbations allows us to quantify the 
SBS laser’s fundamental noise limit. To make our analysis 
tractable, we assume ideal (zero pump and SBS gain 
detuning) operating conditions. Equations (30) and (32) 
describe the spectral density of amplitude fluctuations for 
pump and phonon perturbations, respectively. The example 
in Section VIII shows how to relate these spectral densities 
to laser relative intensity noise (RIN). Equation (28) 
approximates the relaxation oscillation frequency of the 
SBS laser (valid for high-Q cavities), which occurs due to 
the laser’s inherent amplitude feedback. Equation (29) 
approximates the damping of this relaxation oscillation. 

Section VI analyzes the fundamental limit of the SBS 
laser’s frequency noise under zero detuning conditions. If 
necessary, frequency noise can be readily converted to 
phase noise or power spectral density using conventional 
methods [34]. The spectral density governing frequency 
fluctuations is solved in Eq. (36), while the corresponding 
white-noise floor is identified in Eq. (37). Equation (39) 
presents an approximation to the white frequency noise 
level for the case of a high-Q cavity. To reduce noise, the 
lasing threshold should be minimized thereby clamping the 
level of injected noise, while the SBS power should be 
simultaneously maximized. The SBS laser’s low intracavity 
losses and high circulating optical powers are well-suited to 
the purpose of maximizing the ratio of signal to noise. 
Finally, Eqs. (40) and (41) quantify the SBS laser’s 
resonance frequency and damping due to phase feedback. 

III. SBS COUPLED-MODE EQUATIONS 

In this section, we use the coupled-mode formalism to 
describe the SBS interaction between the forward, 
backward, and density waves for a microresonator 
oscillator. The derivation of the coupled-mode equations is 
based on standard treatments of the nonlinear SBS process, 
but modified to account for the physics of the 
microresonator cavity. We consider here a general spherical 
microresonator configuration with radius R ; however, this 
analysis can be readily extended to other cavity geometries. 
A schematic of our system is shown in Fig. 1 consisting of a 
microresonator pumped by a continuous wave (CW) laser 
and generating a counterpropagating SBS wave. We begin 
our analysis of this system using the traditional 
electromagnetic wave equation [35] 
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denoting the individual forward (F) and backward (B) 
propagating electric fields and their complex conjugates 
(c.c.). In Eq. (1), n  is the refractive index of the medium, c  
is the speed of light, and 0ε  is the permittivity of free space. 

, , ,
FF F FA Fωl l  ( ), , ,

BB B BA Fωl l  represent the amplitude, 
frequency, angular mode number, and optical mode profile 
of the forward (backward) propagating field. The 
coordinates , ,r θ φ  denote the radial distance, zenith angle, 
and azimuthal angle of the microresonator system. 

Because of loss in the microresonator, the refractive 
index of Eq. (1) is composed of both real and imaginary 
contributions. We may thus represent this index as 

0 lossn n in= −  where 0n  is the real component of the index 
and lossn  is the imaginary component accounting for both 
intrinsic material losses and external coupling loss [38]. 
Although strictly speaking the external coupling loss is 
defined only along discrete points of the cavity where the 
field is coupled to an external wave, we may define an 
effective lossn  which averages the total coupling loss over 
the period of one round-trip. If we further assume the 
microresonator losses to be small (high Q cavity), we may 
treat the imaginary index as a perturbation to the overall 
index with the result that 

Table 1. SBS laser parameters and their definitions 

Parameter Definition Simulation Value 

Fτ  Forward wave lifetime ( )61 2 2 10  sπ × ×  

Bτ  Backward wave lifetime ( )61 2 2 10  sπ × ×  

extτ  Pump-resonator coupling time constant ( )61 2 1.33 10  sπ × ×  

FΛ  Forward wave mode overlap 0.5  

BΛ  Backward wave mode overlap 0.5  

ρΛ  Density wave mode overlap 0.5  

eγ  Electrostrictive constant 1.5  [35, 45] 
ωl  Angular frequency of the optical field 151.22 10  rad s×  

0n  Real component of the resonator refractive index 1.5  

0ρ  Equilibrium density of the resonator material  32200 kg m  

S  Amplitude of the pump field 10 21.52 10  W m F×  

bΓ  Density wave decay rate 62 15.64 10  rad sπ × ×  [35] 
bΩ  Angular frequency of the acoustic mode 92 11.55 10  rad sπ × ×  [35] 

Ω  Angular frequency of the density wave 92 11.55 10  rad sπ × ×  

Rρl  Acoustic wavenumber 71.22 10  1 m×  

V  Acoustic mode volume 13 34.33 10  1 m−×  

phV  Optical mode volume 13 34.33 10  1 m−×  
 

 
 
Fig. 1. (Color online) Schematic of setup for SBS generation 
via a microresonator oscillator. The CW laser pumps the 
microresonator to generate SBS oscillation in the reverse 
direction. 
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In Eq. (1), the nonlinear polarization P%  generated 
through the interaction of the electric field with a 
propagating density wave ρ%  can be described through [35] 

1
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where 0ρ  is the equilibrium density of the material and eγ  
is the electrostrictive constant. For the SBS process, this 
polarization describes the scattering of the forward wave off 
of the density wave, which provides amplification for the 
backward wave. The density wave can be expressed as 
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where ( ) , , ,t Fρ ρρ Ω l  denote the amplitude, frequency, 
angular mode number, and mode profile of the density 
wave. For extension beyond microresonators, the form of 
the forward, backward, and density waves in Eqs. (2) and 
(5) can be readily modified to account for other resonator 
geometries. Substitution of Eqs. (2) and (5) into Eq. (4) 
yields 
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Note that we have used F B ρ+ =l l l  and 
F B

ω ω= + Ωl l  in 
Eq. (6), which together govern the phase-matching 
requirements for the angular momentum and frequency of 
the forward, backward, and density waves. However, there 
is no guarantee that the resulting optical and acoustic 
modes, formed by the periodic boundary conditions inherent 
in the microresonator, simultaneously satisfy both 
conditions for phase-match. For these cases, we assume the 
acoustic wave acquires the necessary ,ρ Ωl  to satisfy phase 
match. The incurred phase rotation is then accounted for in 
the density wave equation. 

Finally, using Eqs. (2), (3), and (6) in Eq. (1) and 
grouping together phase-matched terms, we find a coupled 
set of equations for the forward and backward wave. These 
coupled-mode equations can be expressed as 
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In the derivation of Eq. (7), we have used the defining 
equation for the optical mode in the cavity 
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,

2 2 2 2
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l  along with the slowly-

varying approximation for the optical fields. Equation (8) 
expresses the mode overlaps of the forward, backward, and 
density waves and thus quantifies their coupling strength. 
For most microresonators, the forward and backward waves 
are sufficiently close in angular mode number that their 
mode profiles do not differ significantly. 

In Eq. (8), Fτ  and Bτ  represent the lifetimes for the 
forward and backward waves. Their inverses physically 
correspond to the linewidths of the associated optical 
modes. They are related to lossn  through  

( ) ( )
( ) ( )

, , , ,

, 0 , ,

2 , ,1
, ,

B F B Floss B F B FA

B F B F B FA

n F r F r dA

n F r F r dA

ω θ θ

τ θ θ

∗

∗
= ∫

∫
l       (9) 

The integral in Eq. (9) represents the confinement factor of 
the optical mode to the region of loss. Note that in Eqs. (7) 
and (9), we have allowed these loss rates to be different 
between the two modes. We have also added a 
phenomenological pump parameter [39] to Eq. (7) (last term 
on the right-hand side) with , SS ω  denoting the amplitude 
and frequency of the pump field and 1 extτ  denoting the 
external coupling rate of the pump field into the 
microresonator. The detuning of the pump from the cavity 
resonance is quantified by 

FSω ω− l . Note that in the 

notation of Eq. (7), 
2

,B FA  is proportional to energy, while 
2S  is proportional to power. The detailed analysis of this 

pump parameter can be found in Ref. [39]. 
Equation (7) shows that the evolution of the forward 

(backward) wave is governed by the interaction of the 
backward (forward) wave and the density wave. As we will 
see later, the phase of the interaction is such that the forward 
wave experiences attenuation supplying power for the 
growth of the backward wave. To complete the description 
of Eq. (5), we also need to specify the interaction of the 
optical waves, which reinforces the generation of the density 
wave via the electrostriction process. We assume the 
material density satisfies the acoustic wave equation [35] 
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where ′Γ  is a parameter specifying the damping of the 
density wave and v  is the velocity of the wave. Next, we 
introduce Eqs. (2) and (5) into Eq. (10) and assume slowly 
varying field amplitudes while grouping together phase-
matched terms. From this procedure, we determine the 
evolution of the density wave to obey 
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representing the overlap of the forward, backward, and 
density waves. In Eq. (11), R  denotes the radius of the 
microresonator cavity, 2 2

b b v′Γ = Γ Ω  denotes the loss rate 
of the density wave, and bΩ  denotes the acoustic frequency 
where the SBS gain is maximum as determined from the 
definition of the acoustic mode ( )2 2 2 0i

b v F e ρφ
ρ

−⎡ ⎤∇ + Ω ⎣ ⎦ =l . 

Note that in defining bΓ , we have assumed ′Γ  to be 
approximately constant over the mode area of the density 
wave. If necessary, one can readily define an effective 
confinement factor as was done for the optical losses in    
Eq. (9).  

In Eq. (11), we have also assumed that the mode profile 
of the forward and backward fields to be that of the 
fundamental transverse mode and that its spatial derivatives 
are predominantly in the azimuthal direction. The cavity 
mode is located near the boundaries of the resonator 
centered on the equator, and thus we approximate 
( ), 2r R θ π≈ ≈  [38]. These approximations can be relaxed 
given knowledge of the exact mode distribution. Note that 
the first term on the right-hand side of Eq. (11) accounts for 
the phase rotation induced by mismatch between Ω  and the 
frequency of the acoustic mode ( )bΩ . 

 
IV. SBS LASER STEADY-STATE OPERATION 

Together, Eqs. (7) and (11) provide the set of coupled-
mode equations describing the SBS generation process in a 
microresonator oscillator. The forward wave supplies the 
power necessary for amplification of the backward wave 
and is replenished by the external pump to maintain steady-
state. If the gain of the backward and density waves exceed 
their respective losses, a large-signal oscillation can 
develop. To proceed further with our analysis, we first note 
that Eq. (7) in its current form does not yield a steady-state 
solution for FA  if we assume , ,F BA A ρ  to be stationary 
with time. This can readily be seen if we set 0FA t∂ ∂ =  in 

Eq. (7) and then attempt to solve the resulting equation. The 
problem results from the frequency detuning of the pump 
from the cavity resonance and can be remedied if we define 
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where ,  ,
F BF S B Bσ ω ω σ ω ω= − = −l l  and ρ ρσ = Ω − Ω . 

Here, Bω  ( )ρΩ  is the final frequency of the backward 
wave (density wave) translated from its original frequency 
at 

B
ωl  ( )Ω . The frequency translations are such that sum of 

the backward and density wave translations is equal to the 
translation of the forward wave (or F B ρσ σ σ= + ), thereby 
maintaining the phase-matching condition between all three 
waves. Note that unlike the case of a continuous waveguide, 
the boundary conditions of the resonator necessitate the 
existence of discrete modes. Thus, the detuning of the pump 
forces a shift in both the SBS and density waves to preserve 
phase-match. These frequency translations can be visualized 
through Fig. 2 [40]. Note that since both optical and 
acoustic modes are plotted in Fig. 2, the vertical axis of the 
figure does not strictly correspond to any physical quantity. 
Nevertheless, the horizontal axis depicts the frequency 
translations of the forward, backward, and density waves 
that must occur to compensate for the pump detuning. 

The redefinition of Eq. (13) transforms Eqs. (7) and 
(11) into 
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Fig. 2. (Color online) Illustration of forward, backward, and 
density wave translations due to pump detuning. bΩ = Ω  in 

this example. Note that although the shifts are in general 
different for each of the waves, the combined shift must satisfy 

F B ρσ σ σ= + . 



It is clear that the time dependence of Eq. (7) has been 
effectively removed in Eq. (14). The steady-state solutions 
of the coupled-mode equations are thus shifted versions of 
the cavity modes with the forward wave translated to the 
frequency of the pump and with the backward and density 
waves translated to some intermediate frequency. We now 
determine these frequency shifts by attempting to find the 
steady-state solution of Eq. (14). In order to simplify our 
analysis, we assume 
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Here, , , ,F B Sρφ φ φ φ  denote the phases of the forward, 
backward, density, and pump fields. It is important to note 
that Eq. (15) assumes  , ,F B ρΛ Λ Λ  to have zero phase, 
which is generally true only if the mode overlaps and thus 

, ,F BF F Fρ  of Eqs. (8) and (12) have zero phase. Since the 
forward, backward, and density waves are all represented by 
a complex amplitude multiplied by an eigenmode [see    
Eqs. (2) and (5)], one can in most cases reassign the 
eigenmode phase to the phase of the field amplitude. 

In the steady state, all time derivatives of Eq. (15) must 
independently yield zero. The simultaneous solution of the 

BA t′∂ ∂  and tρ′∂ ∂  amplitude equations yields a 

relation between 2
BA′  and 2ρ′ . The simultaneous solution 

of the B tφ∂ ∂  and tρφ∂ ∂  phase equations yields a second 

relation between 2
BA′  and 2ρ′ . The joint solution of these 

relations along with F B ρσ σ σ= +  yields 
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            (16) 

Note that the frequency shifts are asymmetric for the 
backward and density waves. For high-Q cavities, the SBS 
loss is much lower than the density wave loss ( 1BρτΓ >> ) 
and thus the frequency translation is larger for the density 
wave. Equation (16) has the interpretation that because of 
the pump detuning, the forward wave must shift from its 
natural cavity resonance to the pump frequency by the 
amount Fσ . If the frequency of the SBS wave remains 
unaltered in this process, then the density wave must absorb 
the entirety of the frequency shift to preserve phase match. 
This is a valid steady-state solution ( )0Bσ =  as long as the 
frequency of the density wave shifts so that it exactly falls 
on the frequency where the SBS gain is maximum  

( )2 2 2F bρσ σ⎡ ⎤= = Ω − Ω Ω⎣ ⎦ . If the density wave does not 

end up at the peak of the SBS gain, then a residual phase 
shift exists for tρϕ∂ ∂  in Eq. (15) that prevents B tϕ∂ ∂  
from simultaneously reaching steady state. Thus, in the 
general case, both the steady-state backward and density 
waves experience a translation in frequency due to the pump 
detuning. Note that the residual phase rotation of the SBS 
gain exists in tρϕ∂ ∂  even without a pump detuning. In 
these cases, the backward and density waves are “pulled” 
towards the gain maximum. 

The nature of the SBS gain can be made apparent if we 
solve for ρ′  in Eq. (15) using 0tρ′∂ ∂ = . This analysis 
yields 
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Substitution of Eq. (17) into the forward and backward 
wave amplitude equations yields 
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(18) 

In Eq. (18), the first term of each equation corresponds to 
the loss of the field amplitude over time due to intrinsic 
material losses or external coupling loss. The second term 
corresponds to attenuation for the forward wave and to SBS 
gain for the backward wave. Note that the term 

( )2sin F B ρφ φ φ− −  is always non-negative, and therefore the 
phases of the fields in the SBS process are such that the 
forward wave always supplies power for the amplification 
of the backward wave. If we further assume that the pump 
detuning exactly cancels the SBS gain detuning 

( )2 2 2F bσ⎡ ⎤= Ω − Ω Ω⎣ ⎦  such that the backward wave is 

operated at the SBS gain maximum, we find from Eq. (16) 
that 0Bσ =  and Fρσ σ= . This then implies 

2F B ρφ φ φ π− − =  to satisfy the steady state of Eq. (15). 
Thus, these conditions yield the phase arrangement required 
of the individual waves for the largest SBS gain. However, 
since the SBS gain is also proportional to 2

FA′ , the 
maximum gain is achieved only when the pump detuning is 
also zero ( )0Fσ = . 

It is clear that the behavior of the system is dependent 
on the phase difference F B ρφ φ φ− − , which is bounded 

between 0 and π  in order to ensure that ρ′  is non-
negative in Eq. (17). This phase difference can be directly 
quantified by substitution of ρ′  in Eq. (17) into the 
expression for tρφ∂ ∂  in Eq. (15). With the use of Eq. (16), 
this calculation yields 
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which shows that F B ρφ φ φ− −  depends only on the system 
loss and detuning of the laser. For the case where the pump 
detuning compensates the SBS gain detuning, the value of 
the phase difference approaches 2π .  

The steady-state solution of Eq. (18) yields the 
amplitudes of the forward and backward waves depending 
on the operating parameters of the microresonator laser. 

With 0, 0B FA t A t′ ′∂ ∂ = ∂ ∂ =  and assuming F BΛ ≈ Λ , 
we find that  
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Equation (20) shows that the amplitude of the forward wave 
is constant once the phase relationship of the forward, 
backward, and density waves is known. As before, this 
phase relationship is dependent on the pump detuning and 
SBS gain detuning of the microresonator. The pump power 
clamps once the SBS threshold is reached since the SBS 
gain must saturate to the level of the total cavity loss. This 
gain saturation necessitates the saturation of 2

FA′ , since it 
is the forward wave power that drives the SBS gain of the 
microresonator. The dependence of 2

FA′  on 

( )2sin F B ρφ φ φ− −  is a result of the dependence of the SBS 
gain on this phase relationship [see Eq. (18)]. The SBS gain 
is optimally phase-matched when 2F B ρφ φ φ π− − = , and 
thus less forward wave power is required to compensate for 
system loss.  

In Eq. (20), the expression for 2
BA′  can be understood 

through a rearrangement by first dividing by Bτ . Next, we 

separate 2
FFA τ′  into its two components 2

0,FFA τ′  and 
2

e tF xA τ′ , which describe the intrinsic material losses 

( )0,Fτ  and coupling losses ( )extτ  of the forward wave. 

Moving 2
0,FFA τ′  to the left-hand side, we find 
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′+ = − −   (21) 

The left side of Eq. (21) describes the flow rate of energy 
out of the microresonator, whereas the right-hand side 
describes the net rate of energy flow into the system [39]. 
Thus Eq. (21) is a statement of power conservation. The 
form of the right-hand side of Eq. (21) is deceiving as it 
would appear that 2

BA′ is related to a cross-term between 
the pump and forward waves. This is remedied if we use the 
identity ( )2 cosF S F F FS A SA S Aφ φ ∗ ∗′ ′ ′− = +  in Eq. (21) and 

set ( )F extA T S τ′ = +  with T  representing the transmitted 
wave past the microresonator. The detailed derivation for 
this form of FA′  can be found in Refs. [39, 41]. However, 



we note that through division by extτ  and rearrangement 
of S  onto the left-hand side, we find the condition 
necessary for the cancellation of the transmitted pump field 
via the field leaking out of the cavity. Upon substitution of 

FA′  into Eq. (21), we find  

2 2
2 2

0,B F

B FA A
S T

τ τ
′ ′

+ = −                   (22) 

Therefore, we see that the energy and thus power of the 
backward wave is proportional to the net power that is 
coupled into the cavity minus that which is dissipated in the 
forward wave. Note that Eq. (22) can be rewritten as 
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which shows that the SBS power coupled out has the 
traditional form of a laser’s input-output relation with 

2
0,FFA τ′  serving as the threshold optical power and 

B extτ τ  serving as the slope efficiency. This threshold 
power can be further expressed in terms of the system 
parameters using the value of 2

FA′  as determined by       
Eq. (20). This calculation yields 
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It is clear from Eq. (24) that the threshold power is 
minimized when the system losses are minimized and the 
mode overlaps and coefficients that govern the SBS gain 
[compare to Eq. (18)] are simultaneously maximized. 
 
V. SBS LASER AMPLITUDE SMALL-SIGNAL ANALYSIS 

Here, we use the coupled-mode equations of Eq. (15) to 
analyze the response of the SBS oscillator to small-signal 
perturbations. Without any assumptions on operating 
parameters, this task is difficult as it requires the 
simultaneous solution of six coupled equations. For 
example, as can be seen from Eq. (15), if one were to vary 
the detuning of the pump from the cavity resonance ( )Fσ , 

the condition 0F tφ∂ ∂ =  forces the phases of the individual 
waves to rotate in order to satisfy steady state. This phase 
rotation affects the steady-state amplitude and phase balance 
of every single wave, and thus all six equations become 
coupled in a microresonator system. We note that the 
variation of the field amplitudes through a variation in the 
pump detuning characterizes the FM-to-AM conversion of 
the system. This FM-to-AM conversion is a property 
present in all microresonator systems because a pump 

frequency fluctuation changes the position of the pump 
relative to the resonance and thus affects the amount of 
power coupled in. In addition, as a result of the delicate 
amplitude and phase balance in Eq. (15), the AM-to-FM 
process also exists in SBS oscillators as we will see in 
Section IX. 

In order to simplify our analysis, we assume the pump 
detuning to be zero ( )0Fσ =  and also assume operation at 

the SBS gain peak ( )bΩ = Ω  so that , , 0F B ρσ σ σ =  from 
Eq. (16). Under these conditions, the steady state of Eq. (15) 
requires that 2F B ρφ φ φ π− − =  and S Fφ φ= . With this set 
of assumptions, the amplitude and phase equations become 
effectively decoupled. For example, a frequency fluctuation 
of the pump still causes the phases of the individual waves 
to rotate. However, since F B ρφ φ φ− −  is stabilized around 

the value of 2π , ( )sin F B ρφ φ φ− −  is stabilized at the peak 
of sinusoid and is thus only affected to second order by 
phase fluctuations. Physically, this demonstrates that the 
FM-AM conversion is minimized at the peak of the 
resonator’s Lorentzian transfer function, as one would 
expect. 

We can further show that these assumptions also 
effectively decouple the phase equations from amplitude 
fluctuations. For example, if we introduce a fluctuation of 
the pump amplitude in F tφ∂ ∂ , we find that F tφ∂ ∂  is 
affected only to second order through perturbations of 
amplitude × phase. This occurs because S Fφ φ=  in steady 
state for our operating conditions specified earlier, and thus 
only pump amplitude fluctuations which occur concurrently 
with phase fluctuations affect F tφ∂ ∂ . Similar arguments 
can be made for fluctuations in the amplitude of the 
forward, backward, and density waves, which apply 
generally to the rest of the phase equations in Eq. (15). 

Assuming 0,F bσ = Ω = Ω , we now proceed to perturb 
Eq. (15) in order to determine a set of linearized coupled-
mode equations for small-signal perturbations of the SBS 
oscillator. We first analyze the case of amplitude 
fluctuations introducing , , ,B F B F B FA A Aδ′ ′ ′→ + , 

ρ ρ δ ρ′ ′ ′→ + , and S S Sδ′ ′ ′→ +  into Eq. (15) and 
cancelling out the steady-state response. Here 

, , ,B FA Sδ δ ρ δ′ ′ ′  denote amplitude fluctuations of the 
backward/forward, density, and pump waves. Introducing 
these perturbations into Eq. (15) yields 
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(25) 

where we have introduced rf  as a Langevin white Gaussian 
noise source describing the real component of fluctuations 
in the density wave [42]. This noise is thermally driven and 
serves as the force which first initiates the spontaneous 
Brillouin scattering process. However, once a coherent field 
is developed, the incoherence of the spontaneous process 
introduces fluctuations in both the phase and amplitude of 
the oscillation signal. Assuming this noise is equipartitioned 
into the real and imaginary quadratures, 

( ) ( ) ( )r rf t f t C t tδ∗ ′ ′= −  [42] where 2
0 bC kT v Vρ= Γ  is 

the autocorrelation strength of ( )rf t , k  is Boltzmann’s 
constant, and V  is the acoustic mode volume. Note that we 
have ignored the effects of shot noise in Eq. (25). 

Because we have assumed the presence of only one 
mode within the SBS gain bandwidth in our derivation [see 
Eqs. (1), (2), and (6)], all of the generated gain and noise 
couples into the lone oscillating SBS wave. To account for 
multiple modes, one can represent BE%  in  Eq. (2) as a 
superposition of all backward waves in the system and 
appropriately partition the nonlinear polarization generated 
by the forward and density waves [Eq. (6)] between the 
backward waves. Should the need arise, a similar technique 
can also be applied to account for multiple acoustic modes. 

Our goal now is to solve Eq. (25) separately for a 
perturbation of the supplied pump and for a thermally-
driven perturbation of the density wave [34]. In our 
calculations, we assume F BΛ ≈ Λ  since the backward and 
forward waves are close in mode number. We analyze the 
case of a pump amplitude fluctuation first by converting to 
the frequency domain and applying Cramer’s rule to        
Eq. (25). This analysis yields 
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with the determinant 
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Here ω  denotes the frequency at which the system response 
is evaluated. This response is third order due to the 
interaction of the forward, backward, and density waves. 
We note that the forward wave response has a zero in the 
numerator at 0ω = , with no equivalent pole in the 
denominator to cancel this zero. This zero nulls the response 
of the forward wave at DC, as one would expect, because 
the forward wave amplitude becomes clamped by the 
steady-state operation of the SBS oscillator. 

The denominator of Eq. (26) in principle provides 
information on the response of the system at resonance. 
However, analysis of Eq. (27) becomes difficult as the 
system behavior is third order. To proceed further, we 
assume that for our frequencies of interest, the term 3jω−  
is negligible compared to the remaining imaginary 
component of Eq. (27). We will check the validity of this 
assumption at the end of our analysis. Ignoring the 3jω−  
term, the system is now effectively second order with a 
resonance frequency of 
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In Eq. (28), we have explicitly separated the system 
resonance into the product of two components. The first 
component ( )2 2

B F BA A τ⎡ ⎤′ ′
⎣ ⎦

 is the inverse of the forward 

wave stimulated lifetime and characterizes the decay time of 
the forward wave as it supplies gain for the stimulated 
Brillouin scattering process. This can be seen by attempting 
to write the second term on the right-hand side of the first 
equation in Eq. (18) as ( )2F stimA τ′− . Assuming F BΛ ≈ Λ , 
substitution of the second equation in Eq. (18) at steady 
state into the first yields the desired expression for the 
stimulated lifetime ( )stimτ . The second component of       
Eq. (28) is effectively the lifetime of the slower wave 
(between the backward wave and the density wave). For 
example, if 1 1 ,B F bτ τ>> Γ  the second component yields 

bΓ . However, if ,1b B FτΓ >> , the second component in this 

case yields 1 Bτ . If the lifetime of the forward wave is 
fastest, the second component then becomes a mixture of 
the lifetimes of all three waves. Therefore, similar to the 
case of a semiconductor laser [34], 2

AR
ω  of Eq. (28) is 



inversely proportional to the product of the stimulated 
emission lifetime and the photon/phonon lifetime. 

From Eqs. (27) and (28), the damping ratio of this 
system can also be determined. To simplify our analysis, we 
assume that ,1b B FτΓ >> . This assumption generally holds 
true for high-Q microresonators at 1550 nm wavelength 
where 2b πΓ ~10�100 MHz and ,1 2 B Fπτ < 1 MHz. With 
these assumptions, we find the system damping ratio to be 
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              (29) 

The numerator of Eq. (29) is inversely proportional to the 
total lifetime of the forward wave  ( )1 1stim Fτ τ+ , whereas 
the denominator is proportional to the resonance frequency. 

Our previous analysis can be interpreted by imagining 
the system consisting of the forward, backward, and density 
waves in their equilibrium state. At a given instance of time, 
the pump wave experiences a sinusoidal modulation of its 
amplitude perturbing the system from its steady-state 
operation. If the modulation is slow compared to the 
response time of the system, the forward wave remains 
approximately clamped at its steady-state value, while the 
backward and density waves experience a sinusoidal 
modulation in response to the pump [Eq. (26)]. 

If we increase the modulation frequency slowly, we 
find that at some frequency 

ARω , the response of the system 
is at resonance with the forward wave exchanging energy 
with the backward and density waves. That is, as the pump 
amplitude increases, the forward wave initially increases in 
response to the pump as according to Eq. (18). The increase 
of the forward wave increases the SBS gain, which then 
prompts the growth of the backward and density waves. As 
the backward and density waves increase further, the gain 
becomes depleted and begins to decrease. This causes the 
backward and density waves to decrease and restarts the 
cycle until the oscillations settle to steady state. If the 
system is perturbed at this resonance frequency, these 
oscillations are reinforced leading to the buildup of a 
resonance response. Furthermore, if we assume the density 
wave lifetime to be fast, then this process primarily involves 
the interplay of the forward and backward waves [the slower 
wave in Eq. (28)], as the density wave will respond as 
needed to the current state of the system. 

Assuming the density wave response to be fast, we 
expect the damping of these oscillations to increase as the 
response times of the SBS gain and backward wave become 
further separated. For example, the resonance becomes 
weaker if the SBS gain can quickly respond to changes of 
the backward wave such that a prolonged ringing of the two 
waves does not occur. This can be seen from Eq. (29). If we 
assume the gain response ( )stimτ  to be fast, then we can 
neglect the second term in the first parenthesis of Eq. (29). 

For this case, the damping ratio takes the form 
( ) ( )4A B F stim BA Aζ τ τ′ ′= . Thus, to achieve the largest 

damping, one should reduce the system losses so that Bτ  is 
maximized while driving the system with sufficient strength 
so that the stimulated SBS lifetimes are kept to a minimum. 

Our previous analysis was based on the assumption that 
Eq. (27) could be modeled as a second-order system by 
ignoring the 3jω−  term. We now verify the validity of this 
assumption. We assume ,1b B FτΓ >>  and substitute         
Eq. (28) into Eq. (27) comparing the strength of the 
imaginary terms. Since 1b BτΓ >> , we find that the 3jω−  
term can be effectively ignored for a high-Q resonator. For 
resonators where the forward, backward, and density waves 
have similar lifetimes, the full system response of Eq. (27) 
must be used. 

It is useful at this point to calculate the spectral 
densities of the fluctuating variables in Eq. (26) as spectral 
densities are ultimately what are determined through 
experimental measurement. These spectral densities can be 
found through multiplying ( ) ( ) ( ), ,F BA Aδ ω δ ω δ ρ ω′ ′ ′  

by ( ) ( ) ( ), ,F BA Aδ ω δ ω δ ρ ω∗ ∗ ∗′ ′ ′ ′ ′ ′ , taking the ensemble 
average, and integrating over ω′  [34]. This operation yields 
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where , , ,
F B

P P P P
A A SS S S Sδ δ δ ρ δ′ ′ ′  denote the spectral densities of 

 
 
Fig. 3. (Color online) Illustration of a density wave amplitude 
and phase perturbation due to a single noise event. 



fluctuations for the forward, backward, density, and pump 
waves, respectively. 

We now return to Eq. (25) and analyze the system 
response to a thermal excitation of the density wave. The 
effect of the thermal excitation is shown in Fig. 3 for a 
single occurrence of a noise event [13, 34].  Note that rf  in 
Eq. (25) describes a continuous stream of noise 
perturbations in amplitude along with their associated rate 
of occurrence. In Fig. 3, a noise event with amplitude Nρ  

and relative phase Nθ  results in a small-signal amplitude 

( )ρ′Δ  and phase ( )ρφΔ  perturbation of the density wave. 
Since the phase of the noise event is random with respect to 
the coherent density wave, Nθ  is uniformly distributed 
between 0 and 2π . An amplitude perturbation of the 
density wave changes the amount of coupling between the 
forward and backward waves [see BA t′∂ ∂  in Eq. (15)] and 
thus causes a perturbation of the SBS amplitude. We 
quantify the cumulative effects of amplitude noise by 
solving for , ,B FAδ δ ρ′ ′  in Eq. (25). 

To do so, we convert Eq. (25) to the frequency domain 
and apply Cramer’s rule [34] to find 
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where ( )2 21 stim B F BA Aτ τ⎡ ⎤′ ′=
⎣ ⎦

 as before. Setting 0ω =  

in Eq. (31), one can verify that the resulting perturbations 
satisfy the steady state of Eq. (25). Through a similar 
procedure to that of Eq. (30), we find the spectral densities 
of the perturbations to be 
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where 
r

P
fS  is the spectral density for thermally-excited in-

phase fluctuations of the density wave. Since the noise 
process considered here is white (memoryless), ( )

r

P
fS Cω =  

over all frequencies where C  is the autocorrelation strength 
of ( )rf t  defined earlier. Note that Eqs. (30) and (32) differ 
by the noise source which initiates perturbations of the 
forward, backward, and density waves. 

Comparing Eqs. (26) and (31), we find that unlike the 
case of a pump fluctuation in Eq. (26), the forward wave in 
the case of a density fluctuation is no longer completely 
clamped at 0ω = . This occurs because the total increase in 
forward, backward, and density wave amplitude must 
individually balance their respective losses in the steady 
state. For the case of a density fluctuation, we observe from 
Eq. (25) that this additive fluctuation adds to/reduces the 
supplied gain provided by the forward wave depending on 
the sign of rf . Thus for perturbations of the density wave, 
the forward wave amplitude must continuously take on 
different values so that the total increase in the density wave 
due to SBS amplification and noise compensates for the 
losses of the density wave. 

Comparing Eqs. (30) and (32), we observe that the 
resonance response of the system governed by 2

AΔ  is 
similar for fluctuations of the pump and density wave. 
However, accounting for the total response, we find that the 
overall system behavior to be dissimilar. For example, at 
high frequencies faster than the characteristic lifetimes of 
the system, we expect the forward wave to fall as 21 ω  for 
a pump perturbation and as 41 ω  for a thermal fluctuation 
of the density wave. On the other hand, the rolloff of the 
backward wave at high frequencies is 41 ω  for both cases. 

 
 

VI. SBS LASER FREQUENCY NOISE 

We now return to Eq. (15) analyzing the SBS 
oscillator’s phase response to noise. Careful attention should 
be paid to the distinction between phase and frequency in 
this analysis. The phase need not settle to a single value at 
steady state since a constant rotation in phase yields a 
frequency shift. We can develop intuition on the 
fundamental noise limit of the SBS laser by considering the 
process by which noise propagates to the generated SBS 
signal. 

We begin by considering a thermally-induced white 
Gaussian Langevin noise source ( f ) that drives 
fluctuations of the density wave in Eq. (14). f  has 

autocorrelation strength ( ) ( ) ( ) ( )2 r rf t f t f t f t∗ ∗′ ′= , 
which accounts for the equipartition of noise energy 
between the real and imaginary quadratures. Its strength is 
determined by imparting 2kT  of noise energy to each 



degree of freedom of the acoustic mode under thermal 
equilibrium conditions [42]. As before, Fig. 3 shows the 
perturbation of the density wave amplitude and phase 
induced by a single noise event. The density wave interacts 
with the forward wave to generate a reflected wave that 
becomes added to the SBS signal (shown in-phase in       
Fig. 4). An amplitude fluctuation of the density wave 
directly results in an amplitude fluctuation of the SBS 
signal, as was found in Section V. A phase fluctuation of the 
density wave changes the relative phase of the 
superimposed waves, and thus affects the resulting phase of 
the backwards wave. 

With this intuition, we are now interested in 
determining the fundamental limits to the SBS laser noise. 
As before, we assume 0,F bσ = Ω = Ω  so that 

, , 0F B ρσ σ σ = , 2F B ρφ φ φ π− − = , and S Fφ φ= . These 
operating conditions also effectively decouple the evolution 
of phase from that of amplitude in Eq. (15). With these 
assumptions, the phase response of the system to small-
signal density perturbations is given by 
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In Eq. (33), we have introduced the Langevin noise source 
imf  which governs out-of-phase perturbations of the density 

wave. Its autocorrelation strength is equal to that of rf , i.e. 

( ) ( ) ( )im imf t f t C t tδ∗ ′ ′= − , since the thermal noise 
excitation is equipartitioned between the real and imaginary 
quadratures. , ,B Fρδφ  represent small-signal phase 
perturbations of the backwards, density, and forward waves.  

Converting Eq. (33) to the frequency domain and 
assuming F BΛ ≈ Λ , we find 
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where 
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Note that we have simplified Eqs. (34) and (35) using 

( ) 2 21 1F stiF ext mS A τ ττ′ = + , which can be derived 

from Eq. (20). Examining Eq. (34), we find that ,B ρδφ  
diverges in the steady state ( 0ω = ). This can be seen from 
Eq. (33) where no general solution exists when the time 
derivatives are set to zero. If we account for the Langevin 
noise source imf  in tρφ∂ ∂  of Eq. (15), we see that imf  
takes the role of an additional force driving phase rotations 
of the density wave. Similar to the case of the SBS gain-
peak detuning, the frequencies of the backwards and density 
waves must shift [see Eq. (16)] in order to provide the 
necessary counter phase rotation to satisfy steady state. This 
phase rotation makes it so that no steady-state value of 
phase exists when 0imf ≠ , thus yielding the observed 
divergence in Eq. (34). 

Multiplying Eq. (34) by 2jω π , we see that the left-
hand side becomes a description of the frequency 
fluctuations driven by thermal perturbations of the density 
wave. The corresponding frequency noise spectra are given 
by 

 
 
Fig. 4. (Color online) Illustration of noise propagating into a 
perturbation of the total SBS wave. 
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      (36) 

In Eq. (36), 
, ,B F

PS
ρδν  represent the frequency noise spectral 

densities associated with the backward, density, and forward 
waves, while 

im

P
fS  denotes the spectral density of out-of-

phase fluctuations due to thermal excitation of the density 
wave. Since the thermal noise process is white 
(memoryless), ( )

im

P
fS Cω =  over all frequencies.  

We are interested in determining the fundamental noise 
level achievable by the SBS laser.  The SBS frequency noise 
spectrum of Eq. (36) is white at lower Fourier frequencies 
and decays upon reaching larger Fourier frequencies. 
Setting 0ω =  for 

B

PSδν , we find 
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The SBS white frequency noise level can be understood 
if we first assume 1b BτΓ >>  (high-Q microresonator) and 

then substitute 2B B FA g Aρ τ′ ′ ′=  into Eq. (37). Here, 

2
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γ ω

ρ
= Λl                           (38) 

is the SBS gain coefficient which when multiplied by 
F BA Aρ′ ′ ′  describes the  transfer of  phase fluctuations of 

the density wave to rotations of the SBS wave [see           
Eq. (33)]. The equality 2B B FA g Aρ τ′ ′ ′=  is derived from 

the steady state condition of BA t′∂ ∂  in Eq. (15) with 
2F B ρφ φ φ π− − = . With these substitutions in Eq. (37), we 

find 
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            (39) 

Since ( ) ( ) ( ) 2
im

P
f b N NS C t tω ρ ρ∗= = Γ  [42] and because 

the integration over the noise spectrum of the density wave 
(

N

PSρ ) yields its total power ( ( ) ( )
N

P
b N NS t tρ ρ ρ∗Γ ≈ ), the 

term 2 2
im N

P P
f bS SρΓ =  represents the spectrum of out-of-

phase fluctuations exhibited by the density wave induced by 
thermal noise. These density fluctuations interact with the 
forward wave ( Fg A′ ) to couple noise into the generated 
SBS wave. Since the noise power is constant for a given 
forward wave amplitude (which is clamped at threshold), 
the resulting perturbation of the SBS wave decreases with 
increasing backward wave energy ( 2

BA′ ). To minimize the 
white noise floor of the SBS signal, one should reduce the 
lasing threshold 2

FA′  thereby minimizing the noise coupled 
into the SBS wave. It is similarly important to also 
maximize the power of the backwards wave so that the 
perturbations introduced by the noise are comparatively 
small relative to the total signal level. We note that Eqs. (37) 
and (39) can be further modified to account for additional 
noise contributions beyond the fundamental SBS limit (e.g., 
thermorefractive noise [43, 44]). 

As in the amplitude noise case of Section V, the 
coupling between the forward, backwards, and density 
waves creates a resonance in the system response before the 
spectrum of the noise decays. For fluctuations in phase   
[Eq. (34)], this response consists of a pole at 0ω = . 
However, since we multiply by 2jω π  to determine the 
frequency noise response, this pole becomes cancelled 
revealing a white frequency noise floor. For frequency noise 
fluctuations, the system resonance occurs at 
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with a damping ratio of  
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For high-Q cavities with ,2 1 2b B FτΓ >> , the damping 
ratio simplifies to  

1 1 1
2 b

F stim
νζ

τ τ
⎛ ⎞

≈ Γ +⎜ ⎟
⎝ ⎠

                     (42) 

Therefore, for high-Q resonators, the system is typically 
damped except for cases when the system is driven with 
sufficient strength such that 1 stimτ  approaches bΓ . 



 
VII. SBS LASER STEADY-STATE SIMULATIONS 

In the following sections, we use numerical techniques 
to simulate the complex behavior of the SBS laser. Our 
simulation is carried out iteratively using Eq. (14) with an 
additional Langevin noise source f  driving perturbations 
of the density wave. f  is thermally induced and has 

autocorrelation strength ( ) ( ) ( )2f t f t C t tδ∗ ′ ′= −  with 
2

0 bC kT v Vρ= Γ . Starting from noise, the evolution of the 
forward, backward, and density waves is tracked over time 
which allows for the determination of the laser’s steady state 
and dynamic behavior. A listing of the parameters used in 
our simulation was provided earlier in Table 1. For 
simplicity, we have taken the modal overlaps to be 
approximately 0.5 and have assumed operation at 1550 nm 

wavelength. The acoustic ( )V  and optical ( )phV  mode 
volume is similarly assumed to be approximately equal 
corresponding to a modal area of 25 μm2 and a resonator 
radius of 2.8 mm. The values of bΓ  and bΩ  for the acoustic 
wave are derived from Ref. [35] for a silica resonator 
operated at 1550 nm. Finally, the values of S  and phV  in 
Table 1 correspond to a laser pump power of 1 mW. 

Using the parameters of Table 1, we first determine the 
steady-state operation of the SBS laser as a function of the 
pump detuning. Typically the experimental operation of the 
microcavity SBS laser requires tuning the pump into the 
cavity resonance, and thus this simulation serves as a useful 
aid for analyzing the SBS laser’s behavior as the pump 
frequency is swept. Figure 5(a) shows the normalized 
transmission past the microresonator for several values of 

                   
(a)                                                                                                    (b) 

                  
(a)                                                                                                    (b) 

Fig. 5. (Color online) Simulated SBS laser (a) normalized transmission past the cavity, (b) outcoupled power, (c) normalized 
intracavity forward wave power, and (d) gain phase as a function of pump detuning (in units of cavity linewidths). The simulations of 
(b), (c), and (d) correspond to a pump power of 1 mW. 



pump power. The horizontal axis depicts the detuning of the 
pump from the cavity resonance in units of the resonator 
linewidth. At a pump power of 0.01 mW, the supplied 
power is below the SBS lasing threshold at every value of 
detuning, and thus the transmission traces out the cavity’s 
characteristic Lorentzian interference pattern. Note that 
effects of self- and cross-phase modulation as well as 
thermal drift were not accounted for in our simulation, 
which would otherwise lead to asymmetry in the 
transmission profile. 

Increasing the pump power to 0.25 mW, the SBS laser 
reaches threshold near a detuning of 1.1 × the resonator 
linewidth. Once the SBS reaches threshold, the forward 
wave power begins to clamp but can still change depending 
on the phase of the SBS gain [see Eq. (20)]. In addition, the 
phase variation of the forward wave with detuning also 
diverges from that of a conventional resonator in order to 
satisfy steady state with the backward and density waves. 
Since F extT A Sτ′= − , these properties alter the 
transmission past the microresonator so that the profile is no 
longer a pure Lorentzian. In particular, the clamping of the 
forward wave power results in incomplete cancellation of 
the pump with the outcoupled forward wave causing the 
normalized transmission of Fig. 5(a) to flatten. This effect 
can be clearly observed at higher pump powers where the 
SBS lasing is seen to turn on at larger cavity detunings with 
the consequence of a diminished dip in transmission. 

Figure 5(b) illustrates the outcoupled SBS power for a 
pump power of 1 mW. The SBS reaches threshold at a 
pump detuning of 2.1 linewidths offset from its resonance 
peak, as can also be inferred from Fig. 5(a). The outcoupled 
SBS power reaches a maximum of 0.285 mW when 
operated with zero detuning. The corresponding normalized 
intracavity forward wave power can be observed in         
Fig. 5(c). The forward wave power initially builds up as the 
pump detuning approaches zero. However, once the SBS 

oscillation reaches threshold, the forward wave power 
begins to clamp with slow variations depending on the 
phase of the SBS gain. For our parameters in Table 1, the 
SBS gain is maximum at zero pump detuning, and thus the 
required forward wave power for lasing is minimized at this 
point [see Fig. 5(c)]. Figure 5(d) illustrates the SBS gain 
phase ( )F B ρφ φ φ− −  as a function of the pump detuning for 
a pump power of 1 mW. Since the SBS and density waves 
are incoherent until oscillation is reached, we have restricted 
the range of pump detuning in Fig. 5(d) from -2 to 2 cavity 
linewidths, corresponding to the points where SBS lasing 
occurs. As predicted from our analysis, the phase of the SBS 
gain is 2π  at zero detuning and slowly rotates from this 
value when operated off of the SBS gain peak. 

The previous simulations characterize the SBS laser 
operation as a function of cavity detuning for a fixed pump 
power of 1 mW. We now set the detuning to be zero and 
investigate the laser’s performance when the pump power is 
varied. We are primarily interested in the amount of SBS 
power obtainable for a given supply of power into the 
microresonator cavity. Figure 6 shows the outcoupled SBS 
power versus the total amount of power coupled into the 
cavity and thus depicts the input-output relationship of the 
laser [Eq. (23)]. The simulated lasing threshold occurs at 
0.032 mW with a corresponding slope efficiency of 66.7 %, 
which agrees with the analytical expression of Eq. (23) 
using the values provided in Table 1. However, we note that 
although the slope efficiency of the coupled-in power is 
66.7 %, there is an additional efficiency loss from the 
supplied pump power that does not couple into the cavity 
[see Fig. 5(a)]. For example, a total pump power of 4.1 mW 
was required to couple 1 mW of power into the cavity thus 
yielding a coupling efficiency of 24.4 %. 
 

VIII. SIMULATIONS OF FUNDAMENTAL NOISE 
LIMIT  

We are now interested in analyzing the fundamental 
limits of noise achievable by the SBS laser. As before, the 
simulation is seeded with white Gaussian noise of random 
phase, which provides the initial kick for self-oscillation. By 
continuously seeding the microresonator with noise, the 
phase and amplitude of the forward, backward, and density 
waves become perturbed from their steady-state values. 
Since , , 0B F tρφ∂ ∂ =  at steady state, the frequency noise of 
these corresponding waves is directly found from simulating 
their phase evolution in Eq. (15) with noise introduced into 
the system. Figure 7(a) illustrates the simulated and 
analytical SBS frequency noise spectrum for zero pump 
detuning and a pump power of 1 mW. The corresponding 
outcoupled SBS power is 0.29 mW. Note that since 
measured values of frequency noise are often defined 
through a single-sided spectrum, we have doubled our 
calculated SBS frequency noise, which effectively maps the 
negative frequencies onto the positive frequencies. The SBS 

 
 
Fig. 6. (Color online) SBS laser outcoupled power as a 
function of the total input power supplied into the cavity. 



frequency noise is white at lower offset frequencies and 
exhibits a resonance at ~6 MHz. Beyond ~10 MHz, the 
frequency noise response rolls off at -20 dB/decade. Note 
that since the effects of shot noise have not been accounted 
for, the simulated rolloff continues on for higher offset 
frequencies. 

From Fig. 7 (a), the simulated white frequency noise 
floor is 0.47 Hz2/Hz at lower offset frequencies, which 
matches the analytical value for the SBS laser’s white 
frequency noise of 0.51 Hz2/Hz [Eq. (37)]. These values 
also agree well with experimental measurements of the SBS 
laser’s white frequency-noise floor [27, 33]. Since the 
Lorentzian linewidth and frequency noise of a laser are 
closely related (by a factor of π  for a single-sided 
frequency-noise spectrum [34]), we achieve an estimate of 
the SBS laser’s linewidth using Fig. 7(a). If we approximate 
the entire frequency noise spectrum to be white, the 
corresponding power spectral density exhibits a Lorentzian 
lineshape with a full-width half maximum linewidth of 1.5 
Hz. The simulated linewidth is 3 to 6 orders of magnitude 
narrower than conventional semiconductor or fiber lasers 
and thus highlights the excellent noise properties exhibited 
by the SBS gain medium.  

The SBS laser’s amplitude noise can also be simulated 
by analyzing the system’s response to noise. The relevant 
figure of merit here is the laser’s RIN, which provides a 
measure of the laser’s amplitude fluctuations normalized to 
its signal level. The laser RIN can be related to the 
amplitude noise spectral density [Eq. (32)] by noting that 

( ) ( )2
O O B BP P A Aδ δ′ ′+ ∝ +  and thus 2O B BP A Aδ δ′ ′∝ . 

The first expression is a statement that the SBS intracavity 
optical power ( )OP  and its associated noise fluctuation 

( )OPδ  are proportional to the square of the total intracavity 

SBS field amplitude (signal + noise). The second expression 
identifies the dominant contribution to the power 
fluctuation, which consists of a heterodyne between the 
signal amplitude and noise amplitude fluctuation. Since a 
laser’s RIN is measured as a ratio of noise power to signal 
power in the electrical domain after photodetection, we 
convert 2O B BP A Aδ δ′ ′∝  into its corresponding power 

spectral density and normalize with respect to 42
O BP A′∝ . 

The factors of proportionality all cancel, and we thus find 
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                              (43) 

Note that since laser RIN is defined as single-sided, we have 
introduced an additional factor of two in Eq. (43) which 
maps the negative frequencies onto the positive frequencies. 
Depending on the noise source (pump fluctuation or 
thermally-induced density wave fluctuation), either Eq. (30) 
or Eq. (32) may be used for calculating RIN. Our analytical 
calculations of the intrinsic SBS laser amplitude noise here 
are performed using Eq. (32) in Eq. (43).  

Figure 7b shows the simulated and analytical SBS RIN 
for a pump power of 1 mW and a pump detuning of 0 Hz. 
The relaxation oscillation resonance occurs near ~4 MHz, 
which matches the approximate resonance frequency of       
3.5 MHz [Eq. (28)]. The SBS RIN is white at a level of        
-130.4 dBc/Hz at lower offset frequencies and decays at       
-40 dB/decade past the relaxation resonance. 

From Fig. 7, we observe that although the SBS laser 
exhibits excellent performance in frequency noise, its RIN 
characteristics appear worse compared to lasers of 
semiconductor technology. One reason for this degradation 
in laser RIN is due to the lower optical powers exhibited by 

                
 (a)                                                                                                  (b) 

Fig. 7. (Color online) Simulated (blue solid line) and analytical (black dashed line) SBS laser (a) frequency noise and (b) RIN for a 
pump power of 1 mW and pump detuning of 0 Hz. 



the SBS laser. From Eq. (32), we see that 
B

P
ASδ ′  scales 

inversely with 4
BA′  ( )2

OP∝  when the stimulated lifetimes 
are slower than the intrinsic cavity decay rate. Note that the 
density wave scales proportionally to the backward wave 
[see Eq. (17)] as the two waves mutually promote each 
other’s growth. The normalization of Eq. (43) introduces an 
additional factor of 2

BA′  which yields a combined cubic 

inverse dependence of RIN on SBS power. If stim Fτ τ<< , 
the total RIN scaling instead becomes first order inversely 
with SBS power. With an increase of outcoupled SBS 
power from 0.29 mW to 29 mW, the SBS laser RIN can be 
reduced by at least 20 dB. However, these larger optical 
powers cannot usually be achieved experimentally in SBS 
microresonator lasers since the SBS wave eventually 
becomes the pump for the next Stokes order [not modelled 
in Eq. (14)]. 

In addition to the limitations due to optical power, the 
effects of oscillator feedback also have a relatively minor 
impact on the SBS laser’s amplitude fluctuations. In any 
oscillator, the gain is stabilized to the value that 
compensates the total system loss, thereby reducing the 
oscillator’s exhibited amplitude noise. For example in a 
laser, an increase of the intracavity power causes saturation 
of the gain below the intracavity loss, which then results in 
attenuation of the power until steady state is reached. A 
similar self-stabilization is observed in Eq. (25) for the SBS 
laser. We see that if the density wave is instantaneously 
increased by means of a noise fluctuation ( )0δ ρ′ > , the 
system develops a driving force to increase the SBS wave 
due to the SBS interaction of the forward wave with the 
density wave. However, this process acts to deplete the 
power in the forward wave ( )0FAδ ′ < , which then reduces 
the available SBS gain. These two processes can in principle 
balance one another resulting in complete cancellation of 
the SBS wave’s amplitude noise. This effect can be more 
concretely observed in Eq. (31) where for simplicity we 
consider the laser’s operation at zero frequency. As per    
Eq. (25), we multiply FAδ ′  by ρ′  and δ ρ′  by FA′  and 
subsequently sum them together. It is clear from this 
operation that the fluctuations of the forward and density 
waves can exactly compensate one another when F stimτ τ= . 

This can also be verified by setting 0ω =  for BAδ ′   in   

Eq. (31) along with setting F stimτ τ= . However, since stimτ  
is dependent on the operating point, the typical operation of 
the SBS laser results in the fluctuations of the forward wave 
under- or over-compensating the fluctuations of the density 
wave. 
 
 
 

 
IX. SIMULATIONS OF PUMP NOISE TRANSFER 

In this section, we simulate the transfer of noise from 
the pump laser to the SBS wave. This noise increases the 
SBS laser noise above the intrinsic limits found in the 
previous section. To simulate the pump noise transfer, we 
apply a coherent small-signal modulation to either the 
amplitude or phase of the pump wave. We then divide the 
resulting frequency noise/RIN imprinted onto the SBS wave 
by the frequency noise/ RIN of the pump. For performing 
these simulations, the thermally-induced fluctuations of the 
density wave are switched off. 

Figure 8(a) shows the transfer of pump frequency 
fluctuations to the SBS laser’s frequency noise for a pump 
power of 1 mW and a pump detuning of 0 Hz. At lower 
offset frequencies, 1.3 % of the pump noise converts to 
fluctuations of the SBS wave. At higher frequencies, the 
noise reaches a damped resonance at ~5 MHz and then rolls 
off at -40 dB/decade when the cavity can no longer respond. 
Note that although only a small fraction of the pump 
frequency noise transfers over to the SBS laser, the transfer 
of pump noise to the density wave is nearly 100 %. The 
amount of noise transfer is governed by the response rate for 
each of the individual waves (1 2 Bτ  for the SBS wave and 

2bΓ  for the density wave) to phase perturbations. These 
phase response rates can be understood by substituting the 
steady state of the amplitude evolution equations [Eq. (15)] 
into Eq. (33). When the phase of the pump undergoes an 
instantaneous change, the phases of both the backward and 
density waves rotate to reach steady state. Although there is 
only one value of combined phase shift that satisfies steady 
state, no restrictions apply to the individual values of ,B ρφ φ . 
Thus, one desires the density wave response to be fast so 
that it absorbs the entirety of the phase rotation. To estimate 
the noise transfer into the SBS wave, we take the ratio of 
1 2 Bτ  to 2bΓ  and square the result for conversion to 
spectral density. This operation yields 0.016 which agrees 
well with our simulated value of 0.013 at lower offset 
frequencies. 

Figure 8(b) shows the corresponding conversion of 
pump RIN into SBS laser RIN. The RIN transfer is 39.1 % 
at lower offset frequencies which agrees with the 
analytically calculated value of 39.1 %. At ~4 MHz, the 
RIN transfer exhibits a resonance and then afterwards 
decays at even higher offset frequencies. Since the pump 
RIN is typically low, the RIN of the SBS laser is usually 
limited by its intrinsic amplitude fluctuations [see Fig. 7(b)]. 

Because of the delicate balance between phase and 
amplitude in a microresonator cavity, there will also be 
effects of noise conversion from amplitude to phase and 
from phase to amplitude. However, these processes are 
approximately zero when the microresonator is operated 
with zero pump detuning. Our simulations of these noise 
processes appear to vary depending on the simulation 



parameters. However, we consistently find the conversion of 
pump RIN to SBS frequency noise (pump frequency noise 
to SBS RIN) to be below the level of 10-25 Hz2 (10-23 1/Hz2) 
at a 10 kHz offset frequency. 

In order to accurately assess the conversion of pump 
noise into the opposite quadrature, we increase the amount 
of detuning used in our simulations. Figure 9(a) shows the 
transfer of pump frequency noise into SBS RIN for a pump 
detuning of 1 Bτ  (one cavity linewidth) and a SBS gain 
detuning of bΓ  (one SBS gain linewidth). To achieve 
enough SBS gain to self-oscillate, we increase the pump 
power to 2 mW. At this operating point, the out-coupled 
SBS power corresponds to 0.21 mW. From Fig. 9(a), the 
conversion of pump frequency noise into SBS RIN is 
2.2×10-13 1/Hz2 at lower offset frequencies. This number is 
intrinsically small as the level of RIN is much smaller than 
that of frequency noise for a typical laser. However, we see 
that the noise transfer at 10 kHz is much larger than that 
found with zero pump detuning (< 10-23 1/Hz2). Beyond the 
system resonance near 3.5 MHz, the conversion of pump 
frequency noise to SBS RIN rolls off when the laser can no 
longer respond to pump fluctuations. 

Figure 9(b) shows the conversion of pump RIN into 
SBS frequency noise again for the same operating 
conditions. The transfer response exhibits a steady increase 
of 20 dB/decade at lower offset frequencies thus indicating 
the presence of a low-frequency zero. Since frequency and 
phase are related by a derivative, the corresponding phase 
noise spectrum would be constant at low frequencies. A 
constant phase noise is intuitive as a fixed shift of the pump 
amplitude would result in the SBS laser settling into a 
different fixed steady-state phase arrangement. Since a shift 
in pump amplitude results in a constant shift in SBS phase 
at DC, the corresponding frequency fluctuation is zero, as 

can also be extrapolated from Fig. 9(b). For an offset 
frequency of 10 kHz, the noise transfer is 5.1×107 Hz2 
which is again significantly larger than the conversion noise 
under zero detuning (< 10-25 Hz2). Beyond the system 
resonance near 3.5 MHz, the system response initially rolls 
off at -60 dB/decade before changing slopes to                     
-40 dB/decade past 16 MHz (approximately inverse of the 
phonon lifetime). 

For completeness, Fig. 9(c) shows the transfer of pump 
frequency noise to the SBS laser’s frequency noise when the 
pump detuning is 1 Bτ  and the SBS gain detuning is bΓ . 
Similar to the zero detuning case [Fig 8(a)], 1.4 % of the 
pump frequency noise transfers over to the SBS wave at 
lower offset frequencies. The system response exhibits a 
sharp resonance near 3.5 MHz due to the strong coupling 
between amplitude and phase when the detuning is no 
longer zero. Beyond the system resonance, the rolloff is 
initially -60 dB/decade but changes to -40 dB/decade past 
16 MHz. 

Finally, Fig. 9(d) shows the transfer of pump RIN to the 
SBS laser’s RIN for a pump detuning of 1 Bτ  and a SBS 
gain detuning of bΓ . At low offset frequencies, the RIN 
transfer is 1.44× the RIN of the pump, which is 3.7× larger 
than that found with zero detuning [Fig 8(b)]. At higher 
frequencies, the noise transfer reaches a resonance near    
3.5 MHz before finally stabilizing to a roll off of                  
-40 dB/decade beyond 16 MHz. The properties of the SBS 
noise in Fig. 7 and of the SBS noise transfer in Figs. 8 and 9 
all closely match those found in experimental measurements 
[33]. 
 
 
 

                
(a)                                                                                                (b) 

Fig. 8. Simulated pump to SBS laser (a) frequency noise and (b) RIN transfer for a pump power of 1 mW and zero pump detuning. 



 
 

X. CONCLUSIONS 

We have developed a set of coupled-mode equations 
that accurately describe the steady-state behavior and noise 
dynamics of the SBS laser. The coupling between the 
forward, backward, and density waves results in a complex 
noise response to amplitude or phase perturbation. 
Nevertheless, our analytical calculations and simulations 
show the potential for oscillation with hertz-class linewidths 
or below, enabled by the noise properties of the SBS gain. 
The intrinsic limits of SBS laser noise become degraded by 
a noisy pump due to the transfer of pump noise into the SBS 
wave. However, these effects are mitigated with the use of 
microcavities with higher Q. Our model can be readily 

extended to account for multiple oscillating modes, self- and 
cross-phase modulation nonlinearity, thermorefractive 
noise, or thermal bistability. 
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(c)                                                                                                (d) 

Fig. 9. Simulated (a) pump frequency noise to SBS RIN, (b) pump RIN to SBS frequency noise, (c) pump frequency noise to SBS 
frequency noise, and (d) pump RIN to SBS RIN transfer for a pump power of 2 mW, a pump detuning of 1 Bτ  (1 cavity linewidth), 
and a SBS gain detuning of bΓ  (one SBS gain linewidth). 
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