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Besides the conventional transverse couplings between superconducting qubits (SQs) and electromagnetic

fields, there are additional longitudinal couplings when the inversion symmetry of the potential energies of the

SQs is broken. We study nonclassical-state generation in a SQ which is driven by a classical field and coupled

to a single-mode microwave field. We find that the classical field can induce transitions between two energy

levels of the SQs, which either generate or annihilate, in a controllable way, different photon numbers of the

cavity field. The effective Hamiltonians of these classical-field-assisted multiphoton processes of the single-

mode cavity field are very similar to those for cold ions, confined to a coaxial RF-ion trap and driven by a

classical field. We show that arbitrary superpositions of Fock states can be more efficiently generated using

these controllable multiphoton transitions, in contrast to the single-photon resonant transition when there is only

a SQ-field transverse coupling. The experimental feasibility for different SQs is also discussed.

PACS numbers: 42.50.Dv, 42.50.Pq, 74.50.+r

I. INTRODUCTION

Superconducting qubit (SQ) circuits [1–8] possess discrete

energy levels and can behave as artificial “atoms”. In con-

trast to natural atoms, with a well-defined inversion symme-

try of the potential energy, these artificial atoms can be con-

trolled by externally-applied parameters (e.g., voltage or mag-

netic fluxes) [1–5] and thus the potential energies for these

qubits can be tuned or changed from a well-defined inversion

symmetry to a broken one. Artificial atoms with broken sym-

metry have some new features which do not exist in natural

atoms. For example, phase qubits do not have an optimal

point [9, 10], so for these the inversion symmetry is always

broken.

When the inversion symmetry of these artificial atoms is

broken, then the selection rules do not apply [11–14], and

microwave-induced transitions between any two energy lev-

els in multi-level SQ circuits are possible. Thus, multi-

photon and single-photon processes (or many different pho-

ton processes) can coexist for such artificial multi-level sys-

tems [11, 12, 15]. Two-level natural atoms have only a trans-

verse coupling between these two levels and electromagnetic

fields. However, it has been shown [12] that there are both

transverse and longitudinal couplings between SQs and ap-

plied magnetic fields when the inversion symmetry of the po-

tential energy of the SQ is broken. Therefore, the Jaynes-

Cumming model is not suitable to describe the SQ-field inter-

action when the inversion symmetry is broken.

Recently, studies of SQ circuits have achieved significant

progress. The interaction between SQ circuits and the elec-

tromagnetic field makes it possible to conduct experiments of

quantum optics and atomic physics on a chip. For instance,

dressed SQ states (e.g., in Refs. [16, 17]) have been experi-
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mentally demonstrated [18, 19]. Electromagnetically-induced

transparency (e.g., Refs. [20–26]) in superconducitng systems

has also been theoretically studied. Moreover, Autler-Townes

splitting [26–32] and coherent population trapping [33] have

been experimentally demonstrated in different types of SQs

with three energy levels. Experiments have shown that SQs

can be cooled (e.g., Refs. [34–37]) using similar techniques

as for cooling atoms. Moreover, sideband excitations [38, 41]

have been observed experimentally [42, 43] using supercon-

ducting circuits. Thus, SQs can be manipulated as trapped

ions (e.g., in Ref. [44–46]), but compared to trapped ions, the

“vibration mode” for SQs is provided by an LC circuit or a

cavity field.

In trapped ions [44–46], multi-phonon transitions can be re-

alized with a laser field. Multi-photon processes in SQs with

driving fields [47] have been experimentally observed (e.g., in

Refs. [48–53]) when the inversion symmetry is broken. Thus,

here we will show how nonclassical photon states can be gen-

erated, via multi-photon transitions of a single-mode electro-

magnetic field in a driven SQ, when the longitudinal coupling

field is introduced. We will derive an effective Hamiltonian

which is similar to the one for trapped ions. The single-mode

quantized field can be provided by either a transmission line

resonator (e.g., Refs. [39, 40, 54, 55]) or an LC circuit (e.g.,

Refs. [37, 56]), where the SQ and the single-mode field have

both transverse and longitudinal couplings. In contrast to the

generation of non-classical photon states using a SQ inside

a microcavity [58–61] with only a single-photon transition,

we will show that the Hamiltonian derived here can be used

to more efficiently produce nonclassical photon states of the

microwave cavity field when longitudinal-coupling-induced

multiphoton transitions are employed.

Our paper is organized as follows. In Sec. II, we derive an

effective Hamiltonian which is similar to the one for trapped

ions. We also describe the analogies and differences between

these two types of Hamiltonians. In Sec. III, we show how

to engineer nonclassical photon states using the multi-photon
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FIG. 1: (Color online) Schematic diagram showing how two energy

levels change with the external parameter for superconducting qubits.

HereE0 and E1 are the eigenvalues of the ground and excited states,

respectively. These vary with external parameters. For charge and

flux qubits, the external parameters are the electric voltage and mag-

netic flux, respectively. At the degenerate (or optimal) point, where

the external parameter takes a particular value, the energy splitting

reaches a minimum, ∆ = ~ωx, where the double potential well is

symmetric. In this case, there is only a SQ-field transverse coupling.

However, when the external parameter deviates from this point, the

double potential well is asymmetric, and there are both transverse

and longitudinal couplings between the SQs and the applied electro-

magnetic field.

coupling between the driven SQ and the quantized field. In

Sec. VI, we discuss possible experimental implementations of

these proposals for different types of SQs. Finally, we present

some discussions and a summary.

II. MULTI-PHOTON PROCESS INDUCED BY A

LONGITUDINAL COUPLING

A. Theoretical model

As schematically shown in Fig. 1, the shape of the potential

energy for some kinds of SQs (e.g., charge and flux qubits) can

be adjusted (from symmetric to asymmetric and vice versa)

by an external parameter, and thus the two energy levels of

SQs can also be controlled. For charge and flux qubits, the

external parameters are the voltage and the magnetic flux, re-

spectively. However the potential energy of the phase qubits

is always broken, no matter how the external field is changed.

The generic Hamiltonians for different types of SQs can be

written as

Hq =
~

2
ωzσz +

~

2
ωxσx. (1)

As in experiments, we assume that both parameters ωz and

ωx can be controlled by external parameters. The parame-

ter ωz = 0 corresponds to the optimal point and well-defined

inversion symmetry of the potential energy of the SQs. How-

ever, both nonzero parameters ωz and ωx correspond to a bro-

ken inversion symmetry of the potential energy of the SQs.

Below, we first provide a general discussion based on the qubit

Hamiltonian in Eq. (1), and then we will specify our discus-

sions to different types of SQs. The discussion of their exper-

imental feasibilities will be presented after the general theory.

Let us now assume that a SQ is coupled to a single-mode

cavity field and is driven by a classical field, where the Hamil-

tonian of the driven superconducting qubits is

H = Hq+~ωa†a+~gσz(a+a
†)+~Ωdσz cos(ωdt+φd). (2)

Here, a†(a) is the creation (annihilation) operator of a single-

mode cavity field with frequency ω. The parameter Ωd is the

coupling constant between the SQ and the classical driving

field with frequency ωd. The parameter g is the coupling con-

stant between the SQ and the single-mode cavity field. The

parameter φd is the initial phase of the classical driving field.

Equation (2) shows that there are transverse and longitudi-

nal couplings between the SQs and the electromagnetic field.

This can become clearer if we rewrite the Hamiltonian in

Eq. (2) in the qubit basis, that is,

H =
~

2
ωqσ̃z + ~ωa†a+ ~gzσ̃z(a+ a†) + ~gxσ̃x(a+ a†)

+ ~Ωdzσ̃z cos(ωdt+ φd) + ~Ωdxσ̃x cos(ωdt+ φd), (3)

with four parameters gz = g cos θ, gx = −g sin θ, Ωdz =
Ωd cos θ, and Ωdx = −Ωd sin θ. Here, the parameter θ is

given by θ = arctan(ωx/ωx), and the qubit eigenfrequency

is ωq =
√
ω2
x + ω2

z .

The Hamiltonian in Eq. (3) shows that the qubit has both

transverse and longitudinal couplings to the cavity (driving)

fields with transverse gx (Ωx) and longitudinal gz (Ωz) cou-

pling strengths. When both ωz = 0 and Ωd = 0, Eq. (3) is

reduced to

H̃ =
~

2
ωqσ̃z + ~gσ̃x(a+ a†) (4)

which has only the transverse coupling between the SQ and

the single-mode field. If we further make the rotating-wave

approximation, then Eq. (4) can be reduced to the Jaynes-

Cumming model, which has been extensively studied in quan-

tum optics [62]. That is, there is only a single-photon transi-

tion process when the qubit is at the optimal point. However,

the transverse and the longitudinal couplings between the SQ

and the single-mode field coexist, when the inversion sym-

metry of the potential energy is broken and ωz is nonzero for

the SQs. As shown below, this coexistence can induce multi-

photon transitions between energy levels of SQs and make it

easy to prepare arbitrary nonclassical states of the cavity field.

Below, we assume that both ωz and ωx are nonzero. We

also assume that the SQ and the quantized field satisfy the

large-detuning condition, that is,

ωq =
√
ω2
x + ω2

z ≫ ω. (5)

In this case, the SQ and the quantized field are nearly de-

coupled from each other when the classical driving field is

applied to the SQs.
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B. Multi-photon processes and sideband excitations

Let us now study how multi-photon processes can be in-

duced via a longitudinal coupling by first applying a displace-

ment operator

D
(
η
σz
2

)
= exp

[
η
σz
2
(a† − a)

]
, (6)

to Eq. (2) with

η = 2g/ω. (7)

Thus η is the normalized qubit-cavity coupling. It is also

known as the Lamb-Dicke parameter. Hereafter, we denote

the picture after the transformationD (ησz/2) as the displace-

ment picture. In this case, we have an effective Hamiltonian

Heff =DHD† =
~

2
ωzσz + ~ωa†a+ ~Ωdσz cos(ωdt+ φd)

+
~

2
ωx

{
σ+ exp

[
η
(
a† − a

)]
+ h.c.

}
. (8)

From Eq. (8) with Ωd = 0, we find that if nω = ωz , then the

multiphoton processes, induced by the longitudinal coupling,

can occur between two energy levels formed by the eigen-

states of the operators σz . However, such process is not well

controlled. Moreover, ωz is usually not perfectly equal to nω,

for arbitrarily chosen n. These problems can be solved by

applying a classical driving field, in this case Ωd 6= 0.

To understand how the classical field can assist the cavity

field to realize multi-photon processes in a controllable way,

let us now apply another time-dependent unitary transforma-

tion

Ud (t) = exp

[
i

~
Hd (t)

]
(9)

to Eq. (8) with the Hamiltonian Hd defined as

Hd (t) =
~Ωdσz
ωd

sin(ωdt+ φd), (10)

and then we can obtain another effective Hamiltonian

H
(d)
eff = UdHeffU

†
d − iUd

∂U †
d

∂t
=

~

2
ωzσz + ~ωa†a

+
~ωx

2

∞∑

N=−∞

{JNσ+BN (t) + H.c.} , (11)

where the time-dependent expression BN (t) is given as

BN (t) = exp
[
η
(
a† − a

)
+ iN(ωdt+ φd)

]
; (12)

JN ≡ JN (xd) is the N th Bessel function of the first kind,

with xd = 2Ωd/ωd and JN (xd) = (−1)NJ−N (xd), and η is

similar to the Lamb-Dicke parameter in trapped ions [44, 45].

Via the unitary

V0 (t) = exp

[
i

~
H0t

]
, (13)

with

H0 =
~

2
ωzσz + ~ωa†a, (14)

we can further expand the Hamiltonian in Eq. (11), in the in-

teraction picture, into

Hint =
~

2
ωx

∑

N,m,n

{
Jmn
N (t)σ+a

†man + h.c.
}
, (15)

with

Jmn
N (t) =

(−1)nJN
m!n!

ηm+n exp

[
−1

2
(η)

2

]
(16)

× exp [iN(ωdt+ φd) + i (m− n)ωt+ iωzt] .

Equation (15) clearly shows that the couplings between the

SQs and the quantized cavity fields can be controlled via a

classical field when they are in the large-detuning regime.

Comparing the Hamiltonian in Eq. (15) with that for the

trapped ions [44, 45], we find that the Hamiltonian in Eq. (15)

is very similar to that of the two-level ion, confined in a

coaxial-resonator-driven rf trap which provides a harmonic

potential along the axes of the trap. Therefore, in analogy

to the case of trapped ions, there are two controllable multi-

photon processes (called red and blue sideband excitations,

respectively) and one carrier process:

(i) when n > m, with n−m = k, and the transition satisfies

the resonant condition Nωd = ωz − kω, with N, k =
1, 2, 3, · · · , the driving frequency Nωd is red-detuned

from the qubit frequency ωz . Thus, we call this multi-

photon process the red process.

(ii) when n < m, withm−n = k, and the transition satisfies

the resonant condition Nωd = ωz + kω, with N, k =
1, 2, 3, · · · , the driving frequencyNωd is blue-detuned

from the qubit frequency ωz . Then we call this process

the blue process.

(iii) when n = m and ωz = Nωd (N = 1, 2, · · · ), the

driving field with N photons can resonantly excite the

qubit. We call this transition the carrier process.

However, there are also differences between the Hamilto-

nian for trapped ions [44, 45] and that in Eq. (15). These

differences are:

(i) For a given frequency ωd of the driving field, there is

only one multi-photon-transition process in the sys-

tem of trapped ions to satisfy the resonant condition,

but the SQs can possess several different multipho-

ton processes, resulting from the longitudinal coupling

between the classical field and the SQ. For instance,

with the given frequencies ωd and ω, and for the cou-

plings with the N th and N ′th Bessel functions, two

transitions with the red sideband resonant conditions:

Nωd = ωz − kω and N ′ωd = ωz − k′ω, might be sat-

isfied. Once the condition (N −N ′)/(k′ − k) = ω/ωd
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is satisfied, then these two resonant transitions can si-

multaneously occur. Similarly, for the case of blue-

sideband excitations, the condition that two resonant

transitions simultaneously occur for the k and k′ pho-

ton processes is (N − N ′)/(k − k′) = ω/ωd. We

can represent the transition type in the sign of k and

k′. Thus if we want some terms with N ′ unresonant, all

we need to do is to let (N − N ′)/(k − k′) 6= ω/ωd,
i.e., ωz 6= ω (N ′k −Nk′) / (N ′ −N) . One sufficient

condition is that ωz 6= ωn/ (N ′ −N) (n = 0,±1,±2,
· · · ).

(ii) The Lamb-Dicke parameter η for the trapped ions is

determined by the frequency of the vibration phonon,

mass of the ion, and the wave vector of the driving field.

However the Lamb-Dicke parameter η here is deter-

mined by the frequency ω of the single-mode quantized

field and the coupling constant g between the single-

mode field and the SQ.

(iii) For multi-photon processes, the coupling between

trapped ions and the phonon is always on. However,

such processes can in principle be switched off at the

zeros of the Bessel functions of the first kind.

(iv) The term in Eq. (15) with N = 0 means that the driving

field has no help for the excitation of the SQ. Thus this

term is neglected in the following discussions. How-

ever, the driving field can always be used to excite the

trapped ions when certain resonant condition is satis-

fied.

(v) For trapped ions, the ratio between the transition fre-

quency of the qubit and the frequency of the vibration

quanta is often about 109. Thus the upper bound for

the photon number k in the multiphotn process is about

k = 109. However, in the SQ circuit, the frequency of

the SQ can be several tens of GHz, and the quantized

cavity field can be in the regime of GHz. Thus the pho-

ton number k is not extremely large. For example, if

ωz = 20 GHz and ω = 2 GHz, then the upper bound

for k is 10.

To compare similarities and differences, Table I lists the

main parameters of the Hamiltonian for trapped ions and those

of the SQ in Eq. (11). We should note that the Lamb-Dicke

parameter η can become very large in circuit QED systems

in the ultrastrong [71–73] and deep-strong [74–77] coupling

regime. Our discussion below is in the ultrastrong coupling,

but can be straightforwardly extended to the deep-strong cou-

pling regime.

C. Bessel functions and coupling strengths

In the process of generating nonclassical photon states, the

coupling strength Jmn
N (t) plays an important role. In our

study here, the Bessel functions of the first kind are crucial

factors in the coupling strengths. The possible values of the

TABLE I: Comparison of some parameters between the Hamiltonian

in Eq. (15) and that of the trapped ions (e.g., in Ref. [45]). Here LD

refers to the Lamb-Dicke parameter.

Parameters Superconducting qubits

(orders of magnitude)

Trapped ions (orders of

magnitude)

LD parameters 2g/ω ∼ (0.2 − 1.8) η ∼ (0.2 − 0.9)

Carrier Rabi frequencies Renormalized JN ωx/2 Renormalized Ω

Driving field frequencies ωd (N = 1, · · · ) ωL

0 5

0

0.5

1

xd

J0

J1 J2 J3

J4

(a)

0
2

0

2

0

0.2

0.4

ηxd

|J
0
0

1
(t
)|

(b)

0
2

0

2

0

0.1

0.2

0.3

ηxd

|J
0
1

1
(t
)|

(c)

0
2

0

2

0

0.2

0.4

ηxd

|J
1
1

1
(t
)|

(d)

FIG. 2: (Color online) Bessel functions JN (xd) of the first kind,

with N = 0, 1, 2, 3, are plotted as functions of the ratio xd in (a).
∣

∣J00
1 (t)

∣

∣,
∣

∣J01
1 (t)

∣

∣, and
∣

∣J11
1 (t)

∣

∣ have been plotted in (b), (c), and (d)

as functions of η and xd, respectively. Recall that xd = 2Ωd/ωd

is the ratio between the driving field-SQ Rabi frequency Ωd and the

frequency ωd of the driving field.

Bessel functions depend on the ratio xd between the driv-

ing field-SQ Rabi frequency Ωd and the frequency ωd of the

driving field. For several recent experiments with supercon-

ducting quantum circuits, the coupling constant Ωd is usu-

ally in the range from several tens of MHz to several hun-

dreds of MHz, e.g., 10MHz < Ωd < 500 MHz. The fre-

quency ωd of the driving field is in the range of GHz, e.g.,

1GHz ≤ ωd ≤ 20 GHz. Thus the ratio xd is in the range

10−9 ≤ xd ≤ 1. (17)

For completeness and to allow a comparison between them,

several Bessel functions are plotted as a function of the pa-

rameter xd = 2Ωd/ωd in Fig. 2(a), which clearly shows

J0(xd) > J1(xd) > J2(xd) > · · · > JN (xd) in the range

of 10−9 ≤ xd ≤ 1. Thus if the classical driving field is cho-

sen such that the ratio xd is less than 0.5, then we only need
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to consider the terms in the Hamiltonian in Eq. (15) with the

Bessel functions J0(xd) and |J1(xd)| = |J−1(xd)|, and other

terms are negligibly small. As discussed above, it should be

noted that the frequency ωd of the driving field has no effect

on the coupling between the SQ and the quantized field in

terms of the Bessel function J0(xd). Thus the driving-field-

assisted transitions between the SQ and the quantized field are

determined by the terms with the Bessel functions J±1(xd),
when other high-order Bessel functions are neglected. Fig-

ure 2(a) also shows that the terms with the Bessel function

J±2(xd) are also not negligible when xd becomes larger, e.g.,

0.5 ≤ xd < 1. Thus in the regime 0 ≤ xd < 1, the terms with

high-order Bessel functions (e.g., the ones with N ≥ 3) can

be neglected.

As an example, Figs. 2(b, c, d) illustrate how |Jmn
1 (t)| are

affected by m, n, xd, and η. Since the maximal point occurs

at η =
√
m+ n, if other variables are fixed, thus we can find

an obvious shift of the maximal point along the η-axis with

increasingm+n. We can also find that |Jmn
N (t)| have similar

results as those of |Jmn
1 (t)| versus m, n, xd, and η. By tun-

ing xd and η, we can change the Rabi frequencies, and thus

optimize the generation time.

III. GENERATING NON-CLASSICAL PHOTON STATES

USING SUPERCONDUCTING QUANTUM CIRCUITS

In this section, we discuss how to generate non-classical

photon states via transverse and longitudinal couplings be-

tween SQs and the single-mode cavity field, with the assis-

tance of a classical driving field.

A. Interaction Hamiltonian and time-evolution operators

Let us now analyze the interaction Hamiltonian and time

evolutions for the three different processes based on the

Hamiltonian in Eq. (15). We have three different interaction

Hamiltonians. In the interaction picture with the resonant con-

ditions of different photon processes, by assuming n = m+k
for the red-sideband excitation, m = n + k for the blue-

sideband excitation, and m = n for the carrier process. We

now discuss the general case for coupling constants with any

number of Bessel functions. For a red process with the N th

Bessel functions, we derive the Hamiltonian

Hr = J
(k)
N,r

∑

m

(−1)mη2mσ+a†mam+k

m!(m+ k)!
+ h.c., (18)

with the resonant condition

Nωd = ωz − kω.

For a blue process with the N th Bessel functions, we have the

Hamiltonian

Hb = J
(k)
N,b

∑

n

(−1)nη2nσ+a†(n+k)an

n!(n+ k)!
+ h.c., (19)

with the resonant condition

Nωd = ωz + kω.

The parameters Jk
N,r and Jk

N,b for the red process in Eq. (18)

and the blue one in Eq. (19) are given by

J
(k)
N,r = (−1)kωx

2
JN exp

[
−1

2

(
2g

ω

)2

+ iNφ
(β)
d

]
ηk,

(20)

J
(k)
N,b =

ωx

2
JN exp

[
−1

2

(
2g

ω

)2

+ iNφ
(β)
d

]
ηk, (21)

where the subscript β takes either r or b, we use φ
(β)
0 to char-

acterize the initial phase of either the red or the blue process.

For the carrier process with the N th Bessel functions, the in-

teraction Hamiltonian is given by

Hc = J
(0)
N,c

∑

n

η2n
(−1)nσ+a†nan

n!n!
+ h.c., (22)

with the resonant condition

Nωd = ωz,

and the coupling constant

J
(0)
N,c =

1

2
ωxJN exp

[
−1

2
η2 + iNφ

(c)
d

]
. (23)

We also note that all non-resonant terms have been neglected

when Eqs. (18-22) are derived. The dynamical evolutions of

the systems corresponding to these three different processes

can be described via time-evolution operators. For example,

for the kth red, blue, and carrier sideband excitations, we re-

spectively have the evolution operators

U
(k)
N,r (t) =

k−1∑

n=0

|n〉 〈n|σ00 +
∞∑

n=0

cos
(∣∣∣Ωk,n

N,r

∣∣∣ t
)
|n〉 〈n|σ11

+

∞∑

n=0

e−iφk,n

N,r
−iπ/2sin

(∣∣∣Ωk,n
N,r

∣∣∣ t
)
|n+ k〉 〈n|σ−

+
∞∑

n=0

eiφ
k,n

N,r
−iπ/2sin

(∣∣∣Ωk,n
N,r

∣∣∣ t
)
|n〉 〈n+ k|σ+

+

∞∑

n=0

cos
(∣∣∣Ωk,n

N,r

∣∣∣ t
)
|n+ k〉 〈n+ k|σ00, (24)

U
(k)
N,b (t) =

k−1∑

n=0

|n〉 〈n|σ11 +
∞∑

n=0

cos
(∣∣∣Ωk,n

N,b

∣∣∣ t
)
|n〉 〈n|σ00

+

∞∑

n=0

eiφ
k,n

N,b
−iπ/2sin

(∣∣∣Ωk,n
N,b

∣∣∣ t
)
|n+ k〉 〈n|σ+

+

∞∑

n=0

e−iφk,n

N,b
−iπ/2sin

(∣∣∣Ωk,n
N,b

∣∣∣ t
)
|n〉 〈n+ k|σ−

+

∞∑

n=0

cos
(∣∣∣Ωk,n

N,b

∣∣∣ t
)
|n+ k〉 〈n+ k|σ11, (25)
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and

U
(0)
N,c (t) =

∞∑

n=0

cos
(∣∣∣Ω0,n

N,c

∣∣∣ t
)
|n〉 〈n|σ11

+

∞∑

n=0

e−iφ0,n
N,c

−iπ/2sin
(∣∣∣Ω0,n

N,c

∣∣∣ t
)
|n〉 〈n|σ−

+

∞∑

n=0

eiφ
0,n
N,c

−iπ/2sin
(∣∣∣Ω0,n

N,c

∣∣∣ t
)
|n〉 〈n|σ+

+

∞∑

n=0

cos
(∣∣∣Ω0,n

N,c

∣∣∣ t
)
|n〉 〈n|σ00, (26)

where the complex Rabi frequency and its phase angle are

respectively defined as

Ωk,n
N,β = J

(k)
N,β

√
n!

(n+ k)!
L(k)
n

(
η2
)
, (27)

φk,nN,β = arg
(
Ωk,n

N,β

)
, (28)

with β = r, b, c and J
(k)
N,β are given in Eqs. (20), (21), and

(23). Here L
(k)
n (x) represents the generalized Laguere poly-

nomials. Let us assume that the two eigentates |g〉 and |e〉 of

the Pauli operator σz satisfy σz |g〉 = − |g〉, and σz |e〉 = |e〉,
then we define the following operators σii as σ00 = |g〉 〈g|,
σ11 = |e〉 〈e|, σ01 = |g〉 〈e|, and σ10 = |e〉 〈g|.

B. Synthesizing nonclassical photon states

We find that the interaction Hamiltonians in Eqs. (18-22) in

the displacement picture are very similar to those for trapped

ions [45]. Therefore, in principle the non-classical photon

states can be generated by alternatively using the above three

different controllable processes. We expect that the prepared

target state is

|ψnmax〉 =
nmax∑

n=0

Cn |n〉 ⊗ |q〉 , (29)

where nmax is a maximal photon number in the photon state

of the target state. Here, |n〉 ⊗ |q〉 ≡ |n〉 |q〉 denotes that the

cavity field is in the photon number state |n〉 and the qubit is

in the state |q〉, which can be either the ground |g〉 or excited

|e〉 state. The parameter |Cn|2 is the probability of the state

|n〉 ⊗ |q〉. The steps for producing the target state for both the

case q = g and q = e are very similar. We thus take q = g as

an example to present the detailed steps. The target state then

takes the form

|ψnmax〉 =
nmax∑

k=0

Ck |k〉 ⊗ |g〉 . (30)

We point out that all the states here (e.g., the target state) are

observed in the displacement picture, if we do not specify this.

We assume that the system is initially in the state |0〉 |g〉.
Then, by taking similar steps as in Ref. [45], we can generate

an arbitrary state in which the states |ψn〉 in the nth step and

|ψn−1〉 in the (n− 1)th step have the following relation,

|ψn〉 = U
(n)†
0 (tn)U

(n)
N,βn

(tn)U
(n)
0 (0) |ψn−1〉 , (31)

with

|ψn〉 =
n∑

k=0

C
(n)
kg |k〉 |g〉+ C

(n)
0e |0〉 |e〉 . (32)

Here if n = nmax, C0e = 0, and C
(n)
kg = Ck, then |ψn〉 in

Eq. (32) is reduced to |ψnmax〉 in Eq. (30). Above, tn is the

time duration of the control pulse for the nth step. The unitary

transform U
(n)
0 (t) is defined as

U
(n)
0 (t) = V0 (t)U

(n)
d (t) . (33)

Here V0 (t) is given in Eq. (13). Also, U
(n)
d (t) is actually

Ud (t) in Eq. (9), but with ωd and φd replaced by ω
(n)
d and

φ
(n)
d , which denote respectively the frequency and phase of

the driving field for the nth step. Moreover, U
(n)
N,βn

(tn) de-

notes a unitary transform of the nth step, and is taken from

one of Eq. (24), Eq. (25), and Eq. (26) depending on which

one is chosen as βn among the characters “r”, “b”, and “c”. In

U
(n)
N,βn

(tn), the parameters ωd and φd must also be replaced

by ω
(n)
d and φ

(n)
d , respectively.

The target of the nth step is to generate the state |ψn〉 from

the state |ψn−1〉. We assume |ψn−1〉 is in the displacement

picture, which is the state generated after the (n − 1)th step.

We first use U
(n)
0 (tn) to transfer |ψn−1〉 from the displaced

picture into the interaction picture. Then we choose one of

the evolution operators in Eqs. (24)–(26) with a proper pho-

ton number to reach the target state in Eq. (31). Since the state

|ψn〉 should also be represented in the displaced picture, after

the state of the nth step via the evolution operatorsU
(n)
N,βn

(tn)

and U
(n)
0 (0), we have to transfer it back to the displaced pic-

ture, which results in the appearance of U
(n)†
0 (tn) in Eq. (31).

The longitudinal coupling results in multi-photon pro-

cesses. Thus the state preparation using the longitudinal cou-

pling is in principle more convenient than that using a single-

photon transition in the usual Jaynes-Cumming model [58].

For example, the Fock state |n〉 can be generated with a carrier

process and a longitudinal coupling field-induced n-photon

process. However, it needs 2n steps (n step carrier and n
step red-sideband processes) to produce a Fock state |n〉 if

we use the Jaynes-Cumming model [58]. The selection of

U
(n)
N,βn

(tn) in Eq. (31) for each step is almost the same as

that in Ref. [45]. That is, the target state in Eq. (30) can be

obtained either by virtue of one carrier process and nmax red-

sideband excitations, or by virtue of one carrier process and

nmax blue-sideband excitations.

The steps to generate the target state in Eq. (30) from the

initial state |0〉|g〉 using carrier and red sideband excitations
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FIG. 3: (Color online) Schematic diagram for state generation of the

target state |ψnmax 〉 =
∑nmax

k=0 Ck |k〉⊗|g〉, for example, nmax = 2.

(a) Step 0, the system is initially in the state |0〉 ⊗ |g〉, and the arrow

means that a carrier process is applied with the 0-photon inside the

cavity, denoted by the operator U
(0)
N,c (t0). (b) Step 1, after the step

0, the system is in the state C
(0)
0g |0〉 ⊗ |g〉+C

(0)
0e |0〉 ⊗ |e〉, in which

the parameters C
(0)
0e and C

(0)
0g are determined by the time duration t0.

The arrow means that a 1-photon red process is applied with the time

evolution operator U
(1)
N,r (t1) after the step 0. (c) Step 2, after the step

1, the system is in the stateC
(1)
0g |0〉⊗|g〉+C(1)

1g |1〉⊗|g〉+C(1)
0e |0〉⊗

|e〉, in which the coefficients of the superposition are determined by

the time duration t0 and t1. The arrow means that a 2-photon red

process U
(2)
N,r (t2) is applied to the system after the step 1. (d) After

the step 2 (with well-chosen time durations t0, t1 and t2), the system

is in the state C0 |0〉 ⊗ |g〉+ C1 |1〉 ⊗ |g〉 + C2 |2〉 ⊗ |g〉, which is

just the target state |ψ2〉. Other superpositions can also be generated

using similar steps.

are schematically shown in Fig. 3 using a simple example. All

steps for the required unitary transformations are described as

follows. First, the initial state |0〉 |g〉 is partially excited to

|0〉 |e〉 by a carrier process (n = 0) with a time duration t0
such that the probability |C(0)

0g |2 in |0〉 |g〉 satisfies the condi-

tion |C(0)
0g |2 = |C0|2, with C0 given in Eq. (30). After the

carrier process, the driving fields are sequentially applied to

the qubit with nmax different frequency matching conditions,

such that a single-photon, two-photon, until nmax-photon red

processes can occur. Thus the subscript βn in the unitary

transform U
(n)
N,βn

satisfies the conditions βn = c with n = 0,

and βn = r for n ≥ 1. By choosing appropriate time dura-

tions and the phases of the driving fields in each step, which

in principle can be obtained using Eq. (31), we can obtain the

target state shown in Eq. (30). The detailed descriptions can

be found in Appendix A.

IV. THE INITIAL STATE AND TARGET STATE

Above, we assumed that the target state is generated from

the initial state which is the vacuum state in the displacement

picture defined by Eq. (6). However, in experiments, the ini-

tial state is usually the ground state, obtained by cooling the

sample inside a dilution refrigerator. We now investigate the

ground state of the effective Hamiltonian when there is no

driving field. The Hamiltonian Heff without driving field can

be expressed as

H ′
eff =

~

2
ωzσz+~ωa†a+

~

2
ωx

{
σ+ exp

[
η
(
a† − a

)]
+ h.c.

}
,

(34)

in the displacement picture. However, in the original picture,

the corresponding Hamiltonian is

H ′ =
~

2
ωzσz +

~

2
ωxσx + ~ωa†a+ ~gσz(a+ a†), (35)

which possesses the characteristics of broken-symmetry and

strong coupling and is hence difficult to solve analytically.

Due to the mathematical equivalence between Eq. (34) and

Eq. (35), it is also difficult to solve Eq. (34) analytically. We

thus resort to numerical calculations to obtain the ground state

of H ′
eff . We define the ground state of the Hamiltonian H ′

eff
as |ψg〉, and the probability of the ground state |ψg〉 to be in

the vacuum state |0〉 as Pg,0. The relation between |ψg〉 and

Pg,0 can be written as

|ψg〉 =
[
ξ0 |0〉+

√
1− |ξ0|2 |δψg〉

]
|g〉, (36)

Pg,0 = |ξ0|2 , (37)

where |δψg〉 denotes a superposition of photon number states

except the vacuum state. In Fig. 4, as an example, by taking

ωz/2π = 19.5 GHz and ω = 2 GHz, we have plotted Pg,0 as

a function of η and ωx. We find that the probability Pg,0 ≥
0.99, at least in the region 0 < η < 3.5 and 0 < ωx/ωz <
0.2. More specifically, the ground state of the Hamiltonian in

Eq. (34) is closer to the vacuum state when the parameters η
and ωx are smaller. Thus, our assumption that the initial state

of the cavity field in the displacement picture is the vacuum

state, can always be valid only if the related parameters, such

as ωx and η, are properly chosen.

We have demonstrated how to generate an arbitrary super-

position of different Fock sates from the vacuum state in the

displacement picture. Thus, once the state is generated, we

have to displace the generated state back to the original pic-

ture via the displacement operator D† (ησz/2). For example,

the initial state |0〉|g〉 in the displacement picture becomes

D†
(η
2
σz

)
|0〉|g〉 =

∣∣∣
η

2
, 0
〉
|g〉 , (38)

in the original picture, where |α, n〉 = D (α) |n〉 denotes the

displaced number state [63]. Similarly, the target state |ψnmax〉
in the displacement picture becomes

∣∣ψD
nmax

〉
=

nmax∑

n=0

Cn

∣∣∣
η

2
, n
〉
|g〉 , (39)
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P
g,

0

FIG. 4: (Color online) Probability Pg,0 for the ground state to be

the vacuum state in the displacement picture as a function of η and

ωx/ωz . Here we assume ωz/2π = 19.5GHz, and ω = 2GHz. Re-

call that η is the normalized coupling or the Lamb-Dicke parameter.

in the original picture. It is obvious that the initial state

|η/2, 0〉 of the cavity field in the original picture is a coherent

state with the average photon number (η/2)
2
, while the target

state is the superposition of the displaced number states.

The statistical properties of a displaced number state with

D(α)|n〉 can be described by the probabilities of the photon

number distribution as below

〈l|α, n〉 =






αl−n
√

n!/l!

exp(|α|2/2)
L
(l−n)
n

(
|α|2

)
, l ≥ n,

(−α∗)(n−l)
√

l!/n!

exp(|α|2/2)
L
(n−l)
l

(
|α|2

)
, l < n.

(40)

Thus the displaced target state in Eq. (39) can be written as

∣∣ψD
nmax

〉
=

nmax∑

n=0

Cn

∞∑

l=0

|l〉 〈l
∣∣∣
η

2
, n
〉
|g〉

=

∞∑

l=0

CD
l |l〉 |g〉 , (41)

where CD
l =

∑nmax

n=0 Cn 〈l|η/2, n〉. The probability of the

target sate
∣∣ψD

nmax

〉
to be in the photon number |l〉 in the orig-

inal picture can be given as

PD
l =

∣∣CD
l

∣∣2 =

nmax∑

n=0

nmax∑

m=0

CnC
∗
m

〈
l
∣∣∣
η

2
, n
〉〈η

2
,m
∣∣∣ l
〉
. (42)

In Fig. 5, as an example, the distribution probabilities PD
l are

plotted for different photon states, that is,
∣∣ψD

nmax

〉
is taken

as |η/2, 0〉 |g〉 , |η/2, 2〉 |g〉 , or (|η/2, 0〉+ |η/2, 2〉) |g〉 /
√
2,

which is |0〉, |2〉 and (|0〉 + |2〉)/
√
2, respectively, in the dis-

placement picture. Figure 5 shows that the photon number

states in the displacement picture are redistributed after these

states are sent back to the original picture. Even though the

0

0.5

0

0.5

P
D l

0 2 4
0

0.5

l

(a)

(c)

(b)

FIG. 5: Photon number distributions of (a) |η/2, 0〉, (b) |η/2, 2〉, and

(c) (|η/2, 0〉+ |η/2, 2〉) /
√
2. Here l refers to the photon number

and PD
l refers to the probability on |l〉. We have taken the Lamb-

Dicke parameter η = 2g/Ω = 0.7.

state in Fig. 5(c) is the linear sum of the states in Fig. 5(a) and

Fig. 5(b), the photon number distributions are not linearly ad-

ditive. Because the interference between different displaced

number states, which corresponds to the terms of m 6= n in

Eq. (42), can also give rise to the variation of the photon num-

ber distribution. It is clear that a number state in the displaced

picture can become a superposition of number states in the

original picture, which might offer a convenient way to pre-

pare nonclassical photon states.

V. NUMERICAL ANALYSIS

We have presented a detailed analysis on how to prepare

nonclassical photon states using the longitudinal-coupling-

induced multi-photon processes in an ideal case. In this ideal

case, with the perfect pulse-duration and frequency-matching

conditions, we can prepare the perfect target state. However,

in practical cases, the system cannot avoid environmental ef-

fects. Moreover, the imperfection of the parameters chosen

also affects the fidelity of the target state. For example, dif-

ferentN describe different Bessel functions for effective cou-

pling strengths between the cavity field, the two-level system,

and the classical driving field. Then the optimization for the

target state will also be different. For concreteness, as an ex-
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ample, let us study the effects of both the environment and

imperfect parameters on the target state

|ψ02〉 =
1√
2
(|0〉+ |2〉) |g〉 , (43)

in the displacement picture, whose density matrix operator

can be given as

ρI = |ψ02〉 〈ψ02| . (44)

We also assume that the terms with the Bessel function for

N = −1 are chosen for the state preparation. But other terms

with the Bessel function order N ′ 6= N are also involved.

Thus we have to choose ωz 6= ωn/ (N ′ −N) to minimize the

effect of these terms. Among all the terms with the Bessel

function order N ′, the dominant ones are those with N ′ =
0, 1,±2. That is, the chosen ωz has to satisfy the condition

ωz 6= nω, nω/2, and nω/3.

To study the environmental effect on the state preparation,

we assume that the dynamical evolution of the system satisfies

the following master equation

ρ̇ = −i [H, ρ] + Lq [ρ] + Lc [ρ] , (45)

when the environmental effect is taken into account, where the

Hamiltonian H is given by Eq. (2) and

Lq [ρ] =
1

2

∑

1≥j≥i≥0

γij (2σ̃ijρσ̃ji − σ̃jjρ− ρσ̃jj) , (46)

Lc [ρ] =
κ

2

(
2aρa† − a†aρ− ρa†a

)
, (47)

describe the dissipation of the qubit and the cavity field, re-

spectively. Here ρ is the reduced density matrix of the qubit

and the cavity field. And σij = |i〉〈j|, where we define

|0〉 ≡ |g〉, and |1〉 ≡ |e〉. The operators σ̃ij are given by

σ̃ij = Ry (θ)σijR
†
y (θ) ,

withRy (θ) = exp (−iθσy/2) and θ = arctan (ωx/ωz). This

is because we have used the eigenstates of σz as a basis (per-

sistent current basis) to represent the Hamiltonian of the qubit.

Note that γ10 is the the relaxation rate, while γ11 and γ00 are

the dephasing rates. The parameter κ is the decay rate of the

cavity field. In the following calculations, we assume γ00 = 0.

We first neglect the environmental effects and just study

how the unwanted terms with the Bessel function for N ′ 6=
−1 affects the fidelity for different parameters xd = 2Ωd/ωd

and η = 2g/ω of the driving field and the cavity field when

the target state in Eq. (43) is prepared. We define the density

matrix

ρD =
∣∣ψD

02

〉 〈
ψD
02

∣∣ = D†(η/2)ρID(η/2) (48)

which is the ideal target state in the original picture. The ac-

tual target state generated in the original picture is denoted by

the density operator ρA when the effect of the unwanted terms

is taken into account. The Fidelity for the target state is then

given by

F = Tr
{
ρAρD

}
. (49)

TABLE II: The fidelities of the target state are listed for different

values of the parameters xd = 2Ωd/ωd and η = 2g/ω. Here we

have chosen ωz/2π = 19.5GHz, ωx = 1.6GHz, and ω = 2GHz.

Lamb-Dicke parameter η = 2g/ω

0.330 0.590 0.850 1.110 1.370

0.265 0.240 0.219 0.237 0.347 0.332

0.525 0.281 0.282 0.621 0.719 0.734

xd = 2Ωd/ω 0.785 0.445 0.416 0.722 0.827 0.841

1.045 0.369 0.519 0.780 0.857 0.877

1.305 0.335 0.530 0.791 0.886 0.879

Let us now take the parameters ω/2π = 2 GHz and

ωz/2π = 19.5 GHz as an example to show how the parame-

ters affect the fidelity. The highly symmetry-broken condition

is satisfied by taking, e.g., ωx/2π = 1.6 GHz. We have listed

the fidelities for different η and xd in Table II, from which

we can find that larger values of η and xd are more likely to

induce a higher fidelity. Because in the range considered for

η and xd, a larger xd can enhance the desired term through

making J−1 (xd) larger [see Fig. 2(a)] while η achieves the

same goal by enhancing the Rabi frequency for |0〉 |e〉 ←→
|2〉 |g〉 (see Fig. 7 in Appendix A).

In Table II, the largest fidelity is Fm = 0.886 which occurs

at the optimal parameters η = ηm = 1.11, and xd = xmd =
1.305, where we have also obtained the total time Tm = 1.82
ns for generating the target state. From the above numer-

ical calculations, we show that the fidelity of the prepared

target state is significantly affected by the parameters of the

qubit, cavity field, and driving field. Note that the fidelities

in Table II may not be satisfactory for practical applications

in quantum information processing, which may require fideli-

ties approaching 100%. However, the fidelity can be further

optimized by carefully choosing suitable experimental param-

eters. For instance, η = 1.5 and xd = 1.305 would produce

a more desirable fidelity of 0.9143, and it is still possible to

obtain much higher fidelities when related parameters are fur-

ther optimized. We should also mention that the effect of the

unwanted terms can be totally avoided if for each generation

step, the control pulses for the driving frequency ωd, driving

strength Ωd, driving phase φd, and the pulse duration t are all

perfectly designed to compensate the effect of the unwanted

terms.

Now we study the environmental effect on the fidelity of

the prepared state by taking experimentally achievable param-

eters, e.g., γ10/2π = κ/2π = 1 MHz and γ11 = 2 MHz. We

also choose η = ηm and xd = xmd , and other parameters (i.e.,

ωx, ωz , and ω) are kept the same as in Table II. Now the

fidelity we obtain via numerical calculations is F ′
m = 0.8775.

The Wigner function represents the full information of the

states of the cavity field and can be measured via quantum

state tomography [64]. The Wigner function of the cavity field

has recently been measured in circuit QED systems [65, 66].

To obtain the state of the cavity field, let us now trace out the

qubit part of the density operator for the qubit-cavity compos-
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ite system using the formula

ρpc = Trq ρ
p = 〈g| ρp |g〉+ 〈e| ρp |e〉 , (50)

where p refers to either D, I , or A. Here, ρI is the ideal

target state in the displacement picture, ρD is the the ideal

target state in the original picture, and ρA is the actual tar-

get state in the original picture. Therefore, ρpc is the cavity

part of the qubit-cavity-composite state ρp. It should be em-

phasized here that the actual state ρA denotes the generated

target state in the original picture with the same parameters

as in the ideal case, but including the effects of both the en-

vironment and unwanted terms. By definition, given an arbi-

trary density operator ρ, the Wigner function W (β, β∗) and

the Wigner characteristic function CW (λ, λ∗) have the fol-

lowing relations [67–69],

CW (λ, λ∗) = Tr
{
ρ exp

(
λa† − λ∗a

)}
, (51)

W (β, β∗) =

∫
d2λ

π2
CW (λ, λ∗) exp (−λβ∗ + λ∗β) .

(52)

Moreover, if ρ is expanded in the Fock state space, i.e,

ρ =
∑

mn

ρmn |m〉 〈n| , (53)

then we have the Wigner function of ρ given by

W (β, β∗) =
∑

mn

ρmnWmn (β, β
∗) , (54)

where

Wmn (β, β
∗) =





2n−m+1

π (−1)m
√

m!
n! β

n−m

×e−2|β|2L
(n−m)
m

(
4 |β|2

)
,

m < n,

2m−n+1

π (−1)n
√

n!
m! β

∗m−n

×e−2|β|2L
(m−n)
n

(
4 |β|2

)
,

m ≥ n.

(55)

As shown in Eq. (54), the Wigner function and the den-

sity operator can in principle be derived from each other,

which are closely related by the function Wmn (β, β
∗). If

{Wmn (β, β
∗)} are taken as the basis functions, then ρmn

can be considered as the spectrum of W (β, β∗). Moreover,

if we define ρD = D(α) ρ D†(α) and its Wigner function as

WD (β, β∗), through the definitions in Eq. (51) and Eq. (52),

we can easily obtain

WD (β, β∗) =W (β − α, β∗ − α∗) . (56)

It is clear that the displacement operator D(α) displaces

the Wigner function by α in the coordinate system. Since

ρDc = D(ηm/2)ρ
I
c D

†(ηm/2), the Wigner function for ρDc ,

WD
c (β, β∗) and that for ρIc , WI

c (β, β
∗) must have the rela-

tion WD
c (β, β∗) = WI

c (β − ηm/2, β∗ − ηm/2). Therefore,

Fig. 6(a), i.e., the figure for WI
c and Fig. 6(b), i.e., the fig-

ure for WD
c , are in fact of the same profile except that there

is a horizonal translation between them. In Figs. 6(a,b,c), the

vertical dashed line that goes through the maximum value of

the Wigner function indicates the horizonal component of its

central position. Since the displacement operator between

Fig. 6(a) and Fig. 6(b) is D (ηm/2), then the amount of the

translation is ηm/2 = 0.555. When including the environ-

ment and unwanted terms, Fig. 6(c) shows how the Wigner

function becomes different from Fig. 6(b). We can determine

that the displacements of Fig. 6(b) and Fig. 6(c) are basi-

cally the same. But a careful comparison shows that the hori-

zonal central position of Fig. 6(c) is 0.4745, 0.0805, which

is less than that of Fig. 6(b), which is ηm/2 = 0.555. We

think this small difference can be mainly attributed to the ef-

fect of the environment and unwanted terms. Figure 6(c) also

shows local twists as well as a global rotation compared with

Fig. 6(b). The global rotation represents the average phase

noise, while the local twists represent the corresponding fluc-

tuations. Though both the environment and unwanted terms

both affect the fidelity of the states prepared, our calcula-

tions show that under the specified parameters, the role of

the unwanted terms is dominant when the imperfect pulses

are applied to state preparation, since the generation time

Tm = 1.82 ns is far from inducing serious decoherence at the

specified decay rates, which is well manifested by the poor

fidelity reduction Fm − F ′
m = 0.0085. Recall that Fm is the

fidelity obtained using the optimal paramters in Table. II when

only including the effects of the unwanted terms, while F ′
m is

the fidelity obtained using the same parameters, but with the

effects of both the environment and unwanted terms consid-

ered.

VI. DISCUSSIONS

Let us now discuss the feasibility of the experiments for

the generation of nonclassical microwave states using super-

conducting quits interacting with a single-mode microwave

field. The frequency of the qubit cannot be extremely large.

Thus the maximum photon number in multiphoton processes

is limited by the ratio ωz/ω, between the frequency ωz of the

qubit and that of the cavity field ω. This means that the qubits

should be far away from the optimal point for the flux and

charge qubits when the microwave states are generated using

our proposed methods. This might be a problem for the prepa-

ration of arbitrary superpositions, because the coherence time

becomes short when the flux or charge qubit deviates from the

optimal point. However, for the particular number state |n〉,
there is no requirement for the coherence and thus it should

be more efficient, because we need only to prepare the qubit

in the excited state, and then the state |n〉 can be prepared

via an n-photon red-sideband excitation. We know that the

phase [60, 61] and Xmon [70] qubits are not very sensitive

to the optimal point. Thus the proposal might be more effi-

cient for these qubis coupled to a microwave cavity. It should

be noted that the imperfect pulse can significantly affect the

fidelity. We thus suggest that enough optimization be imple-

mented to reach an acceptable fidelity.
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FIG. 6: Wigner functions (a) WI
c (β, β∗), (b) WD

c (β, β∗), (c)

WA
c (β, β∗) respectively for (a) ρIc , (b) ρDc , and (c) ρAc . Here

x = Re (β), and y = Im (β) . In the above figures, the param-

eters are chosen as ωz/2π = 19.5GHz, ωx = 1.6GHz, ω =
2GHz, γ21/2π = κ/2π = 1MHz, γ11 = 0, γ22 = 0.1MHz,

η = ηm = 1.11, and xd = xm
d = 1.305. We have used a ver-

tical dashed line in (a), (b), and (c) to highlight the displacement

of the central point, also the maximum point, of the Wigner func-

tions. As shown in (a), the central point of WI
c (β, β∗) is the ori-

gin. Since ρDc = D(ηm/2) ρ
I
c D

†(ηm/2), the Wigner function

for ρDc , WD
c (β, β∗) and that for ρIc , WI

c (β, β∗) have the relation

WD
c (β, β∗) = WI

c (β − ηm/2, β
∗ − ηm/2). This is the very rea-

son why (a) and (b) exhibit the same profile as well as a horizonal

translation. The exact value of this translation length is, of course,

ηm/2 = 0.555. Compared to the ideal target state in the original pic-

ture, i.e., WD
c (β, β∗) in (b), the actual target state WA

c (β, β∗) in (c)

possesses nearly the same central point. But due to the effects of en-

vironment and unwanted terms, there appears, in (c), a new feature

of small local twists and a global rotation.

VII. CONCLUSIONS

We have proposed a method to prepare nonclassical

microwave states via longitudinal-coupling-induced multi-

photon processes when a driven symmetry-broken super-

conducting qubit is coupled to a single-mode microwave

field. With controllable k-photon processes in a SQ with a

symmetry-broken potential energy, only nmax + 1 steps are

needed to synthesize the superposition of Fock states with

the largest photon number nmax. However, in contrast to the

method used in Refs. [58, 61], with one-photon processes in

the SQ inside the cavity, 2nmax steps are needed to synthe-

size the same state. Moreover, using k-photon processes, a

k-photon Fock state |k〉 can be generated with just two steps,

while with one-photon processes, 2k steps are required to pro-

duce the same state. Thus, the time to generate the same state

using multiphoton processes is shorter than that using only a

single-photon process. Therefore the fidelity should also be

improved. In this sense, our method is more efficient than the

one in Refs. [58, 61]. Besides, we have provided an analyti-

cal solution for the total time needed to generate a target state

|ψnmax〉.
We have made a detailed analysis of the ground state when

the system is sufficiently cooled. We find that in the highly-

symmetry-broken and strong-coupling case, the ground state

can still be regarded as the vacuum state in the displacement

picture. The displacement effect on both the initial state and

the target state has also been studied. Generally, the displace-

ment will induce a variation of the photon-number distribu-

tion. But in the representation of the Wigner function, its in-

fluence is just a shift of the center of the Wigner function by

the Lamb-Dicke parameter η = 2g/ω between the coupling

strength g of the cavity field to the qubit and the frequency ω
of the cavity field. We note that the Fock state produced in the

displacement picture is a displaced number state in the origi-

nal picture. Thus, a circuit QED system with broken symme-

try in the qubit potential energy can be used to easily generate

a displaced number state. This can be used to study the bound-

ary between the classical and quantum worlds [78–81].

In summary, although we find that the nonclassical pho-

ton state can be more easily produced when the symmetry of

the potential energy of the SQ is broken, this method can be

applied to any device with longitudinal and transverse cou-

plings to two-level systems. Although the Fock state can be

produced in any symmetry-broken qubit, the superposition of

Fock states might be easily realizable in a circuit QED system

formed by a phase qubit and a cavity field. This is because

phase qubits have no optimal point, and thus not sensitive to

the working point of the external parameter. Our proposal is

experimentally realizable with current technology.
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Appendix A: Detailed steps for generating the nonclassical state

If we substitute Eq. (24), Eq. (26), and Eq. (32) into

Eq. (31), then the following relations can be obtained, e.g.,

for the generation of |ψ0〉, i.e., for the step n = 0,

C
(0)
0g = exp

(
iα

(0)
0g

)
cos
(∣∣∣Ω0,0

N,c

∣∣∣ t0
)
C

(−1)
0g , (A1)

C
(0)
0e = exp

(
iα

(0)
0e

)
sin
(∣∣∣Ω0,0

N,c

∣∣∣ t0
)
C

(−1)
0g , (A2)

with |C(−1)
0g | = 1, which is determined by the initial condi-

tion. However, for the generation of |ψn〉 with n ≥ 1 from the

state |ψn−1〉, we can obtain the following relations for their

coefficients

C
(n)
kg = exp

(
iαn

kg

)
C

(n−1)
kg , (A3)

C(n)
ng = exp

(
iαn

ng

)
sin
(∣∣∣Ωn,0

N,r

∣∣∣ tn
)
C

(n−1)
0e , (A4)

C
(n)
0e = exp (iαn

0e) cos
(∣∣∣Ωn,0

N,r

∣∣∣ tn
)
C

(n−1)
0e , (A5)

with k ≤ n− 1. Here, the phases α
(0)
0g and α

(0)
0e for n = 0 are

determined by

α
(0)
0g =

xd
2
sin
(
ω
(0)
d t0 + φ

(0)
d

)
− xd

2
sin
(
φ
(0)
d

)
+
ωzt0
2

,

(A6)

α
(0)
0e = −xd

2
sin
(
ω
(0)
d t0 + φ

(0)
d

)
− xd

2
sin
(
φ
(0)
d

)
− ωzt0

2

+ φ0 −
π

2
. (A7)

The other phases with for n ≥ 1 are given by

α
(n)
kg =

xd
2
sin
(
ω
(n)
d tn + φ

(n)
d

)
− xd

2
sin
(
φ
(n)
d

)
+
ωztn
2

− kωtn, (A8)

α(n)
ng =

xd
2
sin
(
ω
(n)
d tn + φ

(n)
d

)
+
xd
2
sin
(
φ
(n)
d

)
+
ωztn
2

− nωtn − φn −
π

2
, (A9)

α
(n)
0e = −xd

2
sin
(
ω
(n)
d tn + φ

(n)
d

)
+
xd
2
sin
(
φ
(n)
d

)
− ωztn

2
,

(A10)

where k ≤ n− 1. In Eqs. (A1-A5),

φn =





arg
(
Ω0,0

N,c

)
= Nφ

(n)
d − π, n = 0,

arg
(
Ωn,0

N,r

)
= Nφ

(n)
d − (n+ 1)π, n ≥ 1,

(A11)

if we select an N and xd such that JN (xd) < 0, and

φn =





arg
(
Ω0,0

N,c

)
= Nφ

(n)
d , n = 0,

arg
(
Ωn,0

N,r

)
= Nφ

(n)
d − nπ, n ≥ 1,

(A12)

if we select an N and xd such that JN (xd) > 0. Here, ω
(n)
d ,

φ
(n)
d , and tn are, respectively, the driving frequency, driv-

ing phase, and time duration for each generation step. From

Eq. (A3), we know that

∣∣∣C(n)
k0

∣∣∣ =
∣∣∣C(nmax)

k0

∣∣∣ = |Ck| , k ≤ n. (A13)

and hence

∣∣∣C(n−1)
0e

∣∣∣ =
(
1−

n−1∑

k=0

∣∣∣C(n−1)
kg

∣∣∣
2
)1/2

=

(
nmax∑

k=n

|Ck|2
)1/2

.

(A14)

Then, from Eqs. (A1, A2) and Eqs. (A4, A5), we respectively

have

∣∣∣Ω0,0
N,c

∣∣∣ t0 = arccos

∣∣∣∣∣
C

(0)
0g

C
(−1)
0g

∣∣∣∣∣+ 2lπ

= arccos
∣∣∣C(0)

0g

∣∣∣+ 2lπ, (A15)

∣∣∣Ωn,0
N,r

∣∣∣ tn = arcsin




∣∣∣C(n)
ng

∣∣∣
∣∣∣C(n−1)

0e

∣∣∣


 + 2lπ

= arcsin




|Cn|
(∑nmax

k=n |Ck|2
)1/2


+ 2lπ. (A16)

where l is an arbitrary integer. Using Eqs. (A1, A2) and

Eqs. (A4, A5), we derive

arg
(
C

(0)
0g

)
− arg

(
C

(0)
0e

)
= α

(0)
0g − α

(0)
0e + 2lπ, (A17)

arg
(
C(n)

ng

)
− arg

(
C

(n)
0e

)
= α(n)

ng − α
(n)
0e + 2lπ. (A18)

If n = nmax in Eq. (A18), then C
(n)
0e = 0, with no definition

of the phase angle. Thus we can assume that arg
(
C

(n)
0e

)
= 0,

without affecting the final result. Here, C
(n)
ng and C

(n)
0e can be

obtained through the following recursion relations

C
(n−1)
0e =






C
(n)
0e

exp
(

iα
(n)
0e

)

cos(|Ωn,0
N,r|tn)

, 1 ≤ n < nmax,

C(n)
ng

exp
(

iα
(n)
ng

)

sin(|Ωn,0
N,r|tn)

, n = nmax,

(A19)

C
(n−1)
kg =

C
(n)
kg

exp
(
iα

(n)
kg

) , k ≤ n− 1, (A20)

C
(−1)
0g =

C
(0)
0e

exp
(
iα

(0)
0e

)
sin
(∣∣∣Ω0,0

N,c

∣∣∣ t0
) . (A21)

In Eq. (A19), distinguishing the case when n = nmax from the

other ones is needed to avoid the apperance of 0/0. Though



13

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

Lamb-Dicke parameter η

R
ed

u
ce
d
R
a
b
i
fr
eq
u
en

cy
∣ ∣ ∣
Ω

n
,0

N
,β

∣ ∣ ∣

 

 

n = 0

n = 1

n = 2

n = 3

n = 4

n = 5

FIG. 7: (color online) Reduced Rabi frequency

∣

∣

∣
Ω̄n,0

N,β

∣

∣

∣
, from

Eq. (A22), as a function of η, for n = 1, 2, 3, 4, and 5, respectively.

The square on each plot denotes the point that achieves the largest
∣

∣

∣
Ω̄n,0

N,β

∣

∣

∣
. Recall that η = 2g/ω, where g is the qubit-cavity coupling

constant and ω is the frequency of the single-mode cavity field. Thus,

η is the normalized coupling.
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FIG. 8: (color online) Plot of log
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)

as a function of

the Lamb-Dicke parameter η = 2g/ω for |ψnmax〉 =
∑nmax

n=0 |n〉⊗ |0〉 /
√
nmax + 1, with different maximum photon

number nmax. Recall that T̃ = T |ωJN | /2 is a normalized time

and T is the total time to generate the desired target state. The star

on each curve shows the optimal point where the normalized gener-

ation time reaches its minimum.

Eq. (A21) implies that C
(−1)
0g may have a definite phase, such

a phase could only add a global phase factor to the target state.

So it is convenient to directly specify C
(−1)
0g = 1.

We define the reduced Rabi frequency as

∣∣∣Ω̄n,0
N,β

∣∣∣ =
2
∣∣∣Ωn,0

N,β

∣∣∣
|ωxJN |

= exp

(
−1

2
η2
)

ηn√
n!

(A22)

in order to study its dependence on η. From Eq. (A22), we

can obtain the optimal Lamb-Dicke parameter

ηn,o =
√
n, (A23)

that achieves the largest reduced Rabi frequency

∣∣∣Ω̄n,0
N,β,o

∣∣∣ = exp
(
−n
2

) nn/2

√
n!
, (A24)

which is also the point that makes

∣∣∣Ω̄0,n
N,β

∣∣∣ =
∣∣∣Ω̄0,n−1

N,β

∣∣∣, as

illustrated in Fig. 7. We can also verify

lim
n→∞

∣∣∣Ω̄n+1,0
N,β,o

∣∣∣
∣∣∣Ω̄n,0

N,β,o

∣∣∣
= lim

n→∞

√
1

e

(
n+ 1

n

)n

= 1, (A25)

with limn→∞ {ηn+1,o/ηn,o} = 1. This means that when

the photon number n increases, the optimal points for the

Rabi frequencies between the zero-photon state and different

n photon states tend to approach each other infinitesimally.

But for low photon numbers the optimal points are still distin-

guishable from each other.

Let us calculate the total time T for generating the target

state

T =

nmax∑

n=0

tn =
2

|ωxJN |
arccos (|C0|) exp

(
η2

2

)

+

nmax∑

n=1

2
√
n!

|ωxJN | ηn
arcsin


 |Cn|√∑nmax

k=n |Ck|2


 exp

(
η2

2

)
,

(A26)

where η = 2g/ω is the Lamb-Dicke parameter and we have

omitted excessive cycle periods for each step. By taking the

derivative of T with respect to η, we can find all the extreme

points of η, which satisfy the following equation

nmax+1∑

n=−1

Anη
nmax+1−n = 0. (A27)

The coefficient An has been given in Eqs. (A31)-(A34).

Further selection among these extreme points and the

experimentally-constrained boundaries of η can yield the op-

timal Lamb-Dicke parameter ηopt, which will lead to the least

generation time Topt. Once Topt is reached, in principle, the

influence of the environment on the target state fidelity will be

minimized.
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Similarly to

∣∣∣Ω̄0,n
N,β

∣∣∣, we define

T̃ (η) = T |ωxJN | /2. (A28)

The curves of log
(
T̃ (η)

)
which for particular states have

been plotted in Fig. 8 with a star on each curve to label the

point where the generation time reaches its least value.

The normalized time needed to generate a target state is

T̃ =

nmax∑

n=0

t̃n = arccos (|C0|) exp
(
η2/2

)

+

nmax∑

n=1

√
n! arcsin


 |Cn|√∑nmax

k=n |Ck|2


 eη

2/2

ηn
, (A29)

whose extreme points still satisfy

nmax+1∑

n=−1

An η
nmax+1−n = 0, (A30)

for unbound η, where if nmax = 0,

An =

{
arccos (|C0|) , n = −1,
0, others,

(A31)

if nmax = 1,

An =





arccos (|C0|) , n = −1,
Pn+1, n = 0,

− (n− 1)Pn−1, n = 2,

0, others,

(A32)

if nmax = 2,

An =






arccos (|C0|) , n = −1,
Pn+1, 0 ≤ n ≤ 1,

− (n− 1)Pn−1, 2 ≤ n ≤ 3,

0, others,

(A33)

and for other cases, we have

An =






arccos (|C0|) , n = −1,
Pn+1, 0 ≤ n ≤ 1,

Pn+1 − (n− 1)Pn−1, 2 ≤ n ≤ nmax − 1,

− (n− 1)Pn−1, nmax ≤ n ≤ nmax + 1,

0, others.
(A34)

Here we have used the abbreviation

Pn =
√
n! arcsin


 |Cn|√∑nmax

k=n |Ck|2


 . (A35)
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