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Theory of angular dispersive imaging hard x-ray spectrographs

Yuri Shvyd’ko1, ∗

1Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, USA

A spectrograph is an optical instrument that disperses photons of different energies into distinct
directions and space locations, and images photon spectra on a position-sensitive detector. Spec-
trographs consist of collimating, angular dispersive, and focusing optical elements. Bragg reflecting
crystals arranged in an asymmetric scattering geometry can be used as the dispersing elements
in hard x-ray regime. A ray-transfer matrix technique is applied to propagate x-rays through the
optical elements. Several optical designs of hard x-ray spectrographs are proposed and their per-
formance is analyzed. Spectrographs with an energy resolution of 0.1 meV and a spectral window
of imaging up to a few tens of meVs are shown to be feasible for inelastic x-ray scattering (IXS)
spectroscopy applications. In another example, a spectrograph with a 1-meV spectral resolution
and 85-meV spectral window of imaging is considered for Cu K-edge resonant IXS (RIXS).

PACS numbers: 41.50.+h, 07.85.Nc, 61.10.-i, 78.70.Ck

I. INTRODUCTION

Ultra-fast dynamics in condensed matter in a picosec-
ond (ps) to a 100-ps regime on atomic- to meso-scales
is still inaccessible for studies using any known experi-
mental probe. A gap remains in experimental capabil-
ities between the low-frequency (visible and ultraviolet
light) and high-frequency (x-rays and neutrons) inelas-
tic scattering techniques. This is precisely the space of
vital importance for the science of disordered systems.
Figure 1 shows how the time-length space or the rele-
vant energy-momentum space of excitations in condensed
matter is accessed by different inelastic scattering probes:
neutron (INS), x-ray (IXS), ultraviolet (IUVS), and Bril-
louin (BLS); as well as how the remaining gap could be
closed by enhancing inelastic x-ray scattering capabili-
ties. Ultra-high-resolution IXS (UHRIXS) has the po-
tential to enter the unexplored dynamic range of excita-
tions in condensed matter. This would, however, require
achieving a very high spectral resolution on the order
of 0.1 meV, and momentum transfer resolution around
0.01 nm−1 (light green area in Fig. 1). In approach-
ing this goal, a novel IXS spectrometer has been demon-
strated recently [1]; the spectral resolution improved from
1.5 meV to 0.6 meV, the momentum transfer resolution
improved from 1 nm−1 to 0.25 nm−1 (dark-green and
green areas in Fig. 1, respectively), and the spectral con-
trast improved by an order of magnitude compared to
the traditional IXS spectrometers [2–7]. The gap became
narrower, but did not close.

The outstanding problems in the condensed matter
physics, such as the nature of the liquid to glass transi-
tions, have yet to be fully addressed. Here we propose an
approach of how this problem could be solved, and how
UHRIXS spectrometers could become efficient imaging
optical devices. This approach is a further development
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FIG. 1: (Color online) Time-length (t − λ) and relevant
energy-momentum (ε−Q) space of excitations in condensed
matter and how it is accessed by different inelastic scattering
probes: neutron (INS), x-ray (IXS), ultraviolet (IUVS), and
Brillouin (BLS). The ultra-high-resolution IXS spectrometer
presented in Ref. [1] entered the previously inaccessible re-
gion marked in green. The novel capabilities discussed in the
present paper will enable IXS experiments with even higher
resolution, 0.1-meV and 0.01-nm−1, in the region marked in
light green, and will close completely the existing gap be-
tween the high-frequency and low-frequency probes. The en-
ergy ε = E

f
−E

i
and the momentum Q = k

f
−k

i
transfers

from initial to final photon/neutron states are measured in
inelastic scattering experiments, schematically shown in the
oval inset.

of the proposal presented in [8–10].

In a typical IXS experiment [12], x-rays incident on a
sample are monochromatized to a very small bandwidth
corresponding to a desired energy resolution. The spec-
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FIG. 2: (Color online) Scheme of the Czerny-Turner type spectrograph [11] with (a) a diffraction grating, or (b) a crystal in
asymmetric x-ray Bragg diffraction as dispersing element (DE). Other components include radiation source S, collimating and
focusing mirrors M

C
and M

F
, and position sensitive detector Det. (c) Multi-crystal multi-reflection CDDW optic, an example

of a hard x-ray “diffraction grating” (DE element) with enhanced dispersion rate, suitable for hard x-ray spectrographs [10].

tral analysis of photons scattered from a sample is per-
formed by an x-ray analyzer, featuring the same spectral
bandwidth and acting like a spectral slit. Monochroma-
tization from approximately a 100-eV to a 1-meV band-
width results in a dramatic reduction of the photon flux
generated by undulator sources at synchrotron radiation
facilities, typically by more than five orders of magnitude.
The angular acceptance, 1 − 10 mrad, of the analyzer is
much large than the angular acceptance, 10 − 20 µrad,
of the monochromator; however, it is still orders of mag-
nitude smaller than the total solid angle of scattering by
the sample. It is also much smaller than the 10 − 100-
meV window desired for the spectral analysis. All this
results in very small countrates 10 − 0.01 Hz in IXS ex-
periments [12]. Further improvements to the 0.1-meV
resolution using such an approach would only result in
yet another substantial reduction of the countrate and
time-consuming experiments.

A possible solution to this problem would be to cre-
ate a spectrometer that would not only feature the high
spectral resolution, but would also be capable of imaging
x-ray spectra in a broad spectral window. We will refer
to such optical devices as x-ray spectrographs.

Czerny-Turner type spectrographs [11] are now stan-
dard in infrared, visible, and ultraviolet spectroscopies
[13, 14]. In its classical arrangement, a spectrograph is
comprised of four elements [see Fig. 2(a)]: (1) a collimat-
ing mirror, M

C
, that collects photons from a radiation

source, S, and collimates the photon beam; (2) a dis-
persing element, DE, such as a diffraction grating or a
prism, which scatters photons of different energies into
different directions θ′(E) due to angular dispersion; (3) a
curved mirror, M

F
, that focuses photons of different ener-

gies into different locations x(E) due to linear dispersion;
and (4) a spatially sensitive detector, Det, placed in the
focal plane to record the whole photon spectrum.

The feasibility of hard x-ray angular-dispersive spec-
trographs of the Czerny-Turner type has been discussed

in [8–10]. A hard x-ray equivalent of the diffraction
grating is a Bragg diffracting crystal with diffracting
atomic planes at an asymmetry angle η 6= 0 to the en-
trance crystal surface [see Fig. 2(b)] [15–17]. Angular
dispersion rates attainable in a single Bragg reflection
are typically small, D ≃ 8 µrad/meV [18, 19], and are
the main obstacle to realizing hard x-ray spectrographs.
The angular dispersion rate can be enhanced dramat-
ically, by almost two orders of magnitude, by succes-
sive asymmetric Bragg reflections compared to that in
a single Bragg reflection [10]. An enhanced angular dis-
persion rate in multi-crystal arrangements is crucial for
the feasibility of hard x-ray angular-dispersive spectro-
graphs. An x-ray angular-dispersive spectrograph was
demonstrated experimentally in [10], using the so-called
multi-crystal collimation-dispersion-wavelength-selection
(CDW) optic 1, achieving spectral resolution of better
than 100 µeV with 9.1 keV x-ray photons. However,
the spectral window in which the CDW optic permit-
ted imaging x-ray spectra was small, about 450 µeV.
Increasing the spectral window of ultra-high-resolution
x-ray spectrographs, is extremely important.

In pursuing this goal, and in seeking solutions to this
problem, a theory of hard x-ray spectrographs is devel-
oped here. In Section II, a ray-transfer matrix tech-
nique [15, 20–24] is applied to propagate x-rays through
complex optical x-ray systems in the paraxial approxi-
mation. The following systems are considered: succes-
sive Bragg reflections from crystals (Section IID), fo-
cusing system (Section II E), focusing monochromators
(Section II F), and finally Czerny-Turner-type spectro-
graphs (Section IIG). Solutions for broadband hard x-

1 Abbreviation CDW is used to refer both, to all possible modi-
fication of the collimation-dispersion-wavelength-selection optic,
in general (including its four-crystal modification CDDW) and
to its original simplest three-crystal version, in particular.



3

ray imaging spectrographs are considered in Section III.
Several “diffraction grating” designs for hard x-ray spec-
trographs are proposed to ensure a high energy resolu-
tion, broad spectral window of imaging, and large angu-
lar acceptance. Spectrographs with an energy resolution
of ∆E = 0.1 meV and a spectral window of imaging
up to ∆E

∪
= 45 meV are shown to be feasible for IXS

applications in Section IIIA and Section III B 1. In Sec-
tion III B 2, a spectrograph with a 1-meV spectral resolu-
tion and 85-meV spectral imaging window is considered
for Cu K-edge resonant IXS (RIXS) applications.

II. RAY-TRANSFER MATRICES OF X-RAY
OPTICAL SYSTEMS AND SPECTROGRAPHS

The main goal of this article is to develop a theory of
Czerny-Turner-type hard x-ray spectrographs. The con-
ceptual optical scheme of the Czerny-Turner-type spec-
trographs is presented in Fig. 2(a). In the hard x-ray
regime, the role of the diffraction grating is played by a
single crystal in asymmetric Bragg diffraction scattering
geometry, as shown in Fig. 2(b), or by an arrangement
of several single crystals. One possible example of multi-
crystal arrangements discussed in [10], although is not
the only possibility, is shown in Fig. 2(c). The purpose
of the theory is to calculate the spectral resolution and
other performance characteristics of hard x-ray spectro-
graphs, and their dependence on physical parameters of
constituent optical elements.
In approaching the main goal, we consider optical sys-

tems starting with simple ones, such as a focusing ele-
ment and Bragg reflection from a crystal, and proceed to
more complex systems, such as successive Bragg reflec-
tions from multiple crystals, focusing systems, focusing
monochromators, and finally spectrographs.

A. Ray transfer matrix technique

We will use a ray-transfer matrix technique [15, 20–24]
to propagate paraxial x-rays through optical structures.
In a standard treatment, a paraxial ray in a particular
reference plane of an optical system (the plane perpen-
dicular to the optical axis z) is characterized by its dis-
tance x from the optical axis and by its angle or slope ξ
with respect to that axis. The ray is presented by a two-
dimensional vector r = (x, ξ). Interactions with optical
elements are described by 2 × 2 dimensional {AB;CD}
matrices. The ray vector r

1
= (x

1
, ξ

1
) at an input ref-

erence plane (source plane) is transformed to r
2
= Ôr

1

at the output reference plane (image plane), where Ô is
the “ABCD” matrix of an element placed between the
reference planes.
Angular dispersion in Bragg reflection from asymmet-

rically cut crystals results in deviation of the beam from
the unperturbed optical axis due to a change, δE, in the
photon energy from E to E + δE [15–17]. This causes

“misalignment” of the paraxial optical system, which can
be conveniently described by a 3 × 3 {ABG;CDF ; 001}
matrix by adding additional coordinate δE to vector
r = (x, ξ, δE) [15, 21, 22, 24, 25].
Table I presents ray-transfer matrices used in this pa-

per. In the first three rows, 1–3, matrices are given for
simple elements of the spectrograph, such as propagation
in free space, thin lens or focusing mirror, and Bragg re-
flection from a crystal. In the following rows ray-transfer
matrices are shown for arrangements composed of sev-
eral optical elements, such as successive multiple Bragg
reflections from several crystals, rows 4–5; focusing sys-
tem, row 6; focusing monochromators, rows 7–8; and fi-
nally spectrographs, row 9, on which the paper is focused.
The matrices of the multi-element systems are obtained
by successive multiplication of the matrices of the con-
stituent optical elements.

B. Bragg reflection and reference system

All the ray-transfer matrices are presented in the right-
handed coordinate system {x, y, z} with the ẑ-axis look-
ing in the direction of the optical axis both before and
after each optical element, as illustrated in Fig. 3 on an
example of a Bragg reflecting crystal. This absolute ref-
erence system is retained through all interactions with all
optical elements. We use the convention that positive is
the counterclockwise sense of angular variations ξ of the
ray slope in the (x, z) plane. For Bragg reflections, ξ

1

is understood as a small angular deviation from a nomi-
nal glancing angle of incidence θ to the reflecting atomic
planes of the crystal; ξ

2
is understood as a small angular

deviation from the nominal glancing angle of reflection
θ′. The angles θ and θ′ define the optical axis. The angle
θ is determined by Bragg’s law 2K sin θ = H , while θ′ is
determined by the relationship [26]

cos(θ′ − η) = cos(θ + η) +
H

K
sin η. (1)

Equation (1) is a consequence, first, of the conservation
of the tangential components (K

H
)t = (K

0
+H)t with

respect to the entrance crystal surface for the momen-
tum, K

0
, of the incident x-ray photon and the momen-

tum, K
H
, of the photon Bragg reflected from the crystal

with a diffraction vector H [see Fig. 2(b)]. It is also a
consequence of the conservation of the photon energies
|K

H
|~c = |K

0
|~c = K~c = E. The reflecting atomic

planes are at an asymmetry angle, η, to the entrance
crystal surface. The asymmetry angle, η, is defined here
to be positive in the geometry shown in Figs. 3(a) and
3(b), and negative in the geometry with reversed incident
and reflected x-rays (not shown).
For the Bragg-reflection matrix {ABG,CDF, 001} the

nonzero elements A = 1/D, D = ξ
2
/ξ

1
, F = ξ

2
/δE are

calculated from Eq. (1) as follows :

D = b, A = 1/b, b = −
sin(θ + η)

sin(θ − η)
, (2)
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Optical system Matrix notation Ray-transfer matrix Definitions and Remarks

Free space [20, 22, 23]

l

(1)

P̂ (l)







1 l 0

0 1 0

0 0 1





 l – distance

Thin lens [20, 22, 23]

f
(2)

L̂(f)







1 0 0

− 1
f

1 0

0 0 1






f – focal length

Bragg reflection from a crystal
[15, 21]

b
D

(3)

Ĉ(b, sD)







1/b 0 0

0 b sD

0 0 1







b = − sin(θ+η)
sin(θ−η)

asymmetry factor;
D = −(1/E)(1 + b) tan θ
angular dispersion rate;
s = −1 for clockwise, and
s = +1 counterclockwise

ray deflection.
Successive Bragg reflections
Ĉ(b

n
, s

n
D

n
) · · · Ĉ(b

1
, s

1
D

1
)

b1
D1

b2
D2

bn

Dn

· · ·

(4)

Ĉ(b∪
n
,D∪

n
)







1/b∪
n

0 0

0 b∪
n

D∪
n

0 0 1







b∪
n
= b

1
b
2
b
3
. . . b

n

D∪
n
= b

n
D∪

n−1
+ s

n
D

n

si = ±1, i = 1, 2, ..., n

Successive Bragg reflections
with space between crystals

Ĉ(b
n
, s

n
D

n
) · · · P̂ (l

12
)Ĉ(b

1
, s

1
D

1
)

b1
D1

b2
D2

bn

Dn

· · ·
l12 l23 ln−1n

(5)

K̂(b∪
n
,D∪

n
, l)







1/b∪
n

B∪
n

G∪
n

0 b∪
n

D∪
n

0 0 1







B∪
n
=

B∪
n−1

+b∪
n−1

l
n−1n

b
n

G∪
n
=

G∪
n−1

+D∪
n−1

l
n−1n

b
n

B∪
1
=0, G∪

1
=0

Focusing system
P̂ (l

2
)L̂(f)P̂ (l

1
)

f

l1 l2

(6)

F̂ (l
2
, f, l

1
)







1−
l
2

f
B

F
0

− 1
f

1−
l
1

f
0

0 0 1






B

F
= l

1
l
2

(

1
l
1

+ 1
l
2

− 1
f

)

Focusing monochromator I [27]

P̂ (l
3
)Ĉ(b∪

n
,D∪

n
)F̂ (l

2
, f, l

1
)

f
b∪n

D∪n

l1 l2 l3

(7)

M̂
I
(l

3
, b∪

n
,D∪

n
, l

2
, f, l

1
)









1
b∪

n

(

1−
l
23

f

)

B
I

l
3
D∪

n

−
b∪

n

f
b∪

n

(

1−
l
1

f

)

D∪
n

0 0 1









B
I
=

l
1
l
23

b∪
n

(

1
l
1

+ 1
l
23

− 1
f

)

l
23

= l
2
+ b2∪

n
l
3

Focusing monochromator II
F̂ (l

3
, f, l

2
)Ĉ(b∪

n
,D∪

n
)P̂ (l

1
)

b∪n

D∪n

f

l1 l2 l3

(8)

M̂
II
(l

3
, f, l

2
, b∪

n
,D∪

n
, l

1
)









1
b∪

n

(

1−
l
3

f

)

B
II

XD∪
n

− 1
fb∪

n

b∪
n

(

1− l12
f

) (

1−
l
2

f

)

D∪
n

0 0 1









B
II
=b∪

n
l
12
l
3

(

1
l
12

+ 1
l
3

− 1
f

)

l
12

= l
1
/b2∪

n
+ l

2

X = l
2
+ l

3
− l

2
l
3
/f

B
II
=0 ⇒ X= l

3
l
1
/(b2∪

n
l
12
)

Spectrograph
F̂ (f

2
,f

2
,l

2
)Ĉ(b∪

n
,D∪

n
)F̂ (l

1
,f

1
,f

1
)

f1 f2

b∪n

D∪n

f1 l1 f2l2

(9)

Ŝ(f
2
, l

2
, b∪

n
,D∪

n
, l

1
, f

1
)









−
b∪

n
f
2

f
1

0 f
2
D∪

n

(l
1
−f

1
)+(l

2
−f

2
)b2

∪
n

b∪
n

f
1
f
2

−
f
1

b∪
n
f
2

(

1−
l
2

f
2

)

D∪
n

0 0 1









TABLE I: Table of ray-transfer matrices {ABG,CDF, 001} used in the paper. The matrices for the focusing monochromators

and the imaging spectrograph presented here are calculated with multi-crystal matrix Ĉ(b∪
n
,D∪

n
) from row 4, assuming zero

free space between crystals in successive Bragg reflections. Generalization to a more realistic case of nonzero distances between
the crystals requires application of matrix K̂(b∪

n
,D∪

n
, l) from row 5. The results are discussed in the text.

F = sD, D =
2 sin θ sin η

E sin(θ − η)
≡ −

1

E
(1 + b) tan θ, (3) by using the following variations: θ → θ − sξ

1
, θ′ →
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ẑ

x̂

ŷ

ẑ

x̂

ŷ

x
1

ξ
1

x
2

ξ
2

θ

θ′
η

ẑ

x̂

ŷ

ẑ

x̂

ŷ

x
1

ξ
1

x
2

ξ
2

(a)

s = +1

(b)

s = −1

FIG. 3: (Color online) Schematic elucidating the definition
of an absolute right-handed coordinate system {x, y, z} with
the ẑ-axis always looking in the direction of the optical axis
(dash-dotted line) both before and after each optical element,
a Bragg reflecting crystal in this particular case. By defini-
tion, positive is the counterclockwise sense of angular varia-
tions ξ of ray slopes in the (x, z) plane. Shown are exam-
ples of an optical element “Bragg reflection from a crystal”
with (a) counterclockwise deflection, for which deflection sign
s = +1; and (b) clockwise deflection of the reflected beam
with s = −1. In the input reference system, the incident
x-ray beam (wavy vector line) impinges onto the crystal at
a glancing angle of incidence θ − sξ

1
to the Bragg reflecting

planes and with coordinate x
1
. It is reflected at a glancing

angle of reflection θ′ + sξ
2
with coordinate x

2
, as seen in the

output reference system. Both x and ξ change signs upon
reflection.

θ′ + sξ
2
, E → E + δE (see caption to Fig. 3). The angu-

lar dispersion rate D in Eq. (3) describes how the photon
energy variation δE changes the reflection angle at a fixed
incidence angle. The deflection sign factor s allows for the
appropriate sign, depending on the scattering geometry.
It is defined to be s = +1 if the Bragg reflection deflects
the ray counterclockwise [Fig. 3(a)]. It is s = −1 if the re-
flected ray is deflected clockwise [Fig. 3(b)]. Asymmetry
factor b in Eq. (2) describes, in particular, how the beam
size and beam divergence change upon Bragg reflection.
The ray transfer matrix for a Bragg reflection from

a crystal presented in row 3 of Table I is equivalent to
that introduced by Matsushita and Kaminaga [15, 21],
with the exception for different signs of the elements and
the additional deflection sign factor s. Positive abso-
lute values |b| were used in local coordinate systems in
[15, 21]. Here we use the absolute coordinate system to
correctly describe transformations in multi-element op-
tical arrangements. The choice of the absolute coordi-
nate system is especially important to allow for inversion
of the transverse coordinate and inversion of the slope
when an optical ray is specularly reflected from a mirror
or Bragg reflected from a crystal. Because of such inver-
sion x

1
and x

2
as well as ξ

1
and ξ

2
have opposite signs,

as shown in Figs. 3(a) and 3(b). A negative value of the
asymmetry factor, b, in the Bragg reflection ray transfer
matrix reflects this inversion upon each Bragg reflection.
The Bragg diffraction Ĉ(b,D) matrix is similar to the

ray-transfer matrix of the diffraction grating (see, e.g.,
[25]). The similarity is because both the asymmetry fac-
tor, b, and the angular dispersion rate, D, are derived
from Eq. (1), which coinsides with the well-know in op-
tics grating equation. The magnification factor, m, used
in the diffraction grating matrix is equivalent to 1/|b|.

C. Thin lens or elliptical mirror

The ray-transfer matrix of a thin lens L̂(f) [20, 22, 23]
has a focal distance, f , as a parameter. Compound re-
fractive lenses [28] can be used for focusing and colli-
mation in the hard x-ray regime, and described by such
a matrix to a certain approximation. Alternatively, el-
lipsoidal total reflection mirrors could be applied, which
transform radiation from a point source at one focal point
to a point source located at the second focal point. The
ray-transfer matrix of an ellipsoidal mirror has a struc-
ture identical to the ray-transfer matrix of a thin lens;
however, 1/f = 1/R

1
+ 1/R

2
, where R

1
and R

2
are the

distances from the center of the section of the ellipsoid
employed to the foci of the generating ellipse [29].

The basic ray matrices given in the first three rows of
Table I can be combined to represent systems that are
more complex.

D. Successive Bragg reflections

The ray-transfer matrix Ĉ∪
n
(b∪

n
,D∪

n
) describing suc-

cessive Bragg reflections from n different crystals has a
structure identical to that of the single Bragg reflection
ray-transfer matrix Ĉ(b,D); however, the asymmetry fac-
tor, b, and the angular dispersion rate, D, are substituted
by the appropriate cumulative values b∪

n
, and D∪

n
, re-

spectively, as defined in row 4 of Table I. The cumula-
tive angular dispersion rate, D∪

n
, derived in the present

paper coincides with the expression first derived in [10]
using an alternative approach. It should be noted that
the ray-transfer matrix Ĉ∪n

(b∪
n
,D∪

n
) presented in Ta-

ble I, row 4, was derived neglecting propagation through
free space between the crystals.

With nonzero distances l
i−1 i

between the crystals
i − 1 and i (i = 2, 3, ..., n) taken into account, the ray-
transfer matrix of successive Bragg reflections changes to
K̂∪n

(b∪
n
,D∪

n
, l), as presented in row 5 of Table I. Most

of the elements of the modified ray-transfer matrix still
remain unchanged, except for elements B∪

n
and G∪

n
,

which become nonzero. These elements are defined by
recurrence relations in the table. Nonzero distances l

i−1 i

between the crystals result in an additional change B∪
n
ξ

of the linear size of the source image due to an angular
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spread ξ, and in an spatial transverse shift G∪
n
δE of the

image (linear dispersion) due to a spectral variation δE.

E. Focusing system

In the focusing system [see graph in row 6 of Table I] a
source in a reference source plane at a distance l

1
down-

stream a lens or an elliptical mirror is imaged onto the
reference image plane at a distance l

2
upstream of the

lens. The ray-transfer matrix of the focusing system is
a product of the ray-transfer matrices of the free space
P̂ (l

1
), the thin lens L̂(f), and another free space ma-

trix P̂ (l
2
). If defined in Table I for the focusing system

parameter B
F
= 0, the classical lens equation is valid:

1

l
1

+
1

l
2

=
1

f
. (4)

In this case, the system images the source with inversion
and a magnification factor 1− l

2
/f = −l

2
/l

1
independent

of the angular spread of rays in the source plane.

F. Focusing monochromators

Rows 7–8 in Table I present ray-transfer matrices of
focusing monochromators, optical systems comprising a
lens or an elliptical mirror, and an arrangement of crys-
tals, respectively.
We will distinguish between two different types of fo-

cusing monochromators. If the lens is placed upstream
of the crystal arrangement, we will refer to such optic as
a focusing monochromator, I, presented in row 7 of Ta-
ble I. If the lens is placed downstream, this optic will be
referred to as focusing monochromator, II, presented in
row 8.

1. Focusing monochromator I

The focusing monochromator I with a single crystal
was introduced in [27], and its performance was analyzed
using the wave theory developed there. The ray-transfer
matrix approach used in the present paper leads to sim-
ilar results, except for diffraction effects being neglected
here.
We consider here a general case with a multi-crystal ar-

rangement. The ray-transfer matrix presented in Table I
was derived neglecting propagation through free space
between the crystals. The following expressions are valid
for the elements of the ray-transfer matrix of the focus-
ing monochromator I if nonzero distances between the
crystals of the monochromator are taken into account:

Ã
I
=

1

b∪
n

(

1−
l̃
23

f

)

, (5)

l̃
23

= l
23
+ b∪

n
B∪

n
, l

23
= l

2
+ l

3
b2
∪

n

, (6)

B̃
I
=

l
1
l̃
23

b∪
n

(

1

l
1

+
1

l̃
23

−
1

f

)

, (7)

G̃
I
= G

I
+G∪

n
, G

I
= D∪

n
l
3
, (8)

C̃
I
= C

I
, D̃

I
= D

I
, F̃

I
= F

I
. (9)

The main difference is that the parameter l
23

has to be

substituted by l̃
23

= l
23
+b∪

n
B∪

n
. The nonzero distances

between the crystals also change the linear dispersion rate
from G

I
= D∪

n
l
3
to G̃

I
.

If the focusing condition B
I
= 0 is fulfilled (assuming

the system with zero free space between crystals), the
following relationship is valid for the focal f and other
distances involved in the problem:

1

l
1

+
1

l
23

=
1

f
. (10)

Without the crystals, the image plan would be at a dis-
tance l

2
+ l

3
from the lens, in agreement with Eq. (4).

The presence of the crystal changes the position of the
image plane to l

23
= l

2
+ l

3
b2
∪

n

. Such behavior for the

focusing monochromator-I system was predicted in [27];
it is related to the ability of asymmetrically cut crystals
to change the beam angular divergence and linear size
and thus the virtual position of the source [30].
If the focusing condition B

I
= 0 is fulfilled, Eq. (10)

is valid and, as a consequence, the focusing monochro-
mator I images a source spot of size ∆x into a spot of
size

∆x′ = −
1

b∪
n

l
23

l
1

∆x, (11)

for each monochromatic component E. If the source is
not monochromatic, its image by photons with energy
E+ δE is shifted transversely as a result of linear disper-
sion, by

δx′ = l
3
D∪

n
δE (12)

from the source image position produced by photons of
energy E.
The monochromator spectral resolution ∆E can be

determined from the condition that the monochromatic
source image size ∆x′ [Eq. (11)], is equal to the source
image shift δx′ [Eq. (12)]:

∆E =
1

D∪
n
|b∪

n
|

∆x l
23

l
3
l
1

. (13)

Here and in the rest of the paper it is assumed that the
source image size ∆x′ can be resolved by the position-
sensitive detector. In a particular case of l

2
≪ l

3
b2
∪

n

,
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l
23

can be approximated by l
23

= l
3
b2
∪

n

. As a result, the
expression for the energy resolution can be simplified to

∆E =
|b∪

n
|

D∪
n

∆x

l
1

. (14)

A large dispersion cumulative rate D∪
n
, a small cumula-

tive asymmetry factor |b∪
n
|, a large distance l

1
from the

source to the lens, and a small source size ∆x are ad-
vantageous for better spectral resolution. This result is
in agreement with the wave theory prediction [27], gen-
eralized to a multi-crystal monochromator system. All
these results can be further generalized in a straightfor-
ward manner to account for nonzero spaces between the
crystals, using Eqs. (5)–(9).

2. Focusing monochromator II

In the focusing monochromator-II system the focus-
ing element is placed downstream of the crystals system
[see graph in row 8 of Table I]. The ray-transfer matrix
presented in Table I is derived neglecting propagation
through free space between the crystals. The following
expressions are valid for the elements of the ray-transfer
matrix if nonzero distances between the crystals of the
monochromator are taken into account:

Ã
II
= A

II
, C̃

II
= C

II
. (15)

B̃
II
= b∪

n
l̃
12
l
3

(

1

l̃
12

+
1

l
3

−
1

f

)

, (16)

l̃
12

= l
12
+B∪

n
/b∪

n
, l

12
= l

1
/b2

∪
n

+ l
2
, (17)

D̃
II
= b∪

n

(

1−
l̃
12
l
3

f

)

, (18)

G̃
II
= G

II
+G∪

n

(

1−
l
3

f

)

, G
II
= D∪

n
X, (19)

F̃
II
= F

II
−

G∪
n

f
, F

II
= D∪

n

(

1−
l
2

f

)

. (20)

Elements Ã
II
, B̃

II
, C̃

II
, and D̃

II
have the same form as in

Table I, but with the distance parameter l
12

replaced by

l̃
12
. Elements G̃

II
F̃

II
obtain additional correction terms.

If the focusing condition B
II
= 0 is fulfilled (we further

assume an idealized case of a system with zero free space
between crystals), the following relationship is valid for
the focal f and other distances involved in the problem:

1

l
12

+
1

l
3

=
1

f
. (21)

Without the crystals, the source should be at a distance
l
1
+ l

2
upstream of the lens to achieve focusing at a

distance l
3
of downstream the lens, in agreement with

Eq. (4). The presence of the crystals changes the virtual
position of the source plane, which will now be located
at a distance l

12
= l

1
/b2

∪
n

+ l
2
from the lens 2. Therefore,

unlike the monochromator-I case, in which the crystals
change the virtual image plane position, the crystals in
the monochromator-II system change the virtual source
plane position.
Using a process similar to that used to derive these val-

ues for the monochromator-I system, we obtain the fol-
lowing expressions for the image size ∆x′, the transverse
image shift δx′ (linear dispersion), and for the spectral
resolution ∆E of the monochromator-II system:

∆x′ = −
1

b∪
n

l
3

l
12

∆x, (22)

δx′ = XD∪
n
δE, X =

l
3
l
1

b2∪
n
l
12

, (23)

∆E =
|b∪

n
|

D∪
n

∆x

l
1

. (24)

Interestingly, the expression for the energy resolution of
the monochromator-II system [Eq. (24)] is equivalent to
that of the monochromator-I system given by Eq. (14).
We recall, however, that Eq. (14) was derived for a par-
ticular case of l

2
≪ l

3
b2
∪

n

, while Eq. (24) is valid in
general case.
We would like to emphasize one particular interesting

case. If l
1
= 0 (i.e., the source position coincides with the

position of the crystal system), then X = 0, what results
in zero linear dispersion rate XD∪

n
= 0. This property

can be used to suppress linear dispersion, if it is unde-
sirable. It often happens when a crystal monochroma-
tor is combined with a focusing system. This conclusion
is strictly valid, provided nonzero distances between the
crystals of the monochromator are neglected.
The results derived above, can be further generalized

to take the nonzero spaces between the crystals into ac-
count by applying Eqs. (15)–(20).

G. Spectrograph

In this section we consider spectrographs in a Czerny-
Turner configuration with the optical scheme shown in
Fig. 2, or alternatively in the graph in Table I, row 9.

2 Particular optical schemes similar to the considered here focusing
monochromator-II have been studied in [31] using geometric ray
tracing. In agreement with our result, the virtual source was
determined to be at a distance l

1
/b2∪

n
from the crystal, using

the notations of the present paper.
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In the first step, the source, S, is imaged with the
collimating mirror (lens) onto an intermediate reference
plane at distance l

1
from the mirror. The image is

calculated using the focusing system ray-transfer ma-
trix F̂ (l

1
, f

1
, f

1
) with the assumption that the source is

placed at the focal distance, f
1
, from the collimating mir-

ror. In the second step, transformations by the crystal
optic (dispersing element of the spectrograph) are de-

scribed by the ray-transfer matrix Ĉ(b∪
n
,D∪

n
). We as-

sume at this point that the distances between the crys-
tals are negligible. In the third step, the focusing mir-
ror (lens) with a focal length f

2
placed at distance l

2

from the crystal system produces the source image in
the focal plane, as described by the ray-transfer matrix
F̂ (f

2
, f

2
, l

2
). The final source image is described by a

spectrographmatrix that is a product of the tree matrices
F̂ (f

2
, f

2
, l

2
)Ĉ(b∪

n
,D∪

n
)F̂ (l

1
, f

1
, f

1
) from Table I. The

spectrograph ray-transfer matrix Ŝ(f
2
, l

2
, b∪

n
,D∪

n
, l

1
, f

1
)

in given in row 9 of Table I.
Remarkably, element B of the spectrograph matrix is

zero. This means that for a monochromatic light the
spectrograph is working as a focusing system, concentrat-
ing all photons from a point source into a point image,
independent of the initial angular size of the source. Us-
ing matrix element A, we calculate that the spectrograph
projects a monochromatic source with a linear size ∆x
into an image of linear size

∆x′ = b∪
n

f
2

f
1

∆x. (25)

If the source is not monochromatic, the source image
produced by the photons with energy E + δE is shifted
transversely due to linear dispersion by

δx′ = f
2
D∪

n
δE (26)

from the source image by photons with energy E. The
spectrograph spectral resolution, ∆E, can be determined
from the condition that the monochromatic source image
size ∆x′ [Eq. (25)], is equal to the source image shift δx′

[Eq. (26)]:

∆E =
∆x

f
1

|b∪
n
|

D∪
n

. (27)

A large cumulative dispersion rate D∪
n
, a small cumu-

lative asymmetry factor |b∪
n
|, a large focal distance f

1

of the collimating mirror, and a small source size ∆x are
advantageous for better spectral resolution.
Comparing Eq. (27) with Eqs. (14) and (24), we note

that the spectral resolution of the focusing monochro-
mators and of the spectrograph are described by the
same expressions, with the only difference being that the
source-lens distance is f

1
in the case of the spectrograph,

and l
1
in the case of the monochromators. We therefore

reach an interesting conclusion: the spectral resolution
of the focusing monochromators and spectrographs can
be equivalent. However, their angular acceptance and
spectral efficiency, may be substantially different.

The ray-transfer matrix theory does not take into ac-
count spectral and angular widths of the Bragg reflections
involved. They are, however, often limited typically to
relatively small eV–meV spectral and to mrad–µrad an-
gular widths. The collimating optic of the spectrograph
produces a beam with an angular divergence ∆x/f

1
from

a source with a linear size of ∆x (independent of the an-
gular size of the source). If ∆x/f

1
is chosen to be smaller

than the angular acceptance of the crystal optic, the spec-
trograph may accept photons from a source with a large
angular size. The focusing monochromators, which use
only one lens (mirror) in their optic, do not have such
adaptability to sources with large angular size. Focusing
monochromators can work efficiently only with sources of
small angular size, smaller than the angular acceptance
of the crystal optic. Therefore, spectrographs are prefer-
able spectral imaging systems to work with sources of
large angular size. This is exactly the requirement for the
analyzer systems of the IXS instruments. In the follow-
ing sections we will therefore consider only spectrographs
in application to IXS.
The spectrograph ray-transfer matrix Ŝ presented in

Table I was derived neglecting propagation through free
space between the crystals. It turns out that only matrix
elements C and F have to be changed if nonzero distances
between the crystals of the spectrograph are taken into
account:

C̃ = C +∆C, ∆C = −
B∪

n

f
1
f
2

, (28)

F̃ = F +∆F, ∆F = −
G∪

n

f
2

. (29)

However, this leaves intact the results of the analysis pre-
sented above, because these elements were not used to
derive Eqs. (25)–(27).

III. BROADBAND SPECTROGRAPHS

A perfect x-ray imaging spectrograph for IXS ap-
plications should have a high spectral resolution, ∆E
(∆E/E ≪ 10−6); a large spectral window of imaging,
∆E

∪
≫ ∆E; and a large angular acceptance, ∆θ

∪
≃

1− 10 mrad.
Czerny-Turner-type spectrographs are large-

acceptance-angle devices in contrast to focusing
monochromators, as discussed in detail in Section IIG.
Therefore, in this section we will consider Czerny-
Turner-type spectrographs as spectral imaging systems
for IXS spectroscopy.
To achieve required spectral resolution ∆E, the

“diffraction grating” parameters, b∪
n
and D∪

n
; the focal

length, f
1
, of the collimating optic; and the source size,

∆x, have to be appropriately selected using Eq. (27). We
will discuss this in more detail later in this section.
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The key problem is how to achieve large spectral win-
dow of imaging ∆E

∪
≫ ∆E (i.e., how to achieve broad-

band spectrographs). In the ray-transfer matrix theory
presented above, infinite reflection bandwidths of the op-
tical elements have been assumed. In reality, Bragg re-
flection bandwidths are narrow. They are determined
in the dynamical theory of x-ray diffraction in perfect
crystals (see, e.g., [17, 32]). Therefore, we have to join
ray-transfer matrix approach with the dynamical theory
to tackle the problem of the spectrograph bandwidth.
In the following sections, we will consider two types

of multi-crystal dispersing elements that may be used as
“diffraction gratings” of the broadband hard x-ray spec-
trographs with very high spectral resolution.

A. 0.1-meV resolution broadband spectrographs
with CDW dispersing elements

Czerny-Turner-type hard x-ray spectrographs using
the CDW optic [17–19, 33] as the dispersing element
has been introduced in [8–10]. Three-crystal CDW-optic
schematics are shown in Figs. 4(b)-4(c), while Fig. 4(a)
shows its four-crystal modification CDDW comprising
two D-crystal elements.
The CDW optic in general and CDDW optic in par-

ticular may feature the cumulative dispersion rates, D∪ ,
greatly enhanced by successive asymmetric Bragg reflec-
tions. The enhancement is described by the equation
from row 4 of Table I:

D∪
n
= b

n
D∪

n−1
+ s

n
D

n
. (30)

It tells that the dispersion rate D∪
n−1

of the optic com-

posed of the first n − 1 crystals can be drastically en-
hanced, provided successive crystal’s asymmetry factor
|b

n
| ≫ 1. In the example discussed in [8–10], the CDDW

optic was considered, for which the cumulative disper-
sion rate was enhanced almost by two orders of magni-
tude compared to that of a single Bragg reflection. As
a consequence, the ability to achieve very high spectral
resolution ∆E < 0.1 meV was demonstrated. However,
the spectral window in which that particular CDDW
optic permitted the imaging of x-ray spectra was only
∆E

∪
≃ 0.45 meV.

Here we introduce x-ray spectrographs with the dis-
persing elements using the CDW optic, which feature a
more than an order-of-magnitude increase (compared to
the [10] case) in the spectral window of imaging, and
simultaneously a very high spectral resolution ∆E ≃
0.1 meV.
A spectrograph with a spectral resolution ∆E =

0.1 meV requires a dispersing element (DE in Fig. 2),
featuring the ratio |b∪ |/|D∪ | = 0.02 meV/µrad [see
Eq. (27)]. Here we assume that the source size on the
sample ∆x = 5 µm, and focal distance f

1
= 1 m. Small

|b∪ | and large |D∪ | are favorable. However, a |b∪ | value
that is too small may result in an enlargement by 1/|b∪ |

of the transverse size of the beam after the dispersing
element, which is a too big, and therefore may require
focusing optic with unrealistically large geometrical aper-
ture. In addition, a |b∪ | value that is too small may result
in a monochromatic image size ∆x′ that is too small [see
Eq. (26)], which may be beyond the detector’s spatial res-
olution. Because of this, we will keep |b∪

n
| ≃ 0.5; there-

fore, |D∪ | ≃ 25 µrad/meV in the examples considered
below. With f

2
/f

1
≃ 1 − 2, the monochromatic image

size is expected to be ∆x′ ≃ 2.5−5 µm, which can be re-
solved by modern position-sensitive x-ray detectors [34].
It is also important to ensure that the angular acceptance
of spectrograph’s dispersing element is much larger than
the angular size of the source ≃ ∆x/f

1
≃ 5 µrad.

Based on the DuMond diagram analysis, the spectral
bandwidth of the CDDW optic can be approximated by
the following expression [19]:

∆E
∪
≃ E

∆θ(s)
C

√

|b
C
|+∆θ(s)

W
/
√

|b
W
|

4 tan η
D

. (31)

Here ∆θ(s)
e

values represent angular widths of Bragg re-
flections from crystal elements (e = C,W) in the sym-
metric scattering geometry.
For the CDDW optic, s

C
= +1; s

D1
= +1; s

D2
= −1;

and s
W

= −1. Therefore, using Eq. (30),

D∪ = b
W
b
D2
b
D1
D

C
+ b

W
b
D2
D

D1
− b

W
D

D2
− D

W
. (32)

Assuming typical designs with θ
D1

= θ
D2

= θ
D

≃ 90◦,
and b

D1
= b

D2
= b

D
≃ −1, the largest dispersing rates are

achieved by D-crystals, D
D1

= D
D2

= D
D
= 2 tan η

D
/E

[see Eq. (3)], while the dispersion rates D
C
and D

W
of the

C- and W-crystal elements can be neglected in Eq. (32).
As a result, the cumulative dispersion rate can be then
approximated by

D∪ ≃ −2b
W
D

D
≃ −4b

W
tan η

D
/E, (33)

and the critical for spectrograph’s spectral resolution ∆E
ratio b∪/D∪ [see Eq. (27)] by

b∪

D∪

≃ −E
b
C
b2
D

4 tan η
D

. (34)

Equation (31) shows that to achieve a broadband spectro-
graph it is important to use the W-crystal with a large in-
trinsic angular width ∆θ(s)

W
and a small asymmetry factor

|b
W
|; however, asymmetry factor should not be too small,

in order to keep |b∪ | ≃ 0.5, as discussed above. Favor-
ably, the variation of |b

W
| does not change the spectral

resolution ∆E, according to Eqs. (34) and (27). Using
the C-crystal with a large intrinsic angular width ∆θ(s)

C
,

and as small as possible asymmetry factor |b
C
| is also ad-

vantageous for achieving the large bandwidth. However,
these values are optimized first of all with a purpose of
achieving a large angular acceptance of the CDDW optic
∆θ

∪
≃ ∆θ(s)

C
/
√

|b
C
| [19].

Equations (31)–(34) are also valid for the three-crystal
CDW optic, if factors of 4 are replaces everywhere by
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FIG. 4: (Color online) Schematics of the four-crystal CDDW and three-crystal CDW optic as dispersing elements (“diffraction
gratings”) of the Czerny-Turner-type hard x-ray imaging spectrographs (top row) and their spectral transmittance functions
(solid, dark blue lines in the bottom row) calculated by the dynamical theory of Bragg diffraction using crystal parameters
from Table II. Angular spread of incident x-rays is 20 µrad in (a)–(b), and 50 µrad in (c)–(d). Black spectral lines with a
0.1-meV width indicate the target spectral resolution of the spectrographs.

factors of 2, and b2
D
is replaced by b

D
. Therefore, simi-

lar conclusions regarding the bandwidth are true for the
CDW optic, containing one D-crystal element.

Examples of multi-crystal CDDW and CDW “diffrac-
tion gratings”, ensuring ∆E

∪
≃ 2.5−7.5 meV (i.e., spec-

tral windows of imaging 25 to 75 times broader than the
target spectral resolution ∆E = 0.1 meV) are given in
Table II. The spectral transmittance functions calcu-
lated using the dynamical diffraction theory are shown
in Fig. 4. The largest increase in the width of the spec-
tral window of imaging is achieved in those cases in which
Ge crystals are used for W-crystal elements, the crystals
that provide the largest ∆θ(s)

W
values. Low-indexed asym-

metric Bragg reflections from thin diamond crystals, C*,
are proposed to use for the C-crystal elements, to ensure
low absorption of the beam propagating to the W-crystal
upon Bragg back-reflection from the D-crystal, similar to
how diamond crystals were used in a hybrid diamond-
silicon CDDW x-ray monochromator [35].

The above examples are not necessarily best and fi-
nal. Further improvements in the spectral resolution and
the spectral window of imaging are still possible through
changing crystal parameters and crystal material. The
best strategy of increasing the spectral window of imag-
ing is to choose a crystal material with the largest possi-
ble angular acceptance, ∆θ(s)

W
, of the W-crystal [Eq (31)].

Here we suggest Ge, but a different material could also
work (e.g., PbWO4). The spectral window of imaging
can be further increased by decreasing the asymmetry
factor, |b

W
|, of the W-crystal while simultaneously keep-

ing b∪/D∪ , and therefore ∆E, at the same low level.
This should be possible as long as the transverse size of
the beam which has been increased by 1/|b∪ | after the
CDW optic can be accepted by the focusing optic, and
the monochromatic image size ∆x′ decreased by |b∪ | [see
Eq. (25)] can be still resolved by the detector.
In addition, with the Bragg angle, θ

D
, of the D-crystal

chosen very close to 90◦ the CDW optic becomes ex-
act back-scattering. In this case, a Littrow-type spectro-
graph in an autocollimating configuration, using common
crystal for C- and W- elements, could be used. This is
similar to the Czerny-Turner-type spectrograph but with
a common collimator and focusing mirror.

B. Spectrographs with a multi-crystal (+–+–...)
dispersing element

In the asymmetric scattering geometry with angle η 6=
0 [see Fig. 2(b)] the relative spectral width ∆E/E and
angular width ∆θ of the Bragg reflection region become

∆E

E
=

ǫ(s)
H
√

|b|
, ∆θ =

∆θ(s)
√

|b|
, (35)

compared to the appropriate values ǫ(s)
H

and ∆θ(s) ≃

ǫ(s)
H

tan θ valid in the symmetric scattering geometry with
η = 0 and b = −1 (see, e.g., [17, 32]). The spectral
and angular Bragg reflection widths increase by a fac-
tor 1/

√

|b| compared to symmetric case values, provided
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crystal H
e

η
e

θ
e

∆E
e

∆θ
e

b
e

s
e
D

e

element (e)

[material] (hkl) deg deg meV µrad µrad
meV

CDDW No 1

C [C*] (1 1 1) -17.3 19.26 574 22 -0.057 -0.03

D
1
[Si] (8 0 0) 81.9 89.5 27 341 -1.13 1.63

D
2
[Si] (8 0 0) 81.9 89.5 27 341 -1.13 -1.63

W [C*] (1 1 1) 14.6 19.25 574 22 -6.88 0.22

∆E
∪

∆θ′
∪

b∪ D∪

meV µrad µrad
meV

Cumulative values 2.5 62 0.5 24.6

CDW No 1

C [C*] (1 1 1) -17.3 19.26 574 22 -0.057 -0.03

D [Si] (8 0 0) 86.0 89.5 27 341 -1.29 3.58

W [C*] (1 1 1) 14.55 19.25 574 22 -6.79 -0.22

Cumulative values 2.4 -60 -0.5 -24.9

CDW No 2

C [C*] (1 1 1) -17.3 19.26 574 22 -0.057 -0.03

D [Si] (8 0 0) 86.0 89.5 27 341 -1.29 3.58

W [Ge] (2 2 0) 15.0 19.84 1354 53 -6.77 -0.22

Cumulative values 5.8 -144 -0.5 24.8

CDW No 3

C [C*] (1 1 1) -17.3 19.26 574 22 -0.057 -0.03

D [Si] (8 0 0) 86.0 89.5 27 341 -1.29 3.58

W [Ge] (1 1 1) 9.0 12.0 3013 70 -6.86 -0.13

Cumulative values 7.5 -187 -0.5 25.

TABLE II: Examples of the four-crystal CDDW and three-
crystal CDW optic as dispersing elements (“diffraction grat-
ings”) of the Czerny-Turner-type hard x-ray spectrographs.
For each optic the table presents crystal elements (e=C,D,W)
and their Bragg reflection parameters: (hkl), Miller indices
of the Bragg diffraction vector H

e
; η

e
, asymmetry angle; θ

e
,

glancing angle of incidence; ∆E(s)
e

, ∆θ(s)
e

are Bragg’s reflec-
tion intrinsic spectral width and angular acceptance in sym-
metric scattering geometry, respectively; b

e
, asymmetry fac-

tor; and s
e
D

e
, angular dispersion rate with deflection sign.

For each optic the table also shows the spectral window of
imaging ∆E

∪
as derived from the dynamical theory calcula-

tions - see Fig. 4, the angular spread of the dispersion fan
∆θ′

∪
= D∪∆E

∪
, and cumulative values of asymmetry pa-

rameter b∪ and dispersion rate D∪ . X-ray photon energy is
E = 9.13185 keV in all cases.

Bragg reflections with asymmetry parameters |b| < 1
(η < 0) are used. It is therefore clear that to real-
ize spectrographs with broadest possible spectral window
of imaging it is advantageous to use asymmetric Bragg
reflections with asymmetry parameters in the range of
|b| < 1. In the current section, we will study a few par-
ticular cases.

We start, however, with drawbacks of using Bragg re-
flections with asymmetry factors in the range of |b| < 1.
First, they have a smaller angular dispersion rates [see

Eq. (3)] than those with |b| ≫ 1 (compare with cases
discussed in the previous section). Second, they enlarge
the transverse beam size of x-rays upon reflection by a
factor 1/|b|, as a consequence of the phase space con-
servation (see A matrix elements of the Bragg reflection
ray-transfer matrices in rows 3–5 of Table I). Transverse
beam sizes that are too large may unfortunately require
unrealistically large geometric aperture of the f

2
-focusing

mirrors (lenses) of the spectrographs. Third, Bragg re-
flections with |b| ≪ 1 also reduce the monochromatic im-
age size ∆x′ [see Eq. (25)] and thus may pose stringent
requirement on the detector’s spatial resolution, which
should be better than ∆x′.
As example, we consider a multi-crystal dispersing ele-

ment of the Czerny-Turner-type spectrographs composed
of n identical crystals in the (+–+–...) scattering geom-
etry (s

1
= +1, s

2
= −1, s

3
= +1, s

4
= −1,...). All

crystals are assumed to have the same angular disper-
sion rate D

1
= D

2
= ... = D

n
= D [see Eq. (3)], and

the same asymmetry factors b
1
= b

2
= ... = b

n
= b [see

Eq. (2)]. Using the equations from row 4 of Table I, we
obtain for the cumulative dispersion rate D∪

n
, and the

asymmetry factor b∪
n
of the multi-crystal (+–+–...) dis-

persing element:

D∪
n
= Ds

n
(1− b+ b2 + ...+ s

n
bn−1), (36)

b∪
n
= bn. (37)

Increasing the number of crystals, n, with asymmetry
parameters |b| < 1, results in a rapid decrease of b∪

n
;

however, this does not increase D∪
n
as much. Therefore,

in the following examples we restrict ourselves to consid-
ering solely two-crystal (+–)-type dispersing elements, as
shown schematically in Figure 5.
For a spectrograph with two-crystal (+–)-type dispers-

ing elements, the expressions for the spectral resolution
∆E [see Eqs. (27) and (36)-(37)] and for the monochro-
matic image size ∆x′ [see Eqs. (25) and (37)] on the de-
tector become

∆E =
∆x

f
1

b2

D(b − 1)
=

∆x

f
1

E
b2

(1− b2) tan θ
(38)

∆x′ = b2
f
2

f
1

∆x. (39)

Bragg reflections with θ close to 90◦, small |b| ≪ 1, small
source size ∆x, and large focal distance, f

1
, are the fac-

tors that improve the energy resolution ∆E of the spec-
trograph. A large focal distance, f

2
, of the spectrograph’s

focusing mirror helps to mitigate the requirement for the
spatial resolution of the position sensitive detector.
The spectral window of imaging ∆E

∪
and the angular

acceptance ∆θ
∪
of the spectrograph for each monochro-

matic spectral component is given by Eq. (35) in the first
approximation. Using Bragg reflections with a large rela-
tive spectral widths, ǫ(s)

H
, and a small |b| ≪ 1 is advanta-

geous for achieving a broad spectral window of imaging.
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D1

D2

D1

D2

(b) DE: + Ge(337) – Ge(337)

(a) DE: + Si(008) – Si(008)

FIG. 5: (Color online) Schematics of two-crystal optic in
the (+–) arrangement designed as dispersing elements DE
(“diffraction gratings”) of the Czerny-Turner-type hard x-ray
imaging spectrographs (Fig 2). Identical Bragg reflections
with asymmetry parameter |b| < 1 are used, with crystal
parameters presented in Tables III(a) and III(b), and with
spectral transmittance functions presented in Figs. 6(a) and
6(b), respectively.

crystal H
e

η
e

θ
e

∆E
e

∆θ
e

b
e

s
e
D

e

element (e)

[material] (hkl) deg deg meV µrad µrad
meV

(a) E = 9.13294 keV

D
1
[Si] (8 0 0) 88. 89. 27 169 -0.34 -4.2

D
2
[Si] (8 0 0) 86. 89. 27 169 -0.34 4.2

∆E
∪

∆θ′
∪

b∪ D∪

meV µrad µrad
meV

Cumulative values 47 266 0.11 5.63

(b) E = 8.99 keV

D
1
[Ge] (3 3 7) 83.45 86.05 41.8 67 -0.25 -1.2

D
2
[Ge] (3 7 7) 83.45 86.05 41.8 67 -0.25 +1.2

Cumulative values 85 134 -0.06 1.5

TABLE III: Examples of the two-crystal (+–)-type optic de-
signed as dispersing elements DE (“diffraction gratings”) of
the Czerny-Turner-type hard x-ray imaging spectrographs.
All notations are as in Table II.

In the following, we consider two examples of the spec-
trographs in the Czerny-Turner configuration with two-
crystal (+–)-type dispersing elements. The first one,
which is appropriate for UHRIXS applications, is studied
in Section III B 1. The second example, relevant to high-
resolution Cu K-edge RIXS applications, is discussed in
Section III B 2.
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FIG. 6: (Color online) Spectral transmittance functions [solid
dark blue lines in (a) and (b)] of the (+–)-type two-crystal
dispersing elements DE, schematically shown in Fig. 5(a) and
(b), respectively. Transmittance is calculated using the dy-
namical theory of Bragg diffraction with crystal parameters
from Tables III(a) and III(b). Angular spread of incident
x-rays is 50 µrad in both cases. Black spectral lines with a
0.1-meV width in (a) and with a 1-meV width in (b) represent
the spectral resolution of the spectrographs in the particular
(θ, η) configurations highlighted by magenta dots in Figs. 7
and 8, respectively.

1. IXS spectrograph: 0.1-meV resolution and 47-meV

spectral window

Here, as in Section IIIA, we study possible solutions
to broadband spectrographs for IXS applications that re-
quire an ultra-high spectral resolution of ∆E ≃ 0.1 meV,
and a momentum transfer resolution ∆Q ≃ 0.01 nm−1

discussed in Section I.
We use Eqs. (38)–(39) and (2) to plot two-dimensional

(2D) graphs with spectrograph characteristics as a func-
tion of Bragg’s angle θ and the asymmetry angle η: spec-
tral resolution ∆E in Fig. 7(a), image to source size ratio
∆x′/∆x in Fig. 7(b), and the lateral beam size enlarge-
ment ∆x′

b
/∆x

b
by crystal optics in Fig. 7(c). A par-

ticular case is considered with ∆x = 5 µm, f
1
= 1 m,

and f
2
= 5 m. Configurations with equal energy resolu-

tion are highlighted by black lines for some selected ∆E
values. Magenta dots highlight a specific case with the
spectral resolution ∆E = 0.1 meV, ∆x′/∆x ≃ 0.55, and
∆x′

b
/∆x

b
≃ 9, achieved by selecting θ = 89◦ and θ−η =

1◦ (b = −0.33). Specifically, the (008) Bragg reflection of
x-rays with average photon energy E = 9.13294 keV from
Si crystals [see Table III(a), Figs. 6(a) and 5(a)] enable a
“diffraction grating” with a spectral window of imaging
∆E

∪
= 47 meV and angular acceptance ∆θ

∪
= 266 µrad

for each monochromatic component.
The angular spread of x-rays incident on the crystal

is ∆x/f
1
= 5 µrad, independent of the angular spread

of x-rays incident on the collimating optic. This number
is much less than the crystal angular acceptance, which
makes the optic very efficient. The expected monochro-
matic image size is ∆x′ ≃ 2.5 µm, which can be resolved
by the state-of-the-art position sensitive x-ray detectors
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FIG. 7: Properties of the spectrographs with the two-crystal
“diffraction grating” (Fig. 5): (a) spectral resolution ∆E; (b)
image to source size ratio ∆x′/∆x; and (c) the lateral beam
size enlargement ∆x′

b
/∆x

b
by crystal optics, shown as a func-

tion of Bragg’s angle θ and the asymmetry angle η. A particu-
lar case is presented for ∆x = 5 µm, f

1
= 1 m, and f

2
= 5 m.

Magenta dots highlight the case with the spectrograph reso-
lution ∆E = 0.1 meV, ∆x′/∆x ≃ 0.55, and ∆x′

b
/∆x

b
≃ 9,

attainable with crystal parameters presented in Table III(a).
The (008) Bragg reflections from Si crystals enable a “diffrac-
tion grating” with a ∆θ

∪
= 284 µrad angular acceptance and

∆E
∪
= 47 meV imaging window for 9.13294 keV x-rays.

with single photon sensitivity [34].
A very good energy resolution of ∆E ≃ 0.1 meV si-

multaneously requires a very high momentum transfer
resolution ∆Q ≃ 0.01-nm−1 to resolve photon-like ex-
citations in disordered systems (see Fig. 1). This lim-
its the angular acceptance on the collimating optic to
∆α . ∆Q/Q = 0.21 mrad, where Q = 46.28 nm−1 is
the momentum of a photon with energy E = 9.132 keV.
The geometrical aperture of the collimating optic there-
fore can be small, ∆a

1
= f

1
∆α ≃ 0.2 mm, assuming

f
1
= 1 m. The geometrical aperture of the focusing

optic should be much larger, because the beam size in-
creases by a factor of ∆x′

b
/∆x

b
≃ 9 to ∆a

2
≃ 1.8 mm.

However, optics with such apertures are feasible, in par-
ticular if advanced grazing incidence mirrors are used.
We note also that the cumulative dispersion rate of the
two-crystal dispersing element is D∪ = 5.63 µrad/meV.
Hence, the total angular spread of x-rays after the disper-
sion element within the imaging window ∆E

∪
= 47 meV

is ∆θ′
∪
≃ 266 µrad, which can be totally captured by the

state-of-the-art mirrors.
It should be noted that focusing is required only in

one dimension, like for the spectrographs discussed in
Section III A. This property can be used to simultane-
ously image the spectrum of x-rays along the x-axis and
the momentum transfer distribution along the y-axis (see
Fig. 3), using a 2D position sensitive detector.
The spectrograph with the two-crystal (+–)-type dis-

persing element introduced in the present section has al-
most an order-of-magnitude broader spectral window of
imaging compared to that of the spectrograph with the
CDW dispersing element, as discussed in Section III A.
However, its realization requires a focusing mirror with
larger geometric aperture and larger focal distance f

2
.

2. RIXS spectrograph: 1-meV resolution and 85-meV

spectral window

Having the Bragg angle θ as close as possible to 90◦ is
advantageous, because this allows for better spectral res-
olution [see Eq. (38)] and simultaneously smaller beam
size enlargement, ∆x′

b
/∆x

b
, by the dispersing element,

and not too much reduction of the image to source size
ratio ∆x′/∆x. This property was used in the example
of the spectrograph intended for IXS applications dis-
cussed in the previous section (see Fig. 7). RIXS, unlike
IXS, requires specific photon energies, which are defined
by transitions between specific atomic states [36]. As
a consequence, there is usually limited flexibility in the
choice of Bragg’s angle magnitude. Here, we show that in
such conditions high-resolution hard x-ray spectrographs
in the Czerny-Turner configuration are also feasible, yet,
with certain limitations.
As an example, we consider a spectrograph for Cu K-

edge RIXS applications, which requires x-rays with pho-
ton energiesE ≃ 8.99 keV. Figure 5(b) shows a schematic
of the spectrograph’s two-crystal (+–)-type dispersing el-
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FIG. 8: (Color online) Properties of a spectrograph for Cu
K-edge RIXS applications. Notations are the same as in
Fig. 7 for a particular case of ∆x = 5 µm, f

1
= 0.2 m,

and f
2
= 2 m. The (337) Bragg reflection of the 8.99-keV

x-rays from Ge crystals with crystal parameters presented in
Table III(b) provide a “diffraction grating” featuring a 133-
µrad angular acceptance and a 85-meV bandwidth. In this
case, the spectrograph resolution should be ∆E = 1 meV,
∆x′/∆x ≃ 0.3, and ∆x′

b
/∆x

b
≃ 16.

ement; Fig. 8 displays properties of the spectrograph as

a function of Bragg θ and asymmetry η angles. Magenta
dots highlight a specific configuration that results in a
∆E = 1 meV spectral resolution, and a ∆E

∪
= 85 meV

spectral window of imaging. Table III(b) presents crystal
parameters in this configuration.
The spectral resolution of the selected RIXS spectro-

graph is an order of magnitude inferior to that of the
IXS spectrograph discussed in the previous section. The
∆E = 1-meV value is first of all a compromise between
as small as possible spectral resolution and a beam cross-
section that is not overly enlarged by the dispersing ele-
ment. In our case the enlargement is already significant:
∆x′

b
/∆x

b
≃ 16 and will require focusing optic with large

geometric aperture. An overly large deviation of the 86◦

Bragg angle from 90◦ (imposed by Ge crystal properties
and fixed photon energy) does not allow for smaller beam
size 3. Second, to ensure the larger angular acceptance
of the spectrograph important for RIXS applications, the
focal distance of the collimating optic, which is critical
for better spectral resolution [see Eqs. (27) and (38)] is
chosen, f

1
= 0.2 m, much smaller that in the IXS case.

The RIXS spectrograph introduced here features an
order-of-magnitude better spectral resolution compared
to the resolution available with the state-of-the-art RIXS
spectrometers [38–40]. Such high resolution could be use-
ful in studying collective excitations in condensed matter
systems in various fields, primarily in high-T

C
supercon-

ductors.

IV. CONCLUSIONS

We have developed a theory of hard x-ray Czerny-
Turner-type spectrographs using Bragg reflecting crystals
in multi-crystal arrangements as dispersing elements. Us-
ing the ray-transfer matrix technique, spectral resolution
and other performance characteristics of spectrographs
are calculated as a function of the physical parameters
of the constituent optical elements. The dynamical the-
ory of x-ray diffraction in crystals is applied to calculate
spectral windows of imaging.
Several optical designs of hard x-ray spectrographs

with broadband spectral windows of imaging are pro-
posed and their performance is analyzed. Specifi-
cally, spectrographs with an energy resolution of ∆E =
0.1 meV are shown to be feasible for IXS spectroscopy
applications. Dispersing elements based on CDW op-
tic may provide spectral windows of imaging, ∆E

∪
≃

2.5 − 7.5 meV and compact optical design. Two-crystal
(+–)-type dispersing elements may provide much larger
spectral windows of imaging ∆E

∪
≃ 45 meV. However,

this may require focusing optic with a large geometrical
aperture, and a large focal length. In another exam-

3 A one-dimensional focusing x-ray mirror can be made with a
large geometrical aperture by stacking mirror segments [37].
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ple, a spectrograph with a 1-meV spectral resolution and
≃ 85-meV spectral window of imaging is introduced for
Cu K-edge RIXS applications.
Ray-transfer matrices derived in the paper for optics

comprising focusing, collimating, and multiple Bragg-
reflecting crystal elements can be used for the analysis
of other x-ray optical systems, including synchrotron

radiation beamline optics, or x-ray free-electron laser
oscillator cavities [41–43].

ACKNOWLEDGMENTS

Work at Argonne National Laboratory was supported
by the U.S. Department of Energy, Office of Science, un-
der Contract No. DE-AC02-06CH11357.

[1] Yu. Shvyd’ko, S. Stoupin, D. Shu, S. P. Collins, K. Mund-
both, J. Sutter, and M. Tolkiehn, Nature Communica-
tions 5:4219 (2014).

[2] E. Burkel, B. Dorner, and J. Peisl, Europhys. Lett. 3,
957 (1987).

[3] F. Sette, G. Ruocco, M. Krisch, U. Bergmann, C. Mas-
ciovecchio, Mazzacurati, G. Signorelli, and R. Verbeni,
Phys. Rev. Lett. 75, 850 (1995).

[4] C. Masciovecchio, U. Bergmann, M. Krisch, G. Ruocco,
F. Sette, and R. Verbeni, Nucl. Instrum. Methods Phys.
Res. B 117, 339 (1996).

[5] A. Q. R. Baron, Y. Tanaka, D. Miwa, D. Ishikawa,
T. Mochizuki, K. Takeshita, S. Goto, T. Matsushita,
H. Kimura, F. Yamamoto, et al., Nucl. Instrum. Methods
Phys. Res. A 467-468, 627 (2001).

[6] H. Sinn, E. Alp, A. Alatas, J. Barraza, G. Bortel,
E. Burkel, D. Shu, W. Sturhahn, J. Sutter, T. Toellner,
et al., Nucl. Instrum. Methods Phys. Res. A 467-468,
1545 (2001).

[7] A. H. Said, H. Sinn, and R. Divan, Journal of Syn-
chrotron Radiation 18, 492 (2011).

[8] Yu. Shvyd’ko, arXiv:1110.6662 (2011).
[9] Yu. Shvyd’ko, Proc. SPIE, Advances in X-Ray/EUV Op-

tics and Components VII 8502, 85020J (2012).
[10] Yu. Shvyd’ko, S. Stoupin, K. Mundboth, and J. Kim,

Phys. Rev. A 87, 043835 (2013).
[11] M. Czerny and A. F. Turner, Z. f. Physik 61, 792 (1930).
[12] H. Sinn, J. Phys.: Condensed Matter 13, 7525 (2001).
[13] A. B. Shafer, L. R. Megill, and L. Droppelman, J. Opt.

Soc. Am. 54, 879 (1964).
[14] K.-S. Lee, K. P. Thompson, and J. P. Rolland, Opt. Ex-

press 18, 23378 (2010).
[15] T. Matsushita and U. Kaminaga, Journal of Applied

Crystallography 13, 472 (1980).
[16] S. Brauer, G. Stephenson, and M. Sutton, J. Synchrotron

Radiation 2, 163 (1995).
[17] Yu. Shvyd’ko, X-Ray Optics – High-Energy-Resolution

Applications, vol. 98 of Optical Sciences (Springer, Berlin
Heidelberg New York, 2004).

[18] Yu. V. Shvyd’ko, M. Lerche, U. Kuetgens, H. D. Rüter,
A. Alatas, and J. Zhao, Phys. Rev. Lett. 97, 235502
(2006).

[19] Yu. Shvyd’ko, S. Stoupin, D. Shu, and R. Khachatryan,
Phys. Rev. A 84, 053823 (2011).

[20] H. Kogelnik and T. Li, Appl. Opt. 5, 1550 (1966).
[21] T. Matsushita and U. Kaminaga, Journal of Applied

Crystallography 13, 465 (1980).
[22] A. E. Siegman, Lasers (University Science Books, Sausal-

ito, California, 1986).
[23] N. Hodgson and H. Weber, Laser Resonators and Beam

Propagation: Fundamentals, Advanced Concepts and Ap-

plications, Optical Sciences (Springer, Berlin Heidelberg

New York, 2005).
[24] D.-M. Smilgies, Applied Optics 47, E106 (2008).
[25] O. E. Mart́ınez, IEEE Journal of Quantum Electronics

24, 2530 (1988).
[26] M. Kuriyama and W. J. Boettinger, Acta Cryst. A32,

511 (1976).
[27] V. G. Kohn, A. I. Chumakov, and R. Rüffer, J. Syn-
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