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Thanks to the recent experimental realization and control of artificial gauge fields, Spin-orbit
(SO) couplings are witnessing an ever increasing interest in the field of cold atoms. However,
predicting their effect on spin polarization and energetic properties of interacting systems is a major
challenge, due to the complex interplay between spin and position dynamics. In this work we
exploit the Diffusion Monte Carlo algorithm to compute energetic and polarization properties of
a three dimensional repulsive Fermi gas in the presence of Rashba spin-orbit coupling. We find
that SO effects tend to contrast the spin alignment induced by the exchange interaction, slightly
shifting the onset of the Stoner instability towards larger values of the scattering length. In addition,
polarization and energy properties of the system can be tuned trough a combined control of the
repulsive interaction and Rashba coupling.

PACS numbers:

The Fermi gas with contact or finite-range repulsion is
a prototypical model system. Due to its nontrivial mag-
netic properties, it has been a subject of numerous inves-
tigations over the years[1–7]. The corresponding Hamil-
tonian (Stoner model), introduced in order to describe
itinerant ferromagnetism in an electron gas with screened
two-body Coulomb interaction [8], was shown to yield
a spin polarization transition upon control of the two-
body repulsion strength[3–5]. In addition, the peculiar
magnetic behavior of the model was also confirmed for
trapped configurations, where the problem of stability
and phase separation of a two-component Fermi gas was
theoretically addressed[1, 9, 10].
According to mean field theoretical predictions[4], a

polarization transition can be triggered in the system by
enhancing the repulsive interaction above a critical value.
The critical scattering length is determined by a com-
petition between the kinetic energy and the interaction
among fermions having opposite spin. Notably, both the
inclusion of higher order perturbative terms and Quan-
tum Monte Carlo lead to results in qualitative agreement
with the mean field picture, although predicting a differ-
ent value of the critical interaction[3, 5, 6].
While the physics of the Stoner model appears to be

qualitatively well understood, the effect of adding the
Spin-Orbit (SO) coupling is less certain. In particular,
it might lead to sizable modifications of the polarization
properties of the system. One specific form of the spin-
orbit coupling is the Rashba SO interaction[11–14]

VSO = λ (pyσx − pxσy) , (1)

where σi is the i-th Pauli matrix and pi is the i-th com-
ponent of the momentum operator. This interaction
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has been widely studied in the field of low-dimensional
semiconductor systems. Recently, it has also been re-
alized in ultracold atomic systems in combination with
a Dresselhaus[15] coupling by means of controlled laser
beams[16–19], and it is currently witnessing increasing
attention. In fact, due to its tunable strength[20] through
the parameter λ, the Rashba SO coupling may allow for
an otherwise challenging fine tuning of the system polar-
ization.

Motivated by the remarkable experimental achieve-
ments, a significant amount of recent theoretical work
has been focused on the effects of Rashba or Dresselhaus
SO couplings in Bose-Einstein condensates[21–29], and
in superfluid fermions at the BCS-BEC crossover[30–49].
A very recent mean field variational study of the two di-
mensional Fermi gas with Rashba coupling[50] has indeed
shown how SO effects can macroscopically influence the
Stoner instability, leading to partially magnetized states.
However, while a detailed theoretical understanding of
the repulsive Fermi gas in presence of Rashba interaction
would be extremely appealing, the intrinsically challeng-
ing calculations beyond the mean field are further com-
plicated by the non-local nature of the SO coupling[50].

In the present paper we address this problem using
an accurate Diffusion Monte Carlo (DMC) algorithm to
predict the energetic and polarization properties of the
three dimensional (3D) Fermi gas. In order to correctly
treat SO interactions, a suitable imaginary time spin-
orbit propagator is introduced, following our previous
work in the context of the two-dimensional electron gas
and circular quantum dots[51, 52].

In particular, DMC has enabled us to calculate accu-
rate estimates of ground state properties of the Hamilto-
nian with a soft-sphere (SS) repulsion and Rashba spin-
orbit interaction. We find that the Rashba interaction
tends to frustrate the system polarization, reducing its
value, and shifting its onset to slightly higher values
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of the repulsive interaction scattering length a. While
macroscopic polarization is found only above a critical
scattering length ac, the present results cannot exclude
the onset of a weaker polarization below ac, opening thus
new questions about the order of the transition.
The paper is organized as follows: in section I the

method is presented along with the details of the imag-
inary time spin-orbit propagator. In section II the trial
wave function of choice is introduced together with mo-
tivation for its spinorial structure. Finally, in section III,
the QMC results for polarization and energetic properties
are reported and discussed.

I. METHODS

A. Quantum Monte Carlo for SO Hamiltonians

Diffusion Monte Carlo (DMC) is a highly accurate
technique, based on projecting out the ground state com-
ponent of an initial arbitrary state of the system (not
orthogonal to the ground state itself) by means of the it-
erated application of an imaginary time (τ) propagation.
The quantum state is approximated by a finite expansion
on position eigenstates, i.e. by a collection of points in
configuration space:

|Ψ〉 ∼
∑

k

|Xk〉〈Xk|Ψ〉. (2)

Notice that in this case the configurations have to be in-
tended in an extended meaning, therefore including all
the relevant degrees of freedom (e.g. position and spin).
Each of these points is evolved according to a short-time
approximation of the imaginary time propagator associ-
ated with the Hamiltonian H :

〈Xk|Ψ〉 =
∑

l

〈Xk|e−∆τ(H−E0)|X ′
l〉〈X ′

l |Ψ〉,

where E0 is a constant introduced to preserve the nor-
malization of the ground state, and k is the configuration
index. In the limit of an infinite iteration, this propaga-
tion leads to ground-state projection (power method).
Following our previous work[51, 52], the Hamiltonian is

split into three terms, namely kinetic energy T , repulsive
two-body interaction VSS and SO contribution VSO.

H = T + VSS + VSO . (3)

Making use of the Trotter’s formula, the imaginary time
Green’s function is then approximated (at order O(∆τ))
as

e−∆τH ≃ e−∆τVSS e−∆τVSO e−∆τT . (4)

The rightmost factor corresponds to the imaginary time
free particle Gaussian propagator

G0 (R
′,R,∆τ) = (2π∆τ)−N exp

[

− (R′ −R)2

2∆τ

]

, (5)

from which space coordinates displacements R′ −R are
sampled (R indicates here the collective space coordi-
nates of the system). The second factor (containing VSO)
is subsequently applied to G0. The momentum operators
at the exponent act as derivatives with respect to the
coordinates R

′,R, and after some algebra the SO and
kinetic parts of the imaginary time propagator read:

e−VSO G0 (R
′,R,∆τ) ≃

= e−iλ
∑N

i=1
(∆ry

i
σx
i −∆rxi σ

y
i
)G0 (R

′,R,∆τ) , (6)

where ∆rai (a = x, y) indicates the space displacement
along the x, y direction of the i-th particle. The re-
maining part of the propagator, depending on the lo-
cal VSS interaction, finally contributes as a conventional
local ”weighting” factor. Hence, by taking into account
the necessary normalization factors, the whole imaginary
time Green’s function reads:

G (R′,R,∆τ) = e−[VSS(R)−E0−Nλ2]∆τ

×e−iλ
∑N

i=1
(∆ry

i
σx
i −∆rxi σ

y
i
)G0 (R

′,R,∆τ) . (7)

Since the SO propagator acts on the particle spin through
the Pauli matrices σx and σy, the spin variables are mod-
ified along the simulation, and must be considered as dy-
namic variables. As in standard Diffusion Monte Carlo,
we make use of a variational ansatz to serve as an impor-
tance function guiding the sampling process. Due to the
presence of spin rotations, this ”trial” wave function ΨT

will generally be complex. This adds a further compli-
cation with respect to the standard QMC treatment of
many fermion systems. In particular, it is not possible to
use the standard fixed-node algorithm to circumvent the
so-called sign problem, and enforce the antisymmetry of
the ground state. We need instead to use a fixed-phase
constraint[53–55]. In order to minimize finite size errors
and achieve a smoother variability of the energy with
respect to polarization, twist-averaged boundary condi-
tions were implemented, according to the prescriptions of
Ceperley and coworkers[56]. Using these developments,
the DMC method then typically provides very accurate
energies and expectation values of operators which com-
mute with the Hamiltonian. In the present case, however,
given the non commutativity of σz with VSO, a particular
attention should be given to the evaluation of the system
polarization. In fact, since the DMC method samples
the mixed distribution ΨTΨDMC (not Ψ2

DMC), in the
case of a non-commuting quantity O, a straightforward
DMC estimate would lead to the so-called mixed esti-
mator 〈O〉mix = 〈ΨT |O|ΨDMC〉. It is thus common to
correct the mixed estimator by partial elimination of the
bias at the second order of the difference between the
trial and exact eigenstates as given by the equation[57]

〈O〉corr−mix = 2〈O〉mix − 〈O〉V MC +O(ΨT −Ψexact)
2 .
(8)

The first term on the right hand side of the equation
above represents the DMC mixed estimate of the expec-
tation value of the operator O, while the second term is
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the variational Monte Carlo (VMC) estimate. This dif-
ference therefore reduces the bias from the importance
function to the second order in the difference between
the importance and the ground state wave functions. For
this reason, Eq.(8) will be addressed in the following as
corrected mixed estimator.
As already mentioned, in presence of SO interaction

the fermion spin cannot be fixed and must be explicitly
treated as a variable in the stochastic dynamics, both for
VMC and DMC calculations. In particular, we will apply
here a recently developed algorithm[58], which is based
on the integration of continuous auxiliary variables.

B. Fermion-Fermion interaction

As concerns the detailed realization of two-body finite-
range interaction potential, this is modeled in the present
work as a soft sphere potential acting between couples of
Fermions having opposite spins:

VSS =
∑

i>j

vss(|ri − rj|)
1− σ̄i · σ̄j

2
. (9)

Here σ̄i, indicates the spin matrices relative to the i-
th particle, and can be expressed as (σx, σy , σz)i, while
vss(r) is defined as

vss(r) = V0Θ(R0 − r) , (10)

where r is positive by definition. The Heaviside step
function Θ(R0 − r) limits the range of the potential to
R0, while the potential height V0 is set in a way to recover
the correct value of a, according to the relation

a = R0

[

1− tghκR0

κR0

]

, (11)

where κ2 = mV0. Experimentally, the scattering length
can be accurately controlled, for instance by exploiting
the Feshbach resonance mechanism[59, 60].

II. WAVE FUNCTION

Since the present work is concerned with the simulation
of interacting fermions, the quality of of the trial wave
function ΨT becomes especially important. In fact, the
phase that will be enforced by the fixed phase DMC algo-
rithm will depend on the choice of ΨT , influencing thus
the accuracy of the final results. In this regard, previous
work on the two-dimensional electron gas[52] pointed out
the need to explicitly account for the non trivial spin-
dependence induced by VSO in the independent particle
states. This problem was solved by making use of single
particle spinors which diagonalize the Hamiltonian of the
non-interacting fermions T + VSO:

φ(r)k± = eik·rχk± . (12)

where

χk±(r) =
1√
2

(±ky+ikx

k

1

)

. (13)

The above spinors already account for a good amount
of the non-locality induced by the SO coupling. How-
ever, the expectation of σz on any of these single-particle
states is identically zero. In order to retain information
on the non-local spin structure and simultaneously allow
for non-zero polarization, we make use of the following
spinorial form [50]

χk±,h(r) = c±,h(k)
1√
2

( λ(ky+ikx)

h±
√
h2+λ2k2

1

)

, (14)

where c±,h(k) is a normalization factor defined through
the condition

c2±,h(k)

(

λ2k2

(h2 ±
√
h2 + λ2k2)2

+ 1

)

= 1 . (15)

This functional form, depending on the Rashba SO
strength λ and on a second parameter h, can be inferred
from the eigenvectors of a single-particle Hamiltonian in-
cluding VSO and an external potential of the form hσz.
However, in the physical case considered, the external
field is an electric-like field, parameterized by the SO cou-
pling strength λ. The quantity h instead is simply a vari-
ational parameter which modifies the spinorial structure
of the wave function, interpolating between the Rashba
eigenstates (h = 0) and the eigenstates of σz (h → ∞).
Making use of the above single particle orbitals, a sin-

gle Slater determinant is constructed. No explicit two-
body correlation (e.g in form of a Jastrow factor) is thus
included in the trial wave function. This choice might
imply a somewhat slower convergence of the energy with
respect to the number of steps, but it does not interfere
with the quality of the phase structure of the function,
which is the only feature affecting the accuracy of the
projected energy.

III. RESULTS

A. QMC Results

The present quantum Monte Carlo simulations were
performed with a reference population of 300 walkers
and a time step of 0.002 (units are indicated below),
making use of 66 particles confined in a periodically re-
peated cubic box. Convergence with respect to the time
step and the number of walkers was achieved within
the statistical error. The non-interacting Fermi momen-
tum kF used throughout the manuscript is defined as
kF = (3π2n)1/3, where n is the total density of the
system. Energies are expressed in units of EP , namely
the energy of the fully spin-polarized system, defined as
(6π2n)5/3/(20π2m). The repulsive potential range R0



4

was set to 2.8 the scattering length, and V0 was accord-
ingly computed. The Rashba coupling λ is given in units
of ~

ml , where m is the atomic mass and l is a length

scale defined as ( 3
4πn )

1/3. Three different values of λ
were considered, namely λ = 0 (absence of SO interac-
tion), λ = 0.15 and λ = 0.30. The total DMC energy
was minimized with respect to the single-particle states
occupation, and with respect to the parameter h, opti-
mizing the trial wave function at every given value of the
scattering length and of the SO coupling.

FIG. 1: Optimal h as a function of the scattering length at
λ = 0.3.

Calculations confirm the importance of a variational
optimization of the spinorial structure of the trial wave
function. Fig. 1 shows the optimal h value at finite λ.
It varies as a function of the scattering length, increas-
ing with the strength of the 2-body repulsion, with a
sudden jump that corresponds to the polarization tran-
sition. This behavior is consistent with the mean field
picture of Ref.[50], where non-zero polarization is devel-
oped in correspondence of a sudden increase of the vari-
ational parameter h. In fact, a finite value of h indicates
a tendency of the system to choose a preferred spin ori-
entation, inducing a non-zero polarization in the system.

The z spin polarization P is calculated using the cor-

rected mixed estimate of the operator

P =
1

N

N
∑

i

σi
z . (16)

The computed values confirm the presence of spin polar-
ization at large values of the scattering length.

FIG. 2: Polarization of Fermi gas along the z direction as
a function of the two-body interaction scattering length a.
Results are given in absence of SO interaction (λ = 0) and for
two different Rashba interaction strengths (λ = 0.15, 0.30).

Fig.2 shows that in absence of SO interaction the crit-
ical point is located near kFac ∼ 0.85, in good agree-
ment with previous QMC predictions for soft sphere con-
tact interaction[5], and with a second order approximate
estimate[3].

While a mean field description predicts a discontinuity
of the P derivative with respect to kFa,[5] we observe
that correlation effects slightly modify the relation be-
tween P and kF a, making the transition less steep at
criticality. Due to the statistical error, however, it is not
yet possible to establish whether correlation terms mod-
ify the nature of the Stoner instability, possibly turning
it into a higher order transition.

Notably, when considering finite Rashba couplings, the
onset of the polarization transition is shifted to larger
kFa. Moreover, while at λ = 0 the present results are
compatible with complete polarization at kFa ∼ 1.1,
P < 1 is found also in this regime for finite SO couplings.
Hence, the overall effect of the Rashba interaction is that
of reducing the spin polarization of the system. This fact
can be understood in terms of the spin precession induced
by the SO coupling. Since the Rashba coupling lowers
the single particle energies, a competition with the two-
body interaction energy will take place: in fact the spin
alignment unavoidably alters the non-local spin texture,
contrasting the overall effect of the SO coupling. Observ-
ing Fig.2, however, the polarization at finite λ tends to
be closer and closer to 1 at large scattering lengths. In
fact, for kF a → ∞ full polarization is expected, given
the overwhelming effects of the two-body repulsion. Re-
markably, qualitatively analogous results were found also
in the two-dimensional gas[50], making use of a varia-
tional procedure based on single particle spinors of the
form of Eq. (14). We also emphasize that the polariza-
tion reduction found above criticality at finite λ might
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open the way to a fine tuning of the degree of polariza-
tion by means of an externally controlled SOC, therefore
despite its apparent complexity this task can be actually
achieved through a simple control of the scattering length
at the critical point.

In order to better understand the polarization transi-
tion and its relation to the spinorial structure of the single
particle wave functions, in Fig.3 we plot the DMC energy
as a function of the variational parameter h at different
values of the two-body interaction and fixed λ. At low
scattering lengths a single minimum at h = 0 is present,
while for increasing the two-body repulsion a local mini-
mum appears at higher h. Beyond criticality, the second
minimum becomes the global minimum, until the mini-
mum at h = 0 disappears. Interestingly, at large values
of h, the system tends to fully polarize, and the energy is
expected to gradually approach the non-interacting limit
EP .

FIG. 3: DMC energies as a function of h at different values
of the two body interaction strength. The Rashba interaction
coupling is fixed here to λ = 0.3.

In Fig.4 we report the ground state energy as a func-
tion of the scattering length for the selected λ values. As
in the single-particle picture, the SO coupling causes a
net decrease of the energy, which becomes more evident
at larger λ. While in absence of SO coupling the DMC re-
sults rapidly approach the fully polarized non-interacting
limit EP , at finite λ a residual SO energy effect persists.
As visible from Fig.4, however, the energy difference be-
tween the data sets in presence and in absence of Rashba
coupling clearly diminishes at large scattering lengths,
a behavior which is consistent with the aforementioned
tendency of the system to develop full polarization at
kFa → ∞. In fact, also in this case, one expects that
at large a the energy will approach EP : at full polar-
ization the non local Rashba spin texture is lost, and a
single particle picture clearly suggests that the expecta-
tion value of VSO vanishes if all spins are aligned along

z.

FIG. 4: DMC energies (in units of EP ) as a function of the
scattering length at different Rashba coupling strengths (λ =
0, 0.15, 0.30).

For the sake of completeness we remark that the
adopted trial wave function is well suited for the descrip-
tion of z-polarization. A detailed investigation of the
possible x− y polarization effects, instead, would require
a different form of the single-particle spinors. Clearly, in-
plane polarization components would deserve a detailed
analysis, which is beyond the scope of the present article.
As a comment, however, the development of polarization
in the x − y plane would require a substantial modifica-
tion of the Fermi surface. In particular, according to a
mean-field description, a non symmetric and anisotropic
occupation of single particle states turns out to be nec-
essary. Due to the related kinetic energy increase, such
polarization effects are not expected to be favored with
respect to the z component considered here. We also
point out that different SO couplings may have different
effects on the polarization properties of the system. In
the case of equal Rashba and Dresselhaus couplings, for
instance, the single-particle spinorial structure is inde-
pendent on momentum. Hence, no major difference with
respect to the standard Stoner model is expected, at vari-
ance with the pure Rashba coupling considered here.

IV. CONCLUSIONS

We performed QMC calculations of the spin and en-
ergetic properties of the 3D repulsive Fermi gas in the
presence of Rashba SO coupling. Interestingly, correla-
tion effects seem to induce a smoother polarization tran-
sition at the critical point. The inclusion of Rashba SO
coupling causes an overall depolarization of the system,
and shifts the critical point to slightly higher values of the
scattering length. At the same time, partially polarized
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states are developed well beyond criticality in presence
of Rashba coupling, opening the way to a fine tuning
of the system polarization. The energy is also visibly
reduced by the SO coupling, however, the asymptotic
behavior of the QMC data suggest that at infinite scat-
tering lengths the two-body repulsion should prevail over
the non-local structure induced by the SO coupling, re-
covering the fully polarized non-interacting limit.
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