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We determine the ground-state energy and Tan’s contact of attractively interacting few-fermion
systems in a one-dimensional harmonic trap, for a range of couplings and particle numbers. Comple-
menting those results, we show the corresponding density profiles. The calculations were performed
with a new lattice Monte Carlo approach based on a non-uniform discretization of space, defined
via Gauss-Hermite quadrature points and weights. This particular coordinate basis is natural for
systems in harmonic traps, and can be generalized to traps of other shapes. In all cases, it yields
a position-dependent coupling and a corresponding non-uniform Hubbard-Stratonovich transforma-
tion. The resulting path integral is performed with hybrid Monte Carlo as a proof of principle for
calculations at finite temperature and in higher dimensions. We present results for N = 4, ..., 20
particles (although the method can be extended beyond that) to cover the range from few- to many-
particle systems. Our implementation of this method is the first lattice calculation of its kind. It
is also exact up to statistical and systematic uncertainties, which we account for – and thus also
represents the first ab initio calculation of this system, providing a benchmark for other methods
and a prediction for ultracold-atom experiments.

PACS numbers: 03.75.Fk, 67.85.Lm, 74.20.Fg

I. INTRODUCTION

One-dimensional (1D) quantum systems in external
potentials are among the small set of problems solved by
every physics undergraduate student, in the absence of
interactions. As soon as interactions are turned on, how-
ever, these problems quickly become intractable and one
must generally resort to numerical methods even if the in-
teraction is a simple Dirac delta function. This is true, in
fact, in all spatial dimensions; but whereas the pedagog-
ical 1D case has the advantage of being exactly solvable
in many regimes (as long as translation invariance is not
broken by the presence of an external potential), the 1D
quantum mechanics of trapped, interacting Fermi gases
resides well within the realm of computational physics.
The massive availability of computers today thus make it
feasible to produce accurate benchmarks for these simple-
yet-elusive many-body problems.

Such benchmarks are not only critical for our general
understanding and the development of computational
methods, but they also constitute predictions for experi-
ments with ultracold atoms [1, 2]. Indeed, as the experi-
mentalist’s ability to manipulate atomic clouds continues
to increase, the realization of quasi-1D atomic gases is
becoming more common. Short-range interatomic inter-
actions, realized experimentally via broad Feshbach res-
onances, can moreover be tuned, inducing correlations
whose high-momentum/frequency tails are governed by
Tan’s contact [3]. The finite-temperature thermodynam-
ics, on the other hand, is given by universal equations
of state, whose presumably simple structure has so far
remained largely unknown.

Interest in 1D systems can be found in nuclear physics
as well: 1D model calculations such as those in Refs. [4,

5], which resemble nuclear systems, have been performed
routinely for many years, both for insight into the physics
as well as to develop new many-body methods [6].

In this work, we make a prediction for ultracold-atom
experiments in highly constrained traps and provide a
benchmark for few- and many-body methods. Specifi-
cally, we compute the ground-state energy, contact, and
density profile of N = 4, . . . , 20 unpolarized, attractively
interacting spin-1/2 fermions in a one-dimensional har-
monic trap, covering a range of couplings across the 1D
counterpart of the BEC-BCS crossover.

To this end, we have implemented a new ab initio quan-
tum Monte Carlo approach based on a judiciously cho-
sen non-uniform spatial lattice. Since our system is in
a harmonic potential, the lattice is the one defined by
the Gauss-Hermite integration points and weights of the
gaussian quadrature method. This allows us to enforce
the correct boundary conditions and avoid the appear-
ance of spurious copies of the system across boundaries,
which would show up with periodic boundary conditions.
Further details on our approach are provided below.

Previous approaches to this problem have considered
the homogeneous system, which is solvable via the Bethe
ansatz (see Ref. [7] for a recent and thorough review on
that topic), combined with the local density approxi-
mation (see e.g. [8]), and exact diagonalization analyt-
ically for 2 and 3 particles [9], as well as numerically
for larger systems [10]. Previous work, also using Monte
Carlo methods but focusing on large particle number and
polarized systems, appeared in Ref. [11]. Our work com-
plements those results by providing ab initio benchmarks
and predictions for the few- to many-body regimes, which
have been realized experimentally [12]. Although much
is known about these systems, the transition from few- to
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many-body regimes, for all the quantities we study, has
not been benchmarked before for unpolarized systems.

II. HAMILTONIAN AND MANY-BODY
METHOD

We focus on a one-dimensional system of two-species,
attractively interacting fermions, whose Hamiltonian is

Ĥ = T̂ + V̂ext + V̂int, (1)

where we take T̂ to be the kinetic energy operator corre-
sponding to a non-relativistic dispersion relation E =
p2/2m; V̂ext to be the external harmonic trap of fre-

quency ω; and V̂int the two-body attractive zero-range
interaction characterized by a bare coupling g (as in the
Gaudin-Yang model [13]), further specified below.

To treat this many-body problem, we place it in a dis-
cretized spatial line of Nx points (further details on the
discretization given below), and approximate the Boltz-
mann weight via a symmetric Suzuki-Trotter decompo-
sition:

e−τĤ = e−τ/2(T̂+V̂ext)e−τV̂inte−τ/2(T̂+V̂ext) +O(τ3), (2)

for some small temporal discretization parameter τ
(which below we take to be τ = 0.05 in lattice units).
This discretization of imaginary time results in a tempo-
ral lattice of extent Nτ , which we also refer to below in
terms of β = τNτ and in dimensionless form as βω. This
is followed by a Hubbard-Stratonovich (HS) transforma-
tion [14] of the above interaction factor, as is common
in auxiliary-field Monte Carlo calculations (see e.g. [15]).
With the resulting path-integral form for the interacting
Boltzmann weight, we use the projection Monte Carlo
approach to obtain ground-state properties of the sys-
tem. As a trial wavefunction, we use a Slater determinant
of harmonic oscillator (HO) single-particle orbitals. Al-
though this choice is not necessarily best (e.g., one could
account for pairing correlations in the form of the wave-
function, etc.), it is effective enough for our purposes, as
shown below.

Because we are considering an external harmonic trap,
with the Suzuki-Trotter factorization shown above, it is
useful to define an HO basis and combine T̂ and V̂ext,
such that the sum

T̂ + V̂ext =
∑
k

~ωkn̂k, (3)

where ~ωk = ~ω(k + 1/2), has a diagonal form in the
HO basis. Here, the operator n̂k = n̂↑,k + n̂↓,k counts
the number of HO excitations in level k of both spins,
as usual. Throughout this work, we use units such that
~ = m = kB = ω = 1, where m is the mass of the
fermions and ω is the frequency of the harmonic trap.
In conventional Monte Carlo calculations, in the absence
of an external potential, it is common to switch between
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Figure 1. (color online) Abscissas and weights for Gauss-
Hermite integration with Nx = 10, 20, 40, 80, 160 points. The
x axis is scaled by 1/

√
Nx for display purposes. Note g(xi) =

g wie
x2
i is the position dependent coupling constant (see main

text).

coordinate and momentum space to take advantage of
Fourier acceleration techniques via fast Fourier trans-
form (FFT) algorithms [16]. In those cases, the Suzuki-
Trotter decomposition separates kinetic- and interaction-
energy operators. In the present approach, instead, we
switch between coordinate and HO space, implementing
the imaginary-time evolution by applying the T̂ + V̂ext
piece in HO space, and the V̂int piece in coordinate space.
Conventional Fourier acceleration techniques cease to be
useful in this approach; nevertheless, analogous “non-
uniform” algorithms (NFFT) [17] do exist which can
be included in future implementations of this method.
Without acceleration methods, the computational cost
of the required matrix-vector operations scales as O(V 2),
where V is the number of lattice points (i.e., V = Nd

x in
d dimensions). When applicable, FFT turns this into
O(V lnV ). On the other hand, NFFT algorithms per-
form those calculations in O(V ln2 V ) operations. With
current hardware, this acceleration is not essential for 1D
systems, but it is crucial in 3D.

One of the most efficient ways to represent single-
particle HO wavefunctions in coordinate space, which
is needed in our approach, is to take the spatial mesh
to consist of Nx Gauss-Hermite (GH) integration points
(with the associated weights), rather than the usual uni-
form lattice and the corresponding plane waves. The GH
lattice guarantees that orthonormality of the wavefunc-
tions is preserved (see below). On the GH lattice, the
integral over a given function f(x) is approximated by

∫
dx e−x

2

f(x) '
Nx∑
i=1

wif(xi), (4)

where the abscissas xi are given by the roots of the Her-
mite polynomial of degree Nx, and wi are the (positive)
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weights (see e.g. Ref. [18]) given by

wi =
1

HNx−1(xi)H
′
Nx

(xi)
, (5)

where Hn(x) is the Hermite polynomial of order n.

The 2Nx variables {xi, wi} take the above form when
chosen such that the integral in Eq. (4) is represented
exactly by the sum on the right and when f(x) is a poly-
nomial of degree ≤ 2Nx−1. This choice ensures that the
Hermite polynomials form an (exactly) orthogonal set
when evaluated on the {xi} lattice (relative to a scalar
product defined with the wi weights). For this property
to hold with the same accuracy (i.e., machine precision)
on a uniform lattice, a larger number of points would
be needed. Thus, our choice preserves both the orthog-
onality and the dimensionality of the coordinate repre-
sentation as the spatial dual of an HO basis of size Nx,
which therefore allows for a precise representation of HO
wavefunctions up to k = Nx − 1 in Eq. (3). It is worth
noting that the same approach can be pursued for other
types of external potentials; for instance, for a linear ex-
ternal potential v(x) ∝ |x| one would use the so-called
Airy functions, and associated points and weights.

For reference, in Fig. 1 we plot the GH abscissas and
weights for the main lattice sizes used in this work. The
physical meaning of these quantities is clarified below,
and precise numerical values for the Nx = 80 lattice are
given in Appendix B.

Using the GH lattice, the discretized interaction be-
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Figure 2. (color online) Tuning of the bare lattice coupling to
match the exact ground-state energy of the two-body prob-
lem. The solid line shows the exact solution for the to-
tal ground-state energy of the two-body problem (including
center-of-mass motion) in units of ~ω, from Ref. [22]. For that
line gcontinuum = 2aHO/a0. The data shown with error bars
represents our Monte Carlo results for different lattice sizes.
For the latter, the horizontal axis is the bare lattice coupling g
multiplied by 5/Nx, which yields the correct renormalization
factor at weak couplings.

comes

V̂int = − g
Nx∑
i=1

wie
x2
i n̂↑i n̂↓i, (6)

where n̂λi is the lattice density operator for spin λ at
position i. Thus, we obtain a position-dependent cou-

pling constant g(xi) = g wie
x2
i (see Fig. 1), which yields

a corresponding position-dependent HS transformation.
This kind of approach, i.e., defining a non-uniform

mesh and a concomitant position-dependent coupling
and HS transformation, has not been explored before,
to our knowledge. We find this to be a particularly well-
suited formulation for the zero-range interaction consid-
ered here, but it could be extended to other interactions
as well. In addition, this formulation bypasses the prob-
lem of dealing with periodic boundary conditions, which
are problematic for trapped systems as they introduce
spurious copies of the system across the boundaries. Al-
though efficiency is not an issue for 1D systems, we have
complemented our approach by implementing the hy-
brid Monte Carlo algorithm [19], which will be essen-
tial in higher-dimensional versions of this method. Since
we work with a non-uniform lattice, the lattice spac-
ing varies across the system. There are, nevertheless,
well-defined infrared and ultraviolet cutoffs – given by
EIR = (Nx − 1)−1~ω and EUV = (Nx − 1)~ω respec-
tively – determined by the maximum single-particle HO
state in our basis, (Nx − 1). The latter will vary with
the total number of lattice points, which therefore en-
ters in the coupling-constant renormalization. Thus, at
fixed physics, the bare coupling is sensitive to the value
of Nx. This connection between the ultraviolet and in-
frared cutoffs is natural for systems in harmonic traps
(see, e.g., Ref. [20]).
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Figure 3. (color online) Large-βω extrapolation example,
for the energy of 4 fermions on a Gauss-Hermite lattice of
Nx = 10 points. The unexpectedly large oscillations in the
data at large couplings exemplifies the numerical difficulties in
computing in that regime. The horizontal dashed lines show
fits to the asymptotic value.
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To tune the system to a specific physical point, deter-
mined by the 1D scattering length a0 in units of the HO
length scale aHO(which is 1 in our units), we computed
the ground-state energy of the two-body problem and
matched it to that of the continuum solution (see, e.g.,
Ref. [22]). The result of this renormalization procedure
is shown in Fig. 2. Once the coupling constant was de-
termined, and the two-body physics thus fixed, we varied
the particle number and computed other observables.
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Figure 4. (color online) Top panel: Ground-state energy per
particle for N =4, 6, 8, 10, 12, 16 and 20 particles (from bot-
tom to top) as a function of the coupling, for Nx =10,20,40,
and 80 lattice points. For 2 particles the exact solution is re-
produced, per our renormalization condition. Bottom panel:
Ground-state energy EGS in units of the non-interacting
ground-state energy EGS,0, as a function of the coupling (as
in the main plot), for N =4, 8, 12, 16, and 20 particles (from
bottom to top), showing the approach to the thermodynamic
limit N → ∞.

III. ANALYSIS AND RESULTS

A. Ground-state energy and contact

In this section we show our results for the ground-state
energy EGS and Tan’s contact C for a variety of particle
numbers and couplings. To find EGS we calculated the
βω-dependence of the expectation value of the Hamilto-
nian 〈Ĥ〉 and extrapolated to large βω (see discussion
under Eq. (2)), as shown in Fig. 3. In that figure, the
strongly coupled regime shows the well-known increas-
ingly noisy behavior at large imaginary times. This is
due to an “overlap problem” which affects calculations
in all areas of physics (see, e.g., Ref. [21]).

The Monte Carlo estimates of 〈Ĥ〉 were obtained by
averaging over 104 de-correlated samples of the auxiliary
field, which ensured a statistical uncertainty of order 1%.
Conventional extrapolations would include an exponen-
tial decay to a constant value, but for the systems studied
the exponential fall-off was sufficiently immediate to al-
low for a simple fit to a constant. Because 15-20 points
in total were used for the βω fits, the above statistical
effects translated into error bars in EGS on the order of
1% or better at weak coupling, but as large as 5% at the
strongest couplings.

In Fig. 4 we show our results for the ground-state en-
ergy per particle of 4, 6, 8, 10, 12, 16 and 20 particles, in
units of ~ω. As evident in the figure, systematic finite-
size effects are very small for 4, 6 and 8 particles, and only
become visible for the smallest lattice size (Nx = 10)
and for the highest particle numbers. The results oth-
erwise collapse to universal curves that depend only on
aHO/a0 and N , showing that the renormalization proce-
dure works as expected. The latter is a crucial property
that must hold if our prescription is valid, as it indicates
that we correctly approach the continuum limit. Further
analysis of the systematic effects for these results can be
found in Appendix A.

To calculate Tan’s contact, we use

C = 2
∂EGS

∂a0
= − 1

aHO

(
2aHO

a0

)2
∂EGS

∂(2aHO/a0)
, (7)

which is readily available from our data on the energy
per particle. Our results, for Nx = 80, are shown in
Fig. 5. For the couplings studied here, the contact per
particle shows essentially no dependence on the particle
number, which indicates that the thermodynamic limit is
reached quickly in these systems. This is an unexpected
result: in general one would expect a non-trivial variation
of observables as a function of the particle number (see,
e.g., Ref. [23], and contrast with Fig. 4). In contrast, as
shown in the bottom panel of Fig. 4, the energy does show
a clear dependence on particle number when displayed in
units of its non-interacting counterpart. The variation is
more pronounced at strong coupling.

As shown in Ref. [24], the ground-state energy and
the contact obey a virial theorem, which in terms of the
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Figure 5. (color online) Contact per particle for 2, 4, 6, 8,
10, 12, 16 and 20 particles, as a function of the coupling, for
Nx = 80. For 2 particles the exact solution is also shown as
a solid line.

energy and its derivative can be written as

〈Ĥ〉 − 2〈V̂ext〉 =
1

2a0

∂〈Ĥ〉
∂(1/a0)

, (8)

and is valid for the ground as well as excited states. In
Fig. 6 we show a test of this identity. As seen in that fig-
ure, the virial theorem is satisfied better at weak coupling
than at strong coupling. Although this violation is not
very large, there is room for improvement. In particular,
the way the contact was determined, based on a numeri-
cal derivative of EGS, introduces large uncertainties (not
displayed in the figure) that are likely responsible for the
differences observed.
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B. Density profiles

The above results are the basic quantities of interest
for these unpolarized one-dimensional systems. A many-
body theoretical approach, analytic or numerical, would
normally have easy access to these quantities and would
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therefore be able to compare with our benchmark. An-
other essential quantity of interest, both for theory as well
as experiment, is the density profile. This is naturally of
interest for experiments, given that they are performed
in optical traps that are approximately harmonic. How-
ever, profiles are also interesting for theory, because the
most common approach (from 1D to 3D, and for a va-
riety of physical situations) is to use the “poor-man’s”

version of density functional theory: combining a solu-
tion to the homogeneous problem with the local density
approximation. While the latter leads to qualitatively
useful results, it hardly provides a true benchmark, as it
suffers from uncontrolled uncertainties that are rarely ac-
counted for. In this section we attempt to overcome this
widespread theoretical limitation by presenting density
profiles for the same unpolarized Fermi systems studied
in the previous section. To our knowledge, no benchmark
for these profiles exists in the literature.

In all cases, the density profiles we show correspond to
the Nx = 80 lattice and are normalized to the number
of particle pairs N/2. It is worth mentioning that any
integration over these profiles is to be performed via the
Gauss-Hermite quadrature, which requires the Nx = 80
points and weights; we provide those in Table I in Ap-
pendix B.

In Fig. 7 we show the density profiles of unpolarized,
spin-1/2 fermions for several particle numbers N = 4, 8,
12, 16, 20. For reference, we provide the result for the
non-interacting case, followed by an intermediate cou-
pling, and a strong coupling regime. The data for the
density profiles shown in the figures appears in the Sup-
plemental Material. The attractive interaction clearly
tends to compress the density profile as a whole, enhanc-
ing the density oscillations. The above picture is seen
more clearly in Fig. 8, where we show the density pro-
files at fixed particle number and superimpose plots for
varying couplings.

It is interesting to note the relatively limited interac-
tion dependence of the density profiles, as well as the ap-
pearance of oscillations. It would appear that this behav-
ior is a function of the short range interaction, our con-
straint to 1D, and the fermionic character of the particles.
Qualitatively, particles of opposite spin tend to pair up
(note that the number of density oscillation peaks is one
half the number of particles) to minimize the energy, and
remain well separated in space from other pairs due to the
Pauli principle and the fact that they are constrained to
move in a line. This repulsive effect, along with the short
range nature of the interaction, minimizes the change in
the width of the density profiles with increasing coupling.
Alternatively, we can understand these effects from the
existence of a shell structure from eigenstates of the ex-
ternal potential. Indeed, we see the initial appearance
of a harmonic oscillator shell structure in the ground
state non-interacting case, where pairs of particles fill
the “shells” of the lowest energy basis states. Upon close
inspection of the density profiles, the period of these oscil-
lations, along with the overall width of the density distri-
bution, varies slowly with the coupling. As the attractive
interaction is turned on, contributions from higher waves
in the shell structure – beyond those present in the non-
interacting case – become increasingly important, leading
to a smaller period of oscillation (and compression of the
density profile).
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IV. SUMMARY AND CONCLUSIONS

We have presented a lattice Monte Carlo determina-
tion of the ground-state energy, Tan’s contact, and den-
sity profiles of 1D unpolarized spin-1/2 attractively in-
teracting fermions in a harmonic trap. We have studied
systems of up to N = 20 particles and performed our
calculations by implementing the hybrid Monte Carlo al-
gorithm on a non-uniform Gauss-Hermite lattice, using
lattice sizes ranging from Nx = 10 – 80. This discretiza-
tion is a natural basis for systems in an external HO po-
tential, and it yields a position-dependent coupling con-
stant and HS transform. To our knowledge, this is the
first attempt to implement such an algorithm. Note that
nothing prevents our approach from being generalized to
finite temperature and to other interactions, although it
would suffer from a sign problem in the same situations
as conventional uniform-lattice approaches. It can also
be generalized to other external potentials.

We have studied systems for a wide range of attrac-
tive couplings. While this paper was being written, we
became aware of the recent work of Ref. [25], which
proposes an exact solution to the strong-coupling limit
of the model studied here for arbitrary trapping poten-
tials. While we defer the calculation of stronger cou-
plings (which are stochastically more challenging and also
present larger systematic effects) to future work, it would
be instructive to analyze the approach to the exact solu-
tion in the aHO/a0 →∞ limit.

Despite the apparent simplicity of the system (only
one spatial dimension, only an attractive contact inter-
action), the ground-state energy and contact were pre-
viously unknown, or at least unpublished, and therefore
our results are both a benchmark and a prediction for
experiments. The same is true of the density profiles re-
ported here. It should be emphasized that our approach
to this problem is ab initio and exact, up to statistical
and systematic uncertainties, both of which we have ad-
dressed: the former by taking up to 104 de-correlated
samples, and the latter by computing for multiple lattice
sizes Nx = 10, 20, 40, 80.

This work paves the road for future, higher-
dimensional studies that will combine non-uniform lat-
tices with non-uniform fast-Fourier transforms as accel-
eration algorithms [16, 17]. As mentioned above, the
latter would enable O(V ln2 V ) scaling of matrix-vector
operations, which is essential for practical calculations
in 3D. To our knowledge, NFFT acceleration has never
been used in quantum Monte Carlo.
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Appendix A: Further analysis of systematic effects

In this section we elaborate on some of the system-
atic effects in our calculations, namely the dependence of
the ground-state energy on Nx and the temporal lattice
spacing τ .

In Fig. 9 we show the Nx dependence of the ground-
state energy per particle at the extremes of coupling and
particle number studied here. The lattice-size depen-
dence displayed by the data is among the most prominent
in the whole energy dataset of Fig. 4. A naive linear ex-
trapolation would yield an Nx dependence on the order
of 10% for this quantity, but larger lattices are required
for these strongly coupled systems to clearly determine
whether such a naive extrapolation is warranted. Never-
theless, this represents an approximate upper bound on
the systematic error of the dataset. The majority of data

 2

 2.5

 3

 3.5

 4

 0  0.01  0.02  0.03  0.04  0.05  0.06

E
G

S
/(

ω
 N

)

1/Nx

N=20; 2aH0/a0=2.0
N=16; 2aH0/a0=2.0
N=12; 2aH0/a0=2.0

 0.5

 1

 1.5

 2

 2.5

 3

 0  0.01  0.02  0.03  0.04  0.05  0.06

E
G

S
/(

ω
 N

)

1/Nx

N=20; 2aH0/a0=3.3
N=16; 2aH0/a0=3.3
N=12; 2aH0/a0=3.3

Figure 9. (color online) Lattice-size dependence of the
ground-state energy of 12, 16, and 20 unpolarized spin-1/2
fermions, for Nx = 20, 40, 80. Top panel: 2aHO/a0 = 2.0.
Bottom panel: 2aHO/a0 = 3.3. The error bars are purely sta-
tistical and show an estimated 3% error for the specific data
points shown. Note the change of scale in the energy axes
relative to that of the top panel of Fig. 4: the present plots
are a zoom-in by a factor of ' 9.
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Figure 10. (color online) Temporal lattice spacing (τ) de-
pendence of the ground-state energy of unpolarized spin-1/2
fermions on a Nx = 10 non-uniform lattice, for several values
of the coupling 2aHO/a0, and for several particle numbers.
The smoothness of the curves upon reducing τ by a factor of
2 shows that these effects are extremely small (see text for
further details).

points reflect weaker coupling and smaller particle num-
ber which have much smaller systematic effects, as can
be seen in Fig. 4.

Figure 10 shows the imaginary lattice spacing depen-
dence of the energy per particle for N = 4, 8, 12 fermions.
The smoothness of the resulting curves, at fixed parti-
cle number, is fundamentally due to the success of our
renormalization prescription: for each value of τ we tune
the coupling g to the physics of the two-body problem.
That the energies for higher particle numbers fall on the
same curve implies that many-body effects induced by a
finite temporal lattice spacing are negligible on the scale
studied here. Based on this plot, we may conservatively
estimate these effects as being on the order of less than
3%. Evidently, the effects due to finite Nx studied above
are much larger than this, as they are clearly discernible
on essentially the same scale (see Fig. 4), at least in the
(near) worst-case scenario explained above.

Appendix B: Quadrature points and weights

In this section we quote the Nx = 80 quadrature points
and weights, shown in Table I, which should be used with
the density profiles shown above when integrating.

Table I. Gauss-Hermite quadrature points and weights for
Nx = 80, for positive x. The weights are symmetric around
x = 0.

i xi wie
x2
i

1 0.1237968 0.2476016
2 0.3714377 0.2476959
3 0.6192203 0.2478851
4 0.8672399 0.2481701
5 1.1155929 0.2485522
6 1.3643774 0.2490336
7 1.6136939 0.2496165
8 1.8636453 0.2503041
9 2.1143382 0.2511001
10 2.3658831 0.2520089
11 2.6183953 0.2530355
12 2.8719954 0.2541860
13 3.1268109 0.2554673
14 3.3829764 0.2568875
15 3.6406352 0.2584558
16 3.8999409 0.2601830
17 4.1610583 0.2620815
18 4.4241658 0.2641659
19 4.6894576 0.2664530
20 4.9571459 0.2689625
21 5.2274644 0.2717176
22 5.5006722 0.2747459
23 5.7770582 0.2780801
24 6.0569475 0.2817596
25 6.3407083 0.2858321
26 6.6287621 0.2903562
27 6.9215954 0.2954047
28 7.2197765 0.3010690
29 7.5239773 0.3074663
30 7.8350037 0.3147492
31 8.1538382 0.3231218
32 8.4817022 0.3328630
33 8.8201501 0.3443682
34 9.1712175 0.3582202
35 9.5376679 0.3753231
36 9.9234351 0.3971781
37 10.3344910 0.4265210
38 10.7807965 0.4690695
39 11.2816942 0.5397999
40 11.8878636 0.7010227
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