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We study the phase diagram of mass- and spin-imbalanced unitary Fermi gases, in search for
the emergence of spatially inhomogeneous phases. To account for fluctuation effects beyond the
mean-field approximation, we employ renormalization group techniques. We thus obtain estimates
for critical values of the temperature, mass and spin imbalance, above which the system is in the
normal phase. In the unpolarized, equal-mass limit, our result for the critical temperature is in
accordance with state-of-the-art Monte Carlo calculations. In addition, we estimate the location
of regions in the phase diagram where inhomogeneous phases are likely to exist. We show that
an intriguing relation exists between the general structure of the many-body phase diagram and
the binding energies of the underlying two-body bound-state problem, which further supports our
findings. Our results suggest that inhomogeneous condensates form for mass imbalances m↓/m↑ & 3.
The extent of the inhomogeneous phase in parameter space increases with increasing mass imbalance.

I. INTRODUCTION

The past 15 years have witnessed tremendous advances
in the experimental control and exploration of ultracold
atomic Fermi gases. Since the first realization of a Bose-
Einstein-condensate of paired fermions [1], experimental
techniques have been further developed and now allow
for detailed studies of many-body phenomena, controlled
variations in temperature and polarization [2], studies of
Bose-Fermi mixtures [3], optical lattices [4], as well as
precise determinations of the equation of state [5, 6], see
Refs. [7–9] for reviews. It has thus become possible to
test theoretical descriptions of long-known effects such as
Bardeen-Cooper-Schrieffer (BCS) superfluidity or Bose-
Einstein-condensation (BEC) with high precision. More-
over, many new experimental studies of many-body phe-
nomena with mixtures of a variety of different fermion
species (such as 6Li, 40K, 161Dy, 163Dy, and 167Er) are
within reach in the near future (see e.g. Ref. [10–12]),
giving us an unprecedented opportunity to better our
understanding of mass imbalances in strongly coupled
Fermi gases and push our understanding of more ex-
otic phenomena such as the emergence of inhomogeneous
phases [13, 14] to a whole new level.

In experiments, the particle density n and s-wave scat-
tering length as are control parameters. In a sufficiently
dilute gas, they represent the only scales of the systems,
since the effective range re of the interaction can safely
be neglected. Experimentally, as can be tuned at will by
means of so-called magnetic Feshbach resonances. This
opens up the possibility to explore many-body phenom-
ena over a wide range of interaction strengths. Of par-
ticular interest is the strongly coupled “unitary” limit,
where as →∞. In this regime, a non-perturbative treat-
ment is inevitable due to the absence of a small expansion
parameter [15].

Systems with equal populations and particle masses for
the different fermion species, i.e. spin- and mass-balanced
unitary Fermi gases, are well under control by now from
both an experimental and theoretical point of view. For

example, lattice Monte Carlo studies of the equation of
state and the critical temperature have reached a quan-
titative level [16] and show good agreement with exper-
imental data [17, 18]. In fact, the agreement between
the most accurate numerical results presently available
and the experimental data is excellent, see Refs. [6, 19].
For spin- and mass-imbalanced Fermi gases, which are
at the heart of this work, less is known beyond the
mean-field approximation, although great efforts have
been made in recent years to study mass-imbalanced (see,
e.g., Refs. [20–26]) as well as spin-imbalanced (see, e.g.
Refs. [27–34]) unitary Fermi gases (see, e.g., Refs. [35, 36]
for reviews). The difficulties encountered in studies of im-
balanced systems beyond the mean-field limit are many.
For example, ab initio Monte Carlo studies are severely
hampered by a so-called sign problem if spin and/or mass
imbalances are introduced [37, 38]. Techniques to sur-
mount this problem have been developed [39], but have
so far focused on the zero-temperature equation of state
of mass-imbalanced unitary Fermi gases [40], and their
use is very recent.

The reasons for the interest in imbalanced systems are
manifold as well. For example, the Fermi surfaces of the
different species are mismatched in this case, possibly
giving rise to exotic phenomena such as inhomogeneous
phases of the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO)
type [13, 14] or Sarma [41] phases. For one-dimensional
spin-imbalanced Fermi gases, where inhomogeneous pair-
ing is expected to exist for a wide range in parameter
space [42], observation of an FFLO phase has indeed
been claimed [43]. In three dimensions, however, the
inhomogeneous phase is expected to occupy only a thin
layer of parameter space between the homogeneous su-
perfluid and the normal fluid in parameter space, if at
all [44–46]. This renders the experimental detection of
such phases quite challenging. The utilization of mass-
imbalanced mixtures is expected to alleviate this situ-
ation somewhat due to the larger parameter space for
inhomogeneous pairing in this case [47].

Most of the studies, especially of FFLO phases, have
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so far relied on the mean-field approximation. However,
even in three dimensions, these studies yield at best qual-
itative insights into the phase structure of the system. In
fact, even in the balanced case it is known that the crit-
ical temperature (measured in units of the chemical po-
tential) is overestimated by a factor ∼ 1.6 in mean-field
studies. This can be traced back to the omission of order-
parameter fluctuations. However, the fate of FFLO-type
phases upon inclusion of such fluctuation effects remains
largely an open question.

In this work, we analyze the phase structure of a uni-
tary Fermi gas with spin and mass imbalance at finite
temperature. For this purpose, we employ functional
renormalization group (fRG) techniques, which allow us
to include order-parameter fluctuations. Results from
previous studies for the superfluid critical temperature
of the mass- and spin-imbalanced case are in good agree-
ment with experimental data and ab initio MC stud-
ies [34]. Here, we extend the theoretical framework de-
veloped in earlier RG works [34, 48–51] in order to inves-
tigate mass- and spin-imbalanced systems. Although our
setup does not yet allow us to explicitly resolve inhomoge-
neous phases, strong hints of their existence beyond the
mean-field approximation can already be detected and
we discuss them here.

The rest of the paper is organized as follows. In
Sec. II we introduce the microscopic model and define
the scales and dimensionless parameters. Since the iden-
tification of inhomogeneous phases is challenging, we be-
gin our discussion of the phase structure of mass- and
spin-imbalanced Fermi gases by revisiting the two-body
bound-state problem in Sec. III. In a study of one-
dimensional gases [42], it was found that the two-body
problem in the presence of Fermi spheres provides useful
information about the many-body problem. In fact, it
was then found that the phase structure is in approxi-
mate quantitative agreement with the associated many-
body study in the mean-field approximation. In Sec. IV
we present the mean-field phase diagram. Corrections
beyond the mean-field approximation are discussed in
Sect. V and the phase diagram resulting from those cor-
rections is shown.

II. MICROSCOPIC MODEL

Microscopically, the two-component spin- and mass-
imbalanced Fermi gas in the vicinity of a broad Feshbach
resonance is described by the following action:

SF[{ψσ}] =

∫
τ,~x

 ∑
σ=↑,↓

ψ∗σ

(
∂τ −

∇2

2mσ
− µσ

)
ψσ

+ gψ∗↑ψ↑ψ
∗
↓ψ↓

]
.

(1)

Here,
∫
τ,~x

=
∫
dτ
∫
d3x. The two fermion species are rep-

resented by the Grassmann-valued fields ψσ that depend

on spatial coordinates ~x and compact Euclidean time τ .
A contact interaction of strength g couples both species.
Its strength can be tuned through its dependence on the
s-wave scattering length as:

g =
4πΛ

a−1
s − cregΛ

, (2)

where Λ is the ultraviolet cutoff and creg is a constant
that depends on the regularization scheme.

It is convenient to trade in the two fermion masses
for an imbalance parameter m̄ using the following defini-
tions:

m+ ≡
4m↑m↓
m↑ +m↓

, m− ≡
4m↑m↓
m↓ −m↑

, m̄ ≡ m−
m+

. (3)

In this work we set m+ = 1 which corresponds to the
choice m↑,↓ = 1/2 in the mass-balanced case. Note that
the mass imbalance parameter m̄ is thus normalized such
that 0 ≤ m̄ < 1. The chemical potentials of the fermion
species can be expressed in terms of an average chemical
potential µ and the (normalized) spin imbalance param-
eter or so-called Zeeman field h̄ via

µ =
µ↑ + µ↓

2
, h =

µ↑ − µ↓
2

, h̄ ≡ h

µ
. (4)

It is also convenient to define a dimensionless tempera-
ture parameter

T̄ ≡ T

µ
. (5)

Finally, we choose units such that ~ = kB = 1.
The action SF defined above features a global U(1)

symmetry associated with particle number conserva-
tion. This symmetry is spontaneously broken by a non-
vanishing field expectation value 〈ψ↑ψ↓〉 6= 0 in the su-
perfluid phase. The main goal of the present work is
to identify the region of parameter space where 〈ψ↑ψ↓〉,
as a function of (h̄, m̄, T̄ ), becomes nonzero and possibly
position-dependent, indicating the breakdown of transla-
tional invariance.

III. TWO-BODY BOUND STATES

It is particularly challenging to identify those regimes
in the phase diagram where the U(1) symmetry and
translational invariance are broken simultaneously. For
example, it may be reasonable to assume that the order
parameter 〈ψ↑ψ↓〉(~x) is a periodic function. However,
neither its precise functional form nor the length scale
associated with its period (i.e. the characteristic mo-

mentum ~Q associated with the inhomogeneity in Fourier
space) are known a priori. Therefore, it is worthwhile to
perform preparatory analyses to help identify domains in
parameter space where U(1) symmetry breaking may ap-
pear in the full many-body problem and, in particular,
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where such breaking is accompanied by a spontaneous
breakdown of translation invariance.

The physical interpretation of a finite order parameter
〈ψ↑ψ↓〉 6= 0 is a condensate of paired fermions. Naturally,
those (bosonic) pairs have to be formed in the first place
in order to condense. It thus seems reasonable to assume
that the characteristics of the energetically most favor-
able pairing state (for a given parameter set (h̄, m̄, T̄ ))
will strongly influence the properties of a (potential) con-
densate in the many-body problem. A quantum mechani-
cal bound-state calculation in Ref. [42] has indeed shown
good qualitative and even semi-quantitative agreement
with the many-body mean-field analysis in one dimen-
sion. Here, we perform a similar calculation for the three-
dimensional case.

Following Ref. [42], the Schrödinger equation for the
wave function Ψ of two distinct fermions in the presence
of their respective Fermi surfaces is given by ∑

σ=↑,↓

εσ(∂xσ )− gδ(x↑ − x↓) + EB

Ψ(x↑, x↓) = 0 ,

(6)
where EB = εF,↑+εF,↓−E and the delta-shaped potential
is the two-body equivalent of the contact interaction in
Eq. (1). Thus, the relation between the coupling strength
g and the s-wave scattering length is given by Eq. (2).
The kinetic energy is measured with respect to the Fermi
surfaces: εσ(∂xσ ) = | − (2mσ)−1∂2

xσ − εF,σ|, where εF,σ
corresponds to the Fermi energies of the two species, re-
spectively. Note that the general setup is well known and
has been previously used to determine the properties of a
single Cooper pair in the context of balanced BCS theory,
see e.g. Refs. [52, 53].

In momentum space, Eq. (6) can be recast into a
(renormalized) integral equation for the binding en-
ergy EB :

∫
~p

 1

ε↑

(
~P
2 + ~p

)
+ ε↓

(
~P
2 − ~p

)
+ EB(|~P |)

− 1

2

 = 0 ,

(7)

where
∫
~p

=
∫
d3p/(2π)3. The vectors ~p and ~P denote

the relative and center-of-mass momenta, respectively.
Since the energy of the two-particle state Ψ depends on

the magnitude of the center-of-mass momentum ~P , the
ground-state solution of Eq. (7) determines whether a
bound state exists for a specific set of parameters and,
crucially for this work, provides information about the
energetically favored center-of-mass momentum.

In Fig. 1 we show the results for the ground-state bind-
ing energies. We find that for small m̄, and around the
line of equal Fermi momenta kF,↑ = kF,↓ at h̄ = m̄,
the bound-state formation with zero center-of-mass mo-
mentum is favored (light-gray shaded area). Due to
the increasing mismatch of Fermi surfaces away from
the h̄ = m̄ line, the (dimensionless) binding energy
ĒB = EB/µ decreases monotonically until it reaches
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Figure 1. (color online) Dimensionless two-particle binding
energies ĒB = EB/µ as obtained from Eq. (7). Domains in
parameter space where bound states are found (ĒB > 0) are
(gray) shaded. For red/dark shading, bound-state formation

with a finite center-of-mass momentum P̄ = |~P |/√µ is fa-

vored. The line h̄ = m̄ corresponds to the case of equal Fermi
momenta for the two species. The two-body states found
along this line are found to be the overall most deeply bound
states.

zero for high mass imbalances and negative spin imbal-
ances. If, on the other hand, m̄ & 0.46, pairing with
finite P̄ = P/

√
µ is favored for sufficiently small spin im-

balances (dark/red-shaded area). Note that this seems
to stabilize the binding energy away from equal Fermi
momenta for very large mass imbalances, manifested by
a slight back-bending of the ĒB isolines. Similar behav-
ior was observed in the one-dimensional case [42], where
it was found to have strong influence on the structure of
the many-body phase diagram.

Loosely speaking, a condensate of pairs with finite
center-of-mass momentum would break translational in-
variance. Our observation of the existence of a region of
parameter space associated with two-body bound states
with a finite center-of-mass momentum suggest that a
region governed by an inhomogeneous ground state may
exist in the many-body phase diagram.

We close this section with a word of caution as to
the relevance of our two-body analysis for the actual
many-body problem: The existence of bound states in
the two-body problem in the presence of Fermi surfaces
does not necessarily entail spontaneous symmetry break-
ing in the associated many-body problem. The latter re-
quires, additionally, Bose-Einstein condensation of said
bound states. Furthermore, the consideration of inert
Fermi surfaces in our two-body study is questionable in
the strongly coupled unitary regime.1 For example, the

1 Strictly speaking, the assumption of inert Fermi surfaces is only
justified if the Fermi momenta/energies of the non-interacting
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so-called Fermi-polaron problem [20, 27–33], which con-
stitutes the limiting case of a single spin-up impurity in
a sea of indistinguishable spin-down fermions, is known
to have a negative chemical potential. This implies that
energy is gained when a spin-up impurity is added to a
system of non-interacting spin-down fermions. As dis-
cussed in Ref. [27], this energy gain determines the value
of the Zeeman field h̄ above which a mixed-phase may
emerge in experimental studies. Moreover, this value
of h̄ can be viewed as a strict lower bound for the critical
value of h̄ above which the ground state of the system
is superfluid. Note that the interaction of the impurity
with all the spin-down fermions is taken into account in
these studies. Our study of the two-body problem in the
presence of Fermi spheres cannot reproduce the results
of the above-mentioned Fermi-polaron problem, as we
only allow for an interaction between one spin-up and one
spin-down fermion.2 Our approach should therefore be
viewed as complementary to the Fermi-polaron problem.
In fact, our analysis gives direct access to the center-of-
mass momentum of the bound state and therefore enables
us to estimate the regions in the many-body phase dia-
gram where inhomogeneous phases are likely to exist. In
any case, all results so far are by construction valid only
at strictly zero temperature. Therefore, a proper many-
body treatment is mandatory in order to obtain the ac-
tual phase diagram. However, as we will see below, our
predictions resulting from Eq. (6) for the position of in-
homogeneous phases turn out to be astonishingly good,
which emphasizes the importance of few-body physics for
our understanding of complex many-body phenomena.

IV. MEAN-FIELD ANALYSIS

A. Formalism and Fulde-Ferrell Ansatz

For this work, the properties of the order parame-
ter 〈ψ↑ψ↓〉 are essential. We therefore formulate the
problem of spontaneous symmetry breaking in terms
of the associated order-parameter field. This can be
achieved by means of a judiciously chosen Hubbard-
Stratonovich transformation [54], upon which we obtain
the following microscopic action

SB[{ψσ}, ϕ̄] =

∫
τ,~x

[ ∑
σ=↑,↓

ψ∗σ

(
∂τ −

∇2

2mσ
− µσ

)
ψσ

+m̄2
ϕϕ̄
∗ϕ̄− h̄ϕ

(
ϕ̄∗ψ↑ψ↓ − ϕ̄ψ∗↑ψ∗↓

) ]
, (8)

system entering our two-body study are of the order of the Fermi
momenta/energies attributed to the fully interacting many-body
problem.

2 Note also that the non-interacting Fermi spheres enter our com-
putation and that the associated Fermi momentum kF,↑ (kF,↓)
becomes complex for h̄ < −1 (h̄ > 1).

where the parameter m̄ϕ and the Yukawa-type cou-
pling h̄ϕ are related to the original four-fermion cou-
pling g in Eq. (1): g = −h̄2

ϕ/m̄
2
ϕ. The action (8) is indeed

equivalent to the purely fermionic action SF in Eq. (1)
and is the basis for all the calculations in this work. The
boson field ϕ̄ ∼ ψ↑ψ↓ can be viewed as mediating the
fermionic self-interaction gψ∗↑ψ↑ψ

∗
↓ψ↓ ∼ h̄ϕϕ̄∗ψ↑ψ↓. Note

that no kinetic term for the order-parameter field appears
in the classical action SB. Such a term is generated dy-
namically when fermion fluctuations are integrated out,
due to the presence of the Yukawa-type interaction, as
we will see in more detail below.

From a field theoretical point of view, the field ϕ̄
is nothing but an auxiliary field, introduced by the
Hubbard-Stratonovich transformation to facilitate the
computations by removing the quartic fermion term in
favor of a Yukawa-type interaction. From a phenomeno-
logical point of view, however, ϕ̄ may be interpreted
as a collective state of two fermions, corresponding to
the closed channel of the Feshbach resonance, see, e.g.,
Refs. [48, 55].

In our partially bosonized formulation, the order pa-
rameter for U(1) symmetry breaking can now be iden-
tified with ϕ̄0 ∼ 〈ψ↑ψ↓〉. In the ground state, these
field expectation values can be obtained by minimizing
the quantum effective action Γ ∼ − lnZ with respect to
ϕ̄ ∼ ψ↑ψ↓, where

Z =

∫
Dψ↑Dψ↓Dϕ̄e−SB[ψσ,ϕ̄] =

∫
Dϕ̄detψ[ϕ̄] (9)

is the partition function in the path-integral representa-
tion. Note that the determinant on the right-hand side
can in principle be used to define a purely bosonic ac-
tion SPB[ϕ̄] = − ln detψ[ϕ̄], which is the starting point
for lattice MC calculations [16, 37, 56] (see Ref. [38] for
a review). While the effective action Γ shares the sym-
metries of the microscopic action SB by construction,3 it
includes the effects of all thermal and quantum fluctua-
tions. Thus, it is composed of renormalized fields and
couplings which are in general momentum dependent.
Since the fermion determinant detψ involves a generally
complicated dependence on ϕ̄, an exact computation of
Γ is highly non-trivial. Therefore, systematic approxima-
tion schemes are needed to gain insight into the physical
content of the theory.

In this sense, the widely used mean-field approxima-
tion can be considered as a lowest-order approximation
to the effective action. It is obtained by shifting the
field ϕ̄ → ϕ̄ + δϕ̄, where δϕ̄ now represents the fluctua-
tion field, and performing a saddle-point approximation
of the path integral about ϕ̄. This renders the analytic
computation of the fermion determinant more feasible.
However, it is still non-trivial to carry out if one allows
for a general space-dependent “background” field ϕ̄(~x),

3 The path integral measure respects the symmetries of the theory.
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which is needed to enable the detection of inhomogeneous
phases. In the following, we employ an analytically fea-
sible Fulde-Ferrell ansatz (FF) [13],

ϕ̄(~x) = ϕ̄ei2
~Q·~x . (10)

Since ϕ̄ is chosen to be a constant amplitude, we are left
with the standard mean-field ansatz in the limit of van-
ishing momentum ~Q. Note that the ansatz (10) may be
regarded as the first term of a Fourier expansion of a
more general ϕ̄(~x). It is hence considered to be a par-
ticularly good approximation to the full solution in the
vicinity of a second order phase transition to the normal
phase, where higher order contributions are expected to
be small (see e.g. Refs. [42, 57–59]).

Using the ansatz (10), the order-parameter potential U
becomes

U(∆̄, Q) =

∫
~q

{
E∆̄=0 − E∆̄ +

∆̄2

2q2

−
∑
σ=±1

T log
(

1 + e−
1
T E∆̄− σ

T [(q2+Q2)m̄−2~q·~Q−h]
)}

(11)
where

E∆̄ =

√
(q2 +Q2 − 2m̄~q · ~Q− µ)2 + ∆̄2 , (12)

andQ = | ~Q| as well as q = |~q|. The quantity ∆̄2 = h̄2
ϕϕ̄
∗ϕ̄

evaluated at the (global) minimum ϕ̄0 of U is nothing
but the fermion gap. Note that the minimum of U in
~Q-direction is not necessarily an extremum. A global
(numerical) minimization of the potential is therefore re-
quired to find the ground state of the theory.

B. Results

In Fig. 2 we show the phase diagram as obtained from
a direct minimization of U(∆, Q) in Eq. (11). Here, we
mainly discuss aspects related to the emergence of inho-
mogeneous phases. For detailed discussions on the extent
and the properties of the homogeneous phases at zero and
finite temperature, we refer the reader to earlier work,
e.g. Refs. [21, 24, 60, 61].

We begin by briefly discussing some characteristic fea-
tures of the phase diagram. The region of homogeneous
symmetry breaking is roughly centered around the line
of equal Fermi momenta, h̄ = m̄, as suggested by the
analysis of the two-body problem of Sec. III. At T̄ = 0,
the transition from the homogeneous superfluid to the
normal phase is always of first order for the parameter
space considered in the present work. At sufficiently high
temperatures, on the other hand, the transition from the
superfluid to the normal phase changes into a second-
order transition. The surfaces in parameter space associ-
ated with these two types of transitions meet at a critical
line denoted by T̄cp. Note that we limit ourselves to spin

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

-1 -0.5 0 0.5 1

m̄

h̄

2nd order SF

1st order SF
2nd order FF

T̄cp
T̄ = 0

T̄ = 0.4

T̄ = 0.6

SF

NF

FF

Figure 2. (color online) Finite-temperature mean-field phase
diagram in the plane spanned by h̄ and m̄ with T̄ -isolines. The
(light) gray-shaded region corresponds to a homogeneous con-
densate, i.e. ∆0 > 0 and Q0 = 0 (SF); the dark/red-shaded
area depicts a Fulde-Ferrell regime, i.e. ∆0 > 0 and Q0 > 0
(FF). The (blue) dotted lines correspond to lines of multicrit-
ical points T̄cp, where either a surface associated with first-
order transitions from the homogeneous to the inhomogeneous
phase meets a surface associated with second-order transitions
from the homogeneous to the normal fluid (NF) phase as well
as a surface from the inhomogeneous to the normal fluid phase
(NF), or where a surface associated with second-order transi-
tions from the homogeneous to the NF phase meets a surface
associated with first-order transitions from the homogeneous
to the NF phase.

imbalances h̄ ∈ [−1, 1]. Contrary to the case of the two-
body analysis in Sec. III, this constraint is not imposed
by the method itself. In fact, the domain of high mass
imbalance, m̄ & 0.8 for h̄ > 1 is of interest for an investi-
gation of the physics of Sarma phases [41]. In particular,
it was found in mean-field calculations that a second or-
der transition occurs in this regime even at T = 0 [21].4

We leave a detailed discussion of Sarma phases for future
work.

We now turn to a discussion of the inhomogeneous
phase depicted by the dark/red-shaded area in Fig. 2.
Studies similar to ours have been performed for specific
values for m̄ (e.g., Li-K mixture [26]) as well as arbitrary
values of m̄ employing a T -matrix approach [47]. While
our mean-field results agree well with those of Ref. [26],
we do not find an inhomogeneous phase for mass im-
balances down to m̄ = 0 as in Ref. [47]. There is, in
fact, disagreement in the literature on this point (see e.g.,
Refs. [44, 45]), which suggests that the appearance of an

4 By employing the functional RG scheme discussed in Sec. V A,
we do indeed find strong hints that a zero-temperature Sarma
phase in the regime of large m̄ and h̄ > 1 exists even beyond the
mean-field approximation. For a discussion of the existence of
Sarma phases in the phase diagram of spin-imbalanced but mass-
balanced Fermi gases beyond the mean-field limit see Ref. [62].
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Figure 3. (color online) Zero-temperature mean-field phase
diagram with a focus on the regime in parameter space where
inhomogeneous phases (FF) are found. The black/solid line
represents the transition line between the homogeneous (SF)
and inhomogeneous or normal phases (NF), respectively. The
(orange) dashed line denotes the phase boundary between the
inhomogeneous and the normal phase. Finally, the (red) dot-
dot-dashed line is the lower bound for pairing with P̄ > 0 as
obtained from our two-body analysis, see Fig. 1.

inhomogeneous phase is very sensitive to the details of
the approximation scheme as well as the specific ansatz
for the inhomogeneity. This strengthens our motivation
to consider alternative sources of information on pairing
behavior such as our few-body analysis of Sec. III and RG
methods to account fluctuation effects (Sec. V below).

Fig. 3 displays an enlarged view of the region with
inhomogeneous superfluidity, focusing on the domain of
parameter space governed by inhomogeneous pairing at
T̄ = 0. As evident from the figure, the inhomogeneous
phase occupies only a thin shell in parameter space close
the phase with a homogeneous condensate. It is sepa-
rated from the normal phase by a second-order transition
and from the homogeneous phase by a first-order tran-
sition.5 Note that, for finite negative scattering lengths
as, a similar behavior has been found previously also for
the mass-balanced case [45].

Within numerical errors, the position of the first-order
transition line from the homogeneous to the inhomoge-
neous phase coincides almost perfectly with the transi-
tion line from the homogeneous superfluid to the nor-

5 Both the phase with a homogeneous condensate and the one
with an inhomogeneous condensate are associated with sponta-
neous U(1) symmetry breaking. The boundary between these
two phases is solely associated with translation symmetry break-
ing where the value of Q = | ~Q| of the condensate acts as an
order parameter. On the other hand, U(1) symmetry is restored
in the normal phase. The boundary between the normal phase
and the phase with a (in)homogeneous condensate is therefore
associated with U(1) symmetry breaking where ϕ̄0 plays the role
of the order parameter.

mal phase, which is found if one does not allow for a
space-dependent order parameter.6 The observed first-
order nature of the homogeneous-inhomogeneous transi-
tion may be an artifact of the FF-ansatz in our study.
In fact, studies of analytically solvable relativistic mod-
els in 1D found that the corresponding transition line is
of second order rather than first order [57, 58]. The po-
sition of the associated transition line was found to be
reasonably well described when the space dependence of
the condensate is approximated by the first term of the
Fourier expansion [59], as done by the FF ansatz. How-
ever, the order of the transition is spuriously predicted
to be of first oder.7

The very small extent of the inhomogeneous phase in
h̄-direction for fixed m̄ close to the zero-temperature crit-
ical endpoint CP0 renders the precise determination of its
coordinates very difficult from a numerical point of view.
Following our line of arguments from Sec. III, the quick
disappearance of the inhomogeneous phase close to this
point is not unexpected: The two-body binding energy
away from its maximum at h̄ = m̄ is “stabilized” for finite
pair-momentum only at very large mass imbalances, as
indicated by the characteristic back-bending of the lines
of constant binding energy in Fig. 1. Since deeply bound
pairs should be less sensitive to (quantum) fluctuations
that tend to destroy pairing correlations, the formation of
a condensate in the many-body problem may be expected
to be favored in this regime as well. Thus, the inhomo-
geneous phase is expected to widen towards smaller h̄
only at large m̄, whereas it is expected to narrow down
when m̄ is decreased. This is indeed what we find in
Fig. 3.

In the same figure, we also show the lower bound (dot-
dot-dashed line) for pair formation with a finite center-
of-mass momentum P̄ > 0, see also Fig. 1. We find that
there is an obvious discrepancy between this line (which
we argued above is important for the occurrence of in-
homogeneous condensates) and the actual many-body
phase boundary associated with a transition from a ho-
mogeneous to an inhomogeneous phase.

The critical endpoint CP0 of the inhomogeneous phase
appears to coincide quite well with the intersection point
of the lower bound for finite-momentum pair formation
(dot-dot-dashed line) and the phase boundary of the
phase with a homogeneous condensate (black solid line).
A high precision determination of the position of CP0

is beyond our reach at the moment due to the numeri-
cal complications mentioned above; we therefore refrain
from drawing rigorous conclusions about this stunning

6 For fixed m̄, we find that the extent of the homogeneous phase
which has been superseded by an inhomogeneous phase is as
narrow as δh̄ ≈ 0.006 for the largest considered m̄ = 0.95 and
decreases rapidly towards the zero-temperature endpoint of the
critical line at CP0 ≈ (0.09, 0.65).

7 Note that, in addition to a first-order transition measured by
the parameter Q, we observe a discontinuity in the U(1) order-
parameter ϕ̄0 as well.
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coincidence. For larger values of m̄ and h̄ in the domain
between the (black) solid and (red) dot-dot-dashed line,
we find that a homogeneous condensate is energetically
favored over an inhomogeneous condensate (see Fig. 3),
even though bound-state formation with finite center-of-
mass momentum should still be preferred. However, as
discussed above, the simple FF ansatz (10) for ϕ̄(x) is not
expected to yield precise results away from the transition
to the normal phase. While our two-body calculation is
not hampered by assumptions of this kind, it is limited
by the assumption of inert Fermi surfaces. In contrast,
our mean-field study of the full many-body problem takes
into account interactions between all spin-up and spin-
down fermions. We shall come back to this issue below
when we discuss the results of our RG study.

In summary, the need to investigate the dynamics
of the many-body problem beyond the mean-field limit
seems inevitable. Furthermore, the above analysis indi-
cates that one must include more sophisticated ansätze
for the condensate ϕ̄(x) to gain reliable insights into the
problem of inhomogeneous superfluidity. Our fRG anal-
ysis, as detailed next, aims to provide a systematic way
to approach this goal.

V. BEYOND THE MEAN-FIELD
APPROXIMATION

A. Functional Renormalization Group: Formalism

To understand spontaneous symmetry breaking in
quantum systems, it is essential to account for quantum
fluctuations of the order-parameter. In order to accom-
plish this in a systematic way, we employ a fRG approach.
More specifically, the Wetterich equation [63]

∂kΓk =
1

2
STr

[
∂kRk

Γ
(2)
k +Rk

]
(13)

will be central to our analysis. Here, k is the RG scale in-
troduced by the regulator function Rk. The latter spec-
ifies the details of the Wilsonian momentum-shell inte-
gration. In particular, it provides for a suitable infrared
(IR) and ultraviolet (UV) regularization, see App. B for
details. The Wetterich equation determines the change
of the effective average action Γk under a change of the
scale k and therefore allows to interpolate between the
microscopic action S at a given UV cutoff scale Λ and the
full quantum effective action Γ ≡ Γk→0 in the long-range
(i.e. IR) limit:

S = lim
k→Λ→∞

Γk, Γ = lim
k→0

Γk . (14)

For reviews and introductions to this approach with re-
spect to an application to ultracold Fermi gases, see
Refs. [49–51, 64].

While Eq. (13) is exact, in general one must consider
an ansatz for Γk (i.e. a truncation of the full Γk) in order

to arrive at a solution. Here, we choose

Γk[{ψσ}, ϕ] =

∫
τ,~x

[ ∑
σ=↑,↓

ψ∗σ

(
∂τ −

∇2

2mσ
− µσ

)
ψσ

+ ϕ∗
(Zϕ,k
Aϕ,k

∂τ −
1− m̄2

2
∇2
)
ϕ

+ Uk(ρ)− hϕ
(
ϕ∗ψ↑ψ↓ − ϕψ∗↑ψ∗↓

)]
(15)

with renormalized quantities

ϕ = A
1
2

ϕ,k ϕ̄ , hϕ = A
− 1

2

ϕ,k h̄ϕ . (16)

This ansatz is an extension of a class of ansätze which
has been successfully applied to spin-balanced (see, e.g.,
Refs. [48–51, 65, 66]) and spin-imbalanced (see, e.g.,
Refs. [33, 34, 62, 67]) systems across the whole BEC-BCS
crossover.

In addition to an ansatz for Γk, the solution of the RG
equation (13) requires an initial condition Γk=Λ. In our
case this implies choosing initial conditions for the so-
called wavefunction renormalizations Zϕ,k and Aϕ,k, the
Yukawa coupling hϕ, and the effective order-parameter
potential Uk. The latter depends only on the U(1) in-
variant ρ = ϕ∗ϕ. At the UV scale Λ, it is fixed by the
two-body problem in the vacuum and is therefore simply
given by [48]

UΛ(ρ) = m2
ϕ,Λρ , (17)

where

m2
ϕ,Λ = νΛ +

h2
ϕ,Λ

6π2
Λ . (18)

and

hϕ,Λ =
√

6π2Λ . (19)

Here, the initial value of the Yukawa coupling hϕ has been
chosen such that the system is set to be close to a broad
Feshbach resonance [48]. The parameter νΛ ∼ (B − B0)
measures the detuning of the system with respect to the
resonance.8 Since we are only interested in the unitary
limit (i.e. the system at resonance), we set νΛ ≡ 0 for
the remainder of this work. Higher order terms ∼ ρn in
the potential Uk are generated during the RG flow due to
quantum fluctuations and are taken into account in our
analysis.

At this point we are left with the determination of
the initial conditions for the wavefunction renormaliza-
tions. The momentum and frequency dependence of
the boson-field propagator effectively allows to resolve at
least part of the momentum and frequency dependence
of the fermionic self-interactions (see, e.g., Ref. [64] for
a more general introduction). Per our ansatz (15), the

8 Here, B denotes the external magnetic field.
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inverse boson propagator for the bare/unrenormalized
field ϕ̄ in momentum space is9

P̄ϕ(q0, ~q
2)

=
(
iZϕ,kq0 +

1−m̄2

2
Aϕ,k~q

2 +
∂2U

∂ϕ̄∂ϕ̄∗

∣∣∣
ϕ̄0

)
, (20)

where ϕ̄0 denotes the k-dependent value of the position
of the ground-state of the potential Uk. The wavefunc-
tion renormalizations Zϕ,k and Aϕ,k are assumed to be
independent of q0 and ~q. Here, we only take into ac-
count the scale dependence of the wavefunction renor-
malizations, which is minimally required to detect the
emergence of an inhomogeneous ground state within our
present setup (see our discussion below). The structure
of this propagator can be understood as arising from a
derivative expansion of the effective action that has been
truncated at the lowest nontrivial order.

The RG flow of the wavefunction renormalizations Zϕ,k
and Aϕ,k is conveniently parameterized with the aid of
the associated anomalous dimensions ηZ,k and ηA,k, re-
spectively. For example,

ηA,k = −k∂k lnAϕ,k . (21)

In the present work, we keep the ratio Zϕ,k/Aϕ,k = 1
fixed in the RG flow and compute only the flow of Aϕ,k,
see also Ref. [34]. The initial condition for Aϕ,k is given
by

lim
k→Λ→∞

Aϕ,k = 0 . (22)

From a phenomenological point of view, this implies that
the boson field is not dynamical at the UV scale Λ.10

Its dynamics as “measured” by the wavefunction renor-
malization Aϕ,k is solely generated by quantum fluctua-
tions. Our choice for the initial conditions ensures that
our ansatz for the effective average action Γk is identical
to the well-known partially bosonized action (8) at the
UV scale Λ, as it should be.

By applying the Wetterich equation (13) to the
ansatz (15), the RG flow equations for the various cou-
plings can now be derived. Details as well as our choices
for the regulator functions can be found in App. A and B.
In the following, we only discuss the general properties
of these equations.

The general form of the flow equation for the Yukawa
coupling reads

k∂khϕ =
1

2
ηA,khϕ . (23)

9 For convenience, we do not show contributions to the propagator
stemming from the insertion of the regulator function into the
path integral.

10 In our numerical studies, we have chosen a finite value for Λ =
1000

√
µ̄ and therefore a finite value for the initial condi-

tion Aϕ,k=Λ = 1 such that it is consistent with Eq. (22).

Note that we have dropped terms on the right-hand side
which are only non-zero in the regime with broken U(1)
symmetry but vanish identically otherwise. Since we are
primarily aiming at a determination of the phase bound-
aries, but not at a quantitative prediction of a particular
observable (e.g. the Bertsch parameter) for which these
terms may become important, we expect this approxi-
mation to be justified. The flow of the Yukawa coupling
is then purely driven by the anomalous dimension of the
boson field, which be can be split into two distinct con-
tributions:

ηA,k = ηψA,k + ηϕA,k . (24)

The contribution ηψA,k is built up by one-particle irre-

ducible (1PI) diagrams with no internal boson lines but
only fermion lines. On the other hand, ηϕA,k receives con-
tributions from 1PI diagrams with at least one internal
boson line and, in our present truncation, it is found to be
non-zero only in the regime with broken U(1) symmetry.

Finally, the flow of the renormalized effective order-
parameter potential can be conveniently split up into
three terms:

k∂kUk = ηA,kρU
′
k + [k∂kUk]

ψ
+ [k∂kUk]

ϕ
. (25)

The first term accounts for the renormalization of the
field ϕ̄, the second term is simply a pure fermion loop,
and the third term is nothing but a pure boson loop.
The last two are both dressed with suitable regulator
insertions (see also Appendix B).

Using the initial conditions detailed above and inte-
grating the coupled system of flow equations given in
Eqs. (23)-(25), we can extract values of physical observ-
ables such as the Bertsch parameter, the fermion gap,
or the critical temperature. As in the mean-field case,
a nontrivial global minimum at Uk=0(ρ0) signals spon-
taneous U(1)-symmetry breaking associated with a fi-
nite order parameter ρ0 = ϕ∗0ϕ0 or, equivalently, a finite
fermion gap ∆2

0 = h2
ϕρ0.

Due to the highly nonlinear, coupled structure of the
system of flow equations, the solutions need to be found
numerically. As discussed in Sec. IV B above, a mean-
field analysis suggests the existence of first-order phase
transitions. Therefore, we choose to discretize the k-
dependent effective potential on a grid in field space (see
also Ref. [34] for details on our numerical implementa-
tion).

Before discussing the numerical results from our RG
flow equations, we briefly discuss more precisely in what
sense Eqs. (23)-(25) represent an extension of the conven-
tional mean-field approximation of Sec. IV. Diagrammat-
ically, Eq. (13) has a simple one-loop structure, where the
internal lines of Feynman diagrams are given by the so-

called full propagators ∼ (Γ
(2)
k +Rk)−1. The mean-field

approximation, on the other hand, takes into account
Feynman diagrams only with internal fermion lines, but
with no internal boson lines. In our RG approach, this
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implies that the flow equation for the wavefunction renor-
malization and for the effective potential simplify consid-
erably:

ηA,k = ηψA,k , (26)

and

k∂kUk = ηA,kρU
′
k + [k∂kUk]

ψ
, (27)

where, diagrammatically,

[∂kUk]ψ ∼
∞∑
n=0

· (ϕ∗ϕ)
n
. (28)

Moreover, we observe that the flow equation for the ef-
fective potential reduces to

k∂kUk(ϕ̄) = [k∂kUk(ϕ̄)]
ψ
, (29)

if we rewrite it in terms of the unrenormalized anologue
of ρ, namely ρ̄ = ρ/Aϕ,k. For the unrenormalized Yukawa
coupling, we find ∂kh̄k = 0. Thus, in this limit the RG
flow of the effective order-parameter potential Uk and
wavefunction renormalization Aϕ,k are no longer coupled,
and so the flow of the Yukawa coupling is trivial. This
implies that the flow equations of Uk and Aϕ,k can be
solved independently. Diagrammatically, we find that a
fermion loop with two external bosonic lines attached to
it contributes not only to the flow of Uk (see Eq. (28)),
but also to the flow of Aϕ,k, i.e. to ηA,k.11 The con-
sequences of this observation will be discussed in detail
below. At this point, we note that we do indeed recover
the well-known mean-field solution for the effective po-
tential at Q = 0 from integrating Eq. (29) with respect
to the RG scale k, as one should. Here, the restriction
on the case Q = 0 comes from the need to project onto
constant ϕ in order to obtain explicit expressions for the
flow equations (24) and (25). Thus, at the level of our
present approximations, our RG approach is unable to
resolve inhomogeneous phases explicitly. However, our
present setup is not “blind” to the fact that inhomoge-
neous condensates may emerge and govern the ground-
state dynamics, as we discuss next.

B. Results

1. Flow of the fermion loop: mean-field and beyond

As already mentioned above, integrating Eq. (28) (or
rather Eq. (B2)) and minimizing Uk=0(∆2) yields the
well-known mean-field phase diagram of mass- and spin-
imbalanced Fermi gases for the case where the possibility

11 Note that Aϕ,k directly contributes to the inverse boson propaga-
tor being the second functional derivative of the effective action
with respect to the boson fields.
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Figure 4. (color online) Mean-field phase diagram at T = 0
showing the region of vanishing Aϕ,kbreak (red/dark-shaded
area) bounded by the green/dotted line. For large m̄ & 0.6,
this line associated with inhomogeneous pairing (see main
text) agrees very well with the (red) dot-dot-dashed line de-
picting the lower bound for bound-state formation with P̄ > 0
as obtained from our two-body analysis, see Sec. III and
Fig. 1. The orange/dashed line depicts the transition line
from the inhomogeneous phase to the normal phase as ob-
tained with a FF ansatz, see also Figs. 2 and 3.

of inhomogeneous phases was not taken into account ex-
plicitly (see e.g. Refs. [21, 24, 60, 61]). However, as men-
tioned above, a fermion loop with two external bosonic
legs contributes not only to the flow of Uk, but also to
ηA,k, see Eq. (24). Recall that the flow equations for Uk
and ηA,k in the mean-field approximation are decoupled,
implying that the fermion gap ∆2

0 = h2
ϕρ0 = h̄2

ϕρ̄0 is in-
dependent of Aϕ,k. Although ηA,k has therefore no direct
impact on the value of ∆2

0, the flow of ηA,k still contains
important information about ground-state properties.

Indeed, solving the flow equation for Aϕ,k alongside
with the one for Uk, it turns out that the long-range
limit (k → 0) cannot always be reached due to a pe-
culiar behavior of the RG flow. This is seen in Fig. 4,
where we show a red/dark-shaded region bounded by a
green/dotted line. Within that region, Aϕ,k becomes zero
for a finite value k = kbreak, (see inset of Fig. 4 for illus-
tration). Strictly speaking, the RG flow breaks down at
this point. Had we only considered the flow of Uk, we
would have recovered the well-known mean-field phase
diagram and easily overlooked this instability, which oc-
curs at the same level of truncation in terms of Feyn-
man diagrams. On the other hand, this instability can
be expected to be an artifact of our ansatz (15), which
yields Eq. (20) for the boson propagator. The latter re-
quires Aϕ,k > 0 in order to be physically meaningful. If
the boson propagator evaluated at ϕ0 (or, equivalently,
ρ0) turns out to be not positive (semi-)definite, then the
configuration ϕ0 extracted from the computation of Uk
cannot be the true ground-state of the theory. Of course,
this instability does not really come as a surprise. In
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P̄
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Aϕ,k > 0, Q = 0
Aϕ,k < 0, Q > 0
Aϕ,k > 0, Q > 0

Figure 5. (color online) Sketches of possible functional forms
of the inverse bosonic propagator in terms of spatial momen-
tum. The green/solid line corresponds to a homogeneous
phase, whereas the red/dashed and blue/dotted lines sketch
two cases with a nontrivial minimum at qmin ∼ O(Q) > 0 fa-
voring the dominance of modes associated with bound states
with a finite center-of-mass momentum. In case of the
red/dashed curve, this is linked to a negative Aϕ,k.

Sec. IV, we have already shown that, for a simple FF-
ansatz, a regime governed by an inhomogeneous conden-
sate exists in the phase diagram. Within this regime,
a homogeneous condensate does not represent the true
ground state, but rather an “excited” state in the spec-
trum of the theory.

In our present RG study, we do not employ a spe-
cific ansatz to parametrize the spatial dependence of the
condensate, such as an FF ansatz. Rather, we study
the stability of the RG flow under the assumption that
the condensate does not exhibit spatial dependence. The
momentum structure in Eq. (20) can be seen as the first
nontrivial term in a derivative expansion of the exact
propagator about zero momentum. The fundamental as-
sumption for this ansatz to be valid is that bosonic modes
with spatial momentum |~q| ≈ 0 contribute predominantly
to the flow. For an inhomogeneous phase this is obvi-

ously not the case, as modes with momenta around | ~Q|
are rather expected to dominate the dynamics. The in-
verse boson propagator close to k = kbreak is therefore
expected to be shaped as the (red) dashed line in Fig. 5
instead of the green (solid) curve which corresponds to
Eq. (20) with Aϕ,k > 0 (see also Ref. [68]). It might
therefore be tempting to associate the existence of a fi-
nite scale kbreak with the formation of an inhomogeneous
condensate directly. For the following reasons, however, a
sign change of Aϕ,k should only be considered as a “hint”
for the emergence of an inhomogeneous condensate:

• Only for k → 0 (long-range limit), strictly speak-
ing, results extracted from the RG flow are phys-
ically observable. Here, we find Aϕ,k → 0 at
kbreak &

√
µ. Now it may be the case that Aϕ,k → 0

is negative only for a finite k-range below kbreak and
then becomes positive again in the limit k → 0.
This behavior of Aϕ,k may be considered as in-

dicating the existence of an “inhomogeneous pre-
condensation” phenomenon, in analogy to the well-
known precondensation effect at finite tempera-
ture [69, 70] and finite spin imbalance [34]. As
discussed in Ref. [68], it is necessary to employ a
modified ansatz for the momentum dependence of
the inverse boson propagator for scales k ≤ kbreak

in order to reach the long-range limit, k → 0. Oth-
erwise, it is a priori unclear whether we indeed have
Aϕ,k < 0 for all k < kbreak, i.e. if the dominance
of modes favoring an inhomogeneous ground state
persists in the deep IR. An investigation of this is-
sue is beyond the scope of the present work.

• The agreement between the boundaries derived
from our two-body study on the one hand, and the
criterion associated with the appearance of a zero
in the flow of Aϕ,k on the other, is stunningly good
for m̄ & 0.6 (see Fig. 4). It can already be deduced
from Fig. 1 that inhomogeneous pairing is partic-
ularly preferred for such highly mass-imbalanced
systems. In fact, our conventional mean-field study
with a FF ansatz already suggested the existence
of an inhomogeneous phase in this regime (see the
domain enclosed by the orange/dashed line and the
black line in Fig. 4). However, we also observe
that bound states with finite center-of-mass mo-
menta as well as the regime with kbreak > 0 are
found to exist well beyond this FF-type phase. This
discrepancy may be traced back to the fact that
a simple FF ansatz may be insufficient in some
parts of the phase diagram. However, this can also
be viewed as a manifestation of the existence of
bosonic bound states (or the dominance of finite-
momentum bosonic modes), which does not neces-
sarily imply condensate formation, even at T = 0.

• For h̄ . 0, the domain bounded by the crite-
rion of Aϕ,k → 0 extends down to m̄ ≈ 0.22 for
h̄ = −1, whereas no bound states with finite center-
of-mass momentum are found below m̄ = 0.46 and
h̄ = −0.86, see Figs. 1 and 4. The discrepancy be-
tween these two lines should not be too surprising
for small h̄. In fact, the behavior of Aϕ,k is only
indirectly linked to the appearance of bound states.
It is reasonable to expect that the momentum de-
pendence, i.e. the functional form, of the propaga-
tor is dominated by the existence of deeply bound
two-body states as they are present for m̄ & 0.6,
where the two lines are in very good agreement. In
this regime, condensation of these states may in-
deed be energetically favored and the emergence of
an instability in the RG flow associated with the
observation Aϕ,k → 0 may then be viewed as a
strong indication that the formation of an inho-
mogeneous condensate is most favorable. However,
once the binding energy becomes smaller, the func-
tional form of the propagator becomes progressively
more dominated by modes with momenta signif-
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icantly different from the center-of-mass momen-
tum of the lowest lying two-body bound state for
given values of h̄ and m̄. Even if there is no bound
state at all in our analysis of the two-body problem,
there is no reason why bosonic fluctuations in gen-
eral, and those with finite momentum in particu-
lar, should become irrelevant. Consequently, in do-
mains with only shallowly bound two-body states,
as it is the case for decreasing h̄, we may expect at
best qualitative agreement between our predictions
from the two-body problem and the study of the
RG flow of Aϕ,k.

In summary, Aϕ,k → 0 signals the dominance of finite-
momentum bosonic fluctuations at least for a certain
range of values of the RG scale k ≤ kbreak. Strictly
speaking, however, even positive values of Aϕ,k→0 do not
imply that a low-order derivative expansion of the effec-
tive action captures the correct dynamics with respect to
inhomogeneous phases. In fact, the true inverse propaga-
tor may, e.g., be shaped as depicted by the blue/dotted
line in Fig. 5. In any case, it is also clear that it is not
possible to discriminate irrevocably between normal, ho-
mogeneous and inhomogeneous phases only with the aid
of the criterion Aϕ,k → 0. If, on the other hand, an
existing homogeneous condensate (as found in a study
of the RG flow of the potential Uk) overlaps with a do-
main where Aϕ,k → 0 is also observed in the flow, this
is a strong indication of an inhomogeneous phase in that
same domain. This point will be detailed further in the
next section, where we present results from the RG flow
including bosonic fluctuations.

2. Full Flow Equations: Impact of Bosonic Fluctuations

Let us now study the effect of the bosonic contributions
ηϕA,k and [∂kUk]ϕ in our set of flow equations. Due to the
derivatives of Uk with respect to ρ in the flow equations
for Aϕ,k and Uk, and the nontrivial dependence of these
equations on hϕ (see Eqs. (B3) and (B11)), the flow equa-
tions (23)-(25) are now coupled in a highly nontrivial way.
As discussed in Sec. V A, we solve this set of flow equa-
tions numerically. However, it does not appear feasible to
either start the integration at k = Λ → ∞, nor to reach
the IR limit k → 0 exactly. In the IR regime, we have
stopped the RG flow at kIR ≈ 10−3√µ in those domains
of parameter space that are close to a second-order phase
transition. The remaining uncertainty in the critical tem-
perature, as measured by the fermion gap ∆k, turned out
to be well below the percent level. In domains close to
a first-order transition, the introduction of a finite IR
cutoff kIR is even less severe as the order parameter ∆k

is found to jump typically on scales k ∼ O(
√
µ̄/10) (see

also Ref. [34] for a detailed discussion of the numerical
implementation in the mass-balanced limit).

The phase diagram from our RG study including order-
parameter fluctuations is shown in Fig. 6. We first note
that the qualitative features of the phase diagram are

Figure 6. (color online) Phase diagram obtained from the full
set of flow equations (23)-(25) including bosonic fluctuations.
The red/dark-shaded area marks the domain where an inho-
mogeneous phase is likely to exist, see main text for a detailed
discussion.

similar to the mean-field phase diagram discussed above.
However, quantitative corrections are found to be sizable.
For m̄ = h̄ = 0, for example, we find that the critical tem-
perature T̄ is significantly changed from T̄c ≈ 0.66 in the
mean-field approximation to T̄c ≈ 0.40, in good agree-
ment with recent experiments [17], Monte Carlo stud-
ies [16], as well as with recent RG studies [34, 66].

Lowering h̄, starting from h̄ = m̄ for fixed m̄ . 0.53,
the order of the phase transition changes from second
to first along a critical line T̄c(h̄, m̄). In this m̄-regime,
we find Tcp(h̄, m̄) ≈ 0.19...0.20 for the critical point
where the nature of the transition changes from second to
first order. For temperatures below T̄cp(h̄, m̄) and given

m̄, the superfluid phase is enlarged in the h̄-direction
compared to the mean-field result, as also found in the
mass-balanced case [34]. For T̄ � T̄c the integration of
Eqs. (23)-(25) becomes numerically more and more in-
volved, as the right-hand sides become discontinuous at
T̄ = 0 (see also Eqs. (B2) and (B6)). Contrary to the
mean-field case, we therefore do not present results for
the strict zero-temperature limit here but restrict our-
selves to temperatures T̄ ≥ 0.1. However, we expect
the position of the phase transition lines in the zero-
temperature limit to still be in reasonable agreement with
the ones obtained for T̄ = 0.1.

Lowering h̄, starting from h̄ = m̄ for fixed m̄ & 0.53
and T̄ < T I

cp(m̄) with T I
cp(m̄) ≈ 0.19...0.21, we find

that a critical value h̄break(m̄, T̄ ) exists at which Aϕ,k
tends to zero, potentially indicating a transition from
a homogeneous superfluid phase to an inhomogeneous
phase. In fact, we find that Aϕ,k tends to zero at a finite
RG scale kbreak for all h̄ ∈ [−1, h̄break(m̄, T̄ )]. As dis-
cussed in Sec. V B 1, this does not necessarily imply that
there exists an inhomogeneous phase for the whole do-
main h̄ ∈ [−1, h̄break(m̄, T̄ )] for a given m̄ and T̄ . There-
fore the red/dark-shaded area in Fig. 6 only represents a
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domain where an inhomogeneous phase is most likely to
be found. Our mean-field study supports this interpreta-
tion: In Fig. 4, we find reasonable agreement for large m̄
between the onset of inhomogeneous condensation and
the line defined by the largest value of h̄ for which Aϕ,k
still tends to zero at a finite scale kbreak, for a given value
of m̄. For this reason, we consider our Aϕ,k-criterion to
provide a reasonable estimate for the boundary separat-
ing the phase with a homogeneous condensate from the
inhomogeneous phase, even beyond the mean-field limit.
However, within our present setting, it is not possible to
detect the transition from the inhomogeneous phase to
the normal phase. The associated phase-transition line
is therefore not shown in Fig. 6. Instead, we indicate
the presumed existence of this phase-transition line by a
fading out of the red/dark-shaded domain.12

In our mean-field studies, conventional and RG, we
have considered the zero-temperature limit explicitly.
This allowed us to compare directly the lower bound
for pairing with finite center-of-mass momentum and the
bound from our Aϕ,k-criterion. Since the strict zero-
temperature limit is difficult to reach from a numeri-
cal point of view when bosonic fluctuations are taken
into account, we have restricted ourselves to tempera-
tures T̄ ≥ 0.1. However, this renders a direct comparison
with the results from our two-body analysis impossible.
Moreover, taking into account bosonic fluctuations, our
Aϕ,k-criterion used to detect the onset of inhomogeneous
phases has to be taken with some care: In Fig. 7, the
fermion gap ∆0 is depicted as a function of h̄ for two
different temperatures and fixed m̄ = 0.74 correspond-
ing to a mixture of 6Li and 40K. For T̄ = 0.225, the
green/dot-dashed line exhibits the typical behavior ex-
pected for a second order transition to the normal phase.
Only slightly below this temperature, at T̄ = 0.20, the
behavior of the condensate is now found to be quite dif-
ferent. Already before reaching the regime defined by
h̄ ≤ h̄break, where Aϕ,k tends to zero in the RG flow
(indicated by the red/dark-shaded area), the gap ∆0 is
found to increase rather than decrease. Such a behavior
is not seen in the mean-field approximation. In fact, for
any finite T̄ and fixed m̄, we find that ∆0 is a strictly
concave function. One may speculate that the observed
increase in the gap is due, e.g., to numerical artifacts.
Indeed, the value of ∆0 is more sensitive to numerical in-
accuracies in this region than anywhere else in the phase
diagram and should therefore be taken with some care.
However, we have checked that the general observation
of an increasing gap cannot be traced back to numerical
instabilities.

The inset of Fig. 7 hints at the true reason for the
unexpected behavior of the gap as a function of h̄ for

12 Of course, a priori, it is unclear whether a transition from an
inhomogeneous to a normal phase exists after all. However, our
mean-field study in Sec. IV, our analysis of the two-body problem
in Sec. III, and studies of the Fermi polaron [20, 27–33] suggest
that such a transition indeed exists.
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Figure 7. (color online) Fermion gap for two different values
of T̄ and fixed m̄ = 0.74 (corresponding to a Li-K mixture)
as a function of h̄. The red/dark-shaded area indicates the
regime where Aϕ,k → 0 for T̄ = 0.20. The inset shows the
k-evolution of Aϕ,k and ∆k for (T̄ , h̄) = (0.20, 0.51).

given m̄ at low temperatures: It shows the k-evolution
of Aϕ,k (red/solid line) and ∆k (blue/dotted line) for a
point in a region of the phase diagram where the gap
increases again but Aϕ,k is still positive on all scales k.
In this region (as exemplified by the inset), we observe
that Aϕ,k undergoes a sharp decrease. From the depen-
dence of the RG flow of the Yukawa coupling on Aϕ,k
via the anomalous dimension ηA,k (see Eq. (23)), it is
clear that hϕ experiences a sharp increase when Aϕ,k
decreases. The sharp increase of the Yukawa coupling
also increases the gap up to values larger than those in
which no (strong) decrease of Aϕ,k is present at all (e.g.
deep in the homogeneous superfluid phase). In the inset
of Fig. 7, we also observe that the increase of the gap
induced by the decrease of Aϕ,k can potentially counter-
balance the decrease of Aϕ,k. This effect is intimately
related to the presence of bosonic fluctuations. In fact,
the strong increase of the gap leads to a suppression of
Feynman diagrams with internal fermion lines. In par-
ticular, purely fermionic diagrams present in mean-field
studies are parametrically suppressed by a (strong) in-
crease of the gap. Thus, once a gap is generated, the
RG flows of the potential, the Yukawa coupling, and the
wavefunction renormalization Aϕ,k are mainly driven by
purely bosonic diagrams (without any internal fermion
lines). As (purely) bosonic and fermionic contributions
come in general with opposite signs, bosonic fluctuations
tend to counterbalance the decrease of Aϕ,k as well as the
increase of the gap, which is induced by purely fermionic
diagrams (see also Appendix B for the RG flow equa-
tions of the various quantities). Since the class of purely
fermionic diagrams is the only one present in the mean-
field approximation, this explains why such a counterbal-
ancing effect is not observed in our mean-field study.

The observed decrease in Aϕ,k can at least partially
be traced back to the fact that a change of the spin im-
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balance parameter h̄ induces a mismatch in the Fermi
momenta and Fermi energies associated with the spin-
up and spin-down fermions. Within our RG framework
this implies (loosely speaking) that the two spin com-
ponents contribute to the RG flow over different ranges
of scales k. In any case, the decrease in Aϕ,k actu-
ally becomes stronger when we decrease h̄ for a given m̄
starting from the line of equal Fermi momenta h̄ = m̄.
Eventually, we observe that the mismatch between the
Fermi momenta becomes so large that the associated
decrease of Aϕ,k can no longer be compensated by the
presence of bosonic fluctuations, resulting in Aϕ,k → 0
for h̄ ≤ h̄break(m̄, T̄ ) at a given finite RG scale kbreak, at
least within our present truncation.

We close this section with a word of caution regard-
ing the increase of the gap towards smaller values of h̄
in some domains of the phase diagram (see Fig. 7). At
present, it is unclear whether this behavior is a phys-
ical effect and traces of it should be expected in fu-
ture experimental studies, or whether it is “cured” when
considering a suitable extension of our present trunca-
tion. For example, a resolution of the full momentum
dependence of the inverse boson propagator Pϕ might
be required to resolve this issue since, in the relevant
domain, Pϕ may assume a form as exemplified by the
blue/dotted line in Fig. 5. However, a detailed analysis
of this issue is left to future work. Here, we restrict our-
selves to conclude that our RG study already suggests
that bosonic fluctuation effects are of great importance
in studies of mass- and spin-imbalanced unitary Fermi
gases. We have found that the extent of the various
phases in parameter space (normal, homogeneous super-
fluid, inhomogeneous superfluid) can change significantly
relative to mean-field studies. In particular, our RG anal-
ysis indicates that the size of the inhomogeneous phase
is extended to smaller values of m̄. More specifically, our
mean-field studies suggest that m̄ & 0.65 (m↓/m↑ & 4.7)
is required to form an inhomogeneous condensate. Re-
call that m̄ ≈ 0.74 (m↓/m↑ & 6.7) for a Li-K mixture.
Taking bosonic fluctuations into account, we find that in-
homogeneous condensates may already appear for mass
imbalances m̄ & 0.53 (m↓/m↑ & 3.2).

VI. SUMMARY

We have studied the phase diagram of mass- and spin-
imbalanced unitary Fermi gases in three dimensions, with
an emphasis on the detection of inhomogeneous conden-
sates. To this end, we have employed various approaches.
Since the formation of two-body bound states can be
viewed as a necessary condition for condensation, we have
analyzed the two-body problem in the presence of (inert)
Fermi spheres associated with the two spin components,
and computed the binding energy as well as the center-of-
mass momentum of the lowest lying bound state. This
helped us guide and analyze our studies of the many-
body phase diagram. Indeed, we have found that our

two-body bound-state problem allows us to understand
many features of the many-body phase diagram, such as
the emergence of a domain in parameter space governed
by a homogeneous condensate. Moreover, our study of
two-body bound states suggests the existence of a region
in the many-body phase diagram where an inhomoge-
neous condensate is formed, see Fig. 1.

Our explicit studies of the many-body problem indeed
confirm the qualitative picture of the phase diagram sug-
gested by the two-body problem. In particular, we have
only found indications of inhomogeneous phases in those
regimes of the many-body phase diagram in which also
the center-of-mass momentum of the lowest-lying two-
body bound state is finite. The agreement of the phase
boundary of the homogeneous superfluid and inhomoge-
neous phases with the lower bound for pairing with finite
center-of-mass momentum is only qualitative when we
consider a Fulde-Ferrell ansatz for the inhomogeneity in
our mean-field study. On the other hand, the agreement
of this lower bound with the instability line13 associated
with the homogeneous-inhomogeneous transition is stun-
ning for large m̄ & 0.5 in our RG mean-field study, which
does not rely on an explicit ansatz for the inhomogeneity.
Taking bosonic fluctuations into account in our RG study,
the latter two lines are still in accordance.14 For mass im-
balances m̄ . 0.5, the analysis of the two-body problem
still suggests the existence of a regime with bound states
with finite center-of-mass momentum. Our many-body
studies, however, suggest that inhomogeneous conden-
sates are unlikely to be found in this regime. This can be
traced back to the fact that only shallowly bound two-
body states exist there. Moreover, it also indicates that
macroscopic condensation of such bound states is not en-
ergetically favored.

For large m̄ & 0.5, on the other hand, a regime with
deeply bound two-body states with finite center-of-mass
momentum can be identified, suggesting that the forma-
tion of an inhomogeneous condensate is energetically fa-
vored. Indeed, we find that this regime overlaps with
the regime where homogeneous condensation is found in
our many-body analysis whenever inhomogeneous pair-
ing is not taken into account. Therefore, the instability
line found in our RG study including bosonic fluctuations
may indeed be identified with the transition line from a
superfluid phase with a homogeneous condensate to one
with an inhomogeneous condensate, at least for m̄ & 0.5.
Finally, for small mass imbalances m̄ . 0.25 we do not
find any indication of inhomogeneous phases, neither in

13 Recall that, for a fixed temperature, this line is defined by the
largest value of h̄ for which Aϕ,k still tends to zero at a finite
scale kbreak for a given value of m̄.

14 Note that a direct comparison of both lines is not possible at this
stage since we restricted ourselves to temperature T̄ ≥ 0.1 in our
RG study including bosonic fluctuations. As discussed above, a
study of even lower temperatures is numerically challenging and
costly and is therefore left to future work.
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our analysis of the two-body problem nor in our many-
body studies.

In summary, our RG study beyond the mean-field limit
suggests significant modifications to the mean-field ex-
tent of the various phases in parameter space. For ex-
ample, for the mass- and spin-balanced Fermi gas, we
find that the critical temperature T̄c agrees well with
state-of-the-art Monte Carlo studies, as already found
in recent RG studies [34, 66]. For small mass imbal-
ances, moreover, we find that the phase with a homo-
geneous condensate is extended to larger spin imbal-
ances |h̄| in agreement with a previous RG study of
the mass-balanced case [34]. For large mass imbalances,
however, we observe that the extent of the phase with
a homogeneous condensate shrinks in the h̄ direction.
Moreover, we find strong indications for the emergence
of an inhomogeneous phase in this regime. The ex-
tent of the latter phase in the h̄-direction actually in-
creases for increasing mass imbalance. Our estimate for
a lower bound on m̄ for the occurrence of an inhomo-
geneous condensate is m̄ ≈ 0.53. This value of m̄ cor-
responds to a mass ratio m↓/m↑ ≈ 3.2 which is con-
siderably lower than the mass ratio associated with a
Li-K mixture (m↓/m↑ ≈ 6.7). Since three-body effects
are expected to be significant for mass ratios associated
with the Li-K mixture and beyond (see, e.g., Refs. [71–
73]), future experimental searches for, e.g., signals of in-
homogeneous condensation in the regime m↓/m↑ & 6.7
are highly challenging. In this respect, our estimate for
the lower m̄-bound for the occurrence of inhomogeneous
phases may help to guide future experiments. Our results
suggest the existence of a much larger regime in parame-
ter space where inhomogeneous condensation may be de-
tected with a new variety of mixtures of fermion species
other than Li-K, but without suffering from three-body
effects.
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Appendix A: Regulator Functions

Apart from the very defining properties of a regulator
function Rk in the fRG formalism (see Ref. [63]), there
is considerable freedom in the choice concerning the pre-
cise shape of Rk which even allows to optimize the RG
flows, see, e.g., Refs. [74, 75]. Guided by these powerful
principles of optimization, we employ the following set of

functions for the fermion and boson fields, respectively:

Rψk (z) = k2 (sign(z)− z) θ (1− |z|) , z =
~q 2 − µ
k2

, (A1)

and

Rϕk (y) = Aϕ,kk
2(1− y)θ(1− y), y =

~q 2

2k2

(
1− m̄2

)
.

(A2)
Note that in both cases only spatial momenta are regu-
larized which allows us to perform the Matusbara sums
in the loop integrals analytically.

The bosonic regulator function Rϕk is the same as in
previous studies [48]. Only the argument has been mod-
ified by a factor (1− m̄2) to accommodate for the gener-
alized dispersion relation in the mass-imbalanced case.

Intuitively, the two fermion species should be regulated
separately, since their dispersion relations differ by con-
struction in the imbalanced case. This appears to be
particularly important since the presence of Fermi seas
in general requires fluctuations below and above the re-
spective Fermi levels to be treated differently. However,
the analytic computation of the frequency sum reveals
that in the critical cases, only an “averaged” Fermion
dispersion appears in the RG flow equations. Thus, the
“averaged” regulator (A1) is sufficient to render the in-
tegration over spatial momenta finite. The structure of
the flow equations is thereby greatly simplified. In con-
trast to the mass-balanced but spin-imbalanced case [34],
to our knowledge, an analytical computation of the mo-
mentum integrals is not possible. We add that IR observ-
ables from a RG flow controlled by the regulator func-
tion (A1) on the one hand and by separately regulated
fermion propagators on the other hand has found to agree
extremely well in the mass-balanced case, see Ref. [34].
We therefore expect that our choice (A1) can safely be
employed in the mass-imbalanced case as well.

Appendix B: Flow Equations

In this appendix we provide explicit expressions for the
flow equations of the effective potential and the boson
anomalous dimension ηA,k. Since they can be derived
largely along the lines of the balanced or spin-imbalanced
cases, we focus mainly on the peculiarities of the mass-
imbalanced case. For further details, we refer the reader
to earlier work, see, e.g., Refs. [34, 48–51].

1. Flow of the effective potential

The flow equation of the order-parameter potential
Uk(ρ) is obtained from

∂kUk=
1

2
STr

[
(∂kRk)·(Γ(2)

k +Rk)−1
]
ψ∗=ψ=ϕ2=0,ϕ1=

√
2ρ
.

Note that, for convenience, we have written the com-
plex boson field ϕ as a sum of its real and imaginary



15

parts, ϕ(τ, ~x) = 1√
2

[ϕ1(τ, ~x) + iϕ2(τ, ~x)]. Moreover, we

add that, due to the the fact that Uk only depends
on ρ = ϕ∗ϕ, the projection on ϕ1 = 2

√
ρ and ϕ2 = 0

can be applied without loss of generality. Eventually,

this yields

∂kUk =
1

k
ηA,kρU

′
k + [∂kUk]ψ + [∂kUk]ϕ (B1)

with

[∂kUk]
ψ

=
k4

2π2

∫ 1

max[−µ̃,−1]

dz̃

√
z̃ + µ̃√
1 + w3

∑
σ=±1

σNF

(
m̄(z̃ + µ̃)− h̃+ σ

√
1 + w3

)
, (B2)

[∂kUk]
ϕ

=

√
2k4

3π2

1

(1− m̄2)
3
2

(
1− ηA

5

)[√1 + w1

1 + w2
+

√
1 + w2

1 + w1

] [
1

2
+NB

(√
1 + w1

√
1 + w2

)]
. (B3)

Here, NF and NB correspond to the Fermi and Bose-
Einstein distribution functions, respectively:

NF(x) =
1

ex/T̃ + 1
, NB =

1

ex/T̃ − 1
. (B4)

Furthermore, the following quantities have been intro-
duced:

w1 =
U ′k
k2
, w2 =

U ′k + 2ρU ′′k
k2

, w3 =
h2
ϕρ

k4
. (B5)

Quantities Q divided by a factor k2 are written as Q̃, e.g.
µ̃ = µ/k2.

Since ∆k = h2
ϕρ = k4w3, Eq. (B2) does not depend

solely on ρ. This allows us to identify the solution from
standard mean field theory with the solution of the purely
fermionic flow of Uk in the limit k → 0, as discussed at
the end of sect. V A. Furthermore, we note that

lim
T→0

NF(x) = θ(−x) . (B6)

Thus, the right-hand side of Eq. (B2) becomes non-
analytic in the zero-temperature limit. While the flow
of Uk in principle exists for arbitrarily small but finite T ,

the “steepness” of the Fermi function makes the numer-
ical treatment increasingly challenging as T is lowered.

2. Boson anomalous dimension

In order to extract the running of the wavefunction
renormalization parameter Aϕ,k via the boson anomalous
dimension ηA,k = −k∂k lnAϕ,k, the following projection
rule is employed:

ηA,k = − k

Aϕ,k

2

1− m̄2

∂

∂~q 2
∂k
[(
P̄ϕ
)

12
(0, ~q)

]
~q=0

≡ ηψ,1A,k + ηψ,2A,k + ηϕA,k ,

(B7)

where (
P̄ϕ
)

12
(q0, ~q)δ

(4)(p− q)

=

→
δ

δϕ̄1(−p)Γk

←
δ

δϕ̄2(q)

∣∣∣∣∣
ψ∗=ψ=ϕ2=0,ϕ1=

√
2ρ0,k

.
(B8)

Note that we do not consider a ρ-dependent ηA,k. In-
stead, ηA,k is projected onto the k-dependent minimum
ρ0,k of the effective potential. The explicit expressions
for the different contributions to ηA,k are given by:

ηψ,1A,k =
1

1− m̄2

h2
ϕ

6π2k(1 + w3)
3
2

∑
σ,κ=±1

(µ̃+ κ)
3
2 θ (µ̃+ κ)[

σNF

(
m̄(µ̃+ κ)− h̃− σ

√
1 + w3

)
+
√

1 + w3N
′
F

(
m̄(µ̃+ κ)− h̃− σ

√
1 + w3

)]
,

(B9)

ηψ,2A,k =− h2
ϕm̄

2

6π2k(1− m̄2)

∫ 1

max[−µ̃,−1]

dz̃
(z̃ + µ̃)

3
2

(1 + w3)
5
2

∑
σ=±1

[
3σNF

(
m̄(z̃ + µ̃)− h̃+ σ

√
1 + w3

)
−3
√

1 + w3N
′
F

(
m̄(z̃ + µ̃)− h̃− σ

√
1 + w3

)
− σ(1 + w3)N ′′F

(
m̄(z̃ + µ̃)− h̃− σ

√
1 + w3

)]
,

(B10)

ηϕA,k =
ρ0U

′′
k

2

(1− m̄2)
3
2

√
2

3π2k

1

[(1 + w1)(1 + w2)]
3
2

[
1 + 2NB

(√
1 + w1

√
1 + w2

)
− 2N ′B

(√
1 + w1

√
1 + w2

)]
. (B11)
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Here, the primes denote derivatives of the thermal dis-
tribution functions with respect to their arguments,
N ′F/B(x) ≡ ∂NF/B(x)/∂x, and the wi’s are understood

to be evaluated at ρ = ρ0,k.
The contributions in Eqs. (B9) and (B11) represent

straightforward extensions of their mass-balanced ana-

logues. The situation is different for ηψ,2A,k since it is not
even present in the mass-balanced case. It becomes im-
portant only at relatively large mass imbalances since it
is proportional to m̄2/(1− m̄2).

Taking a closer look at the bosonic contribution ηϕA,k,
it becomes clear why a finite ρ0,k may have such an enor-

mous influence on the RG flow of the theory (see also
Fig. 7): ηϕA,k vanishes identically in the U(1)-symmetric
regime, i.e. for ρ0,k = 0.

It is not too surprising that bosonic fluctuations are
generally amplified by mass imbalance. This becomes
apparent by the fact that both ηϕA,k and [∂kUk]ϕ are pro-

portional to (1 − m̄2)−
3
2 . A detailed analysis how this

affects the properties and the extent of inhomogeneous
phases for large m̄ is left to future work.
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