
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Green-function approach to the theory of tunneling
ionization

I. I. Fabrikant and L. B. Zhao
Phys. Rev. A 91, 053412 — Published 18 May 2015

DOI: 10.1103/PhysRevA.91.053412

http://dx.doi.org/10.1103/PhysRevA.91.053412


Green’s function approach to the theory of tunneling ionization

I. I. Fabrikant1 and L. B. Zhao1,2

1Department of Physics and Astronomy,

University of Nebraska, Lincoln, Nebraska 68588-0299, USA

2Key Laboratory for Photonic and Electronic Bandgap Materials,

Ministry of Education, and School of Physics and Electronic Engineering,

Harbin Normal University, Harbin 150025, China

Abstract

We solve the problem of tunneling ionization of a multielectron atom in a static electric field

by using the Green’s function for the Stark-Coulomb problem. This allows us to incorporate the

outgoing-wave boundary conditions at infinity. The interaction of the active electron with the

atomic residue is described either by a model potential or by the l-dependent pseudopotential

which prevents virtual transitions to orbitals occupied by inner electrons. The method works well

in the broad range of electric fields including the region above the classical ionization threshold (the

barrier-suppression region). Calculations of ionization of Ar demonstrate a noticeable difference

between the model potential approach and the pseudopotential approach, but both sets of results

agree with experimental data.

PACS numbers: 32.60.+i, 32.80.Rm
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I. INTRODUCTION

Quantum tunneling is one of fundamental problems in physics. In the area of atomic and

molecular physics tunneling is usually associated with ionization of atoms and molecules in

external electric fields. Tunneling is the first stage of processes which involve rescattering,

such as two-electron nonsequential ionization [1] and high-order harmonic generation [2].

Although in general we are interested in tunneling in alternating (ac) fields, in the limit of

small frequencies, or high intensities, when the Keldysh parameter [3] is small, the problem

can be described in terms of ionization in a static (dc) field [4]. For ionization of the hydrogen

atom, this problem can be solved with an arbitrary accuracy [5] due to separability of the

corresponding Hamiltonian in parabolic coordinates. For many-electron atoms the situation

is different. Even in the approximation of one active electron (occupying the highest atomic

orbital), the exact formulation of the problem presents big challenges. These challenges are

usually associated with incorporation of the proper (outgoing-wave) boundary conditions at

infinity. Most of the methods used so far for tunneling ionization are based on additional

approximations. The most popular among them is the PPT theory based on the semiclassical

work of Smirnov and Chibisov [6] and Perelomov et al [4]. Later this theory was used in Ref.

[7], and has been often called by the acronym ADK since then. This theory assumes that the

region of atomic field dominance and electric field dominance do not overlap. Apparently this

assumption breaks down for higher fields. Indeed, calculations with more accurate methods

show that whereas ADK equation works well for weak fields, it overestimates the actual

ionization rate by a factor of 2 to 3 near the classical ionization threshold. At fields above

this threshold, called the barrier-suppression region, the ADK theory is not supposed to

work at all. Nevertheless, many authors used the ADK equation in this region as a suitable

extrapolation formula. Tong and Lin [8] suggested an empirical modification of this formula

which introduces an exponential factor suppressing the difference between the ADK formula

and exact calculations as the field grows. The problem with this extrapolation is that

the suppression factor decreases with the electric field F whereas theoretical considerations

[9, 10] suggest that in the barrier-suppression region the ionization rate should grow linearly

with F . Another improvement of the ADK theory based on the partial Fourier-transform

approach was recently developed by Murray et al [11].

A more accurate method developed for electron ionization in the presence of an ac field
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is the explicit numerical solution of the time-dependent Schrödinger equation using a finite-

difference representation for the wave function [12]. For multielectron atoms model poten-

tials, representing the effective field due to the nucleus and other electrons, are introduced.

The Schrödinger equation is solved with the outgoing-wave boundary conditions. However,

these conditions are difficult to implement computationally, particularly in the case of a

static field [13]. An additional complication is that the resulting Hamiltonian is non-self-

adjoint [14].

Another method widely used in dc and ac ionization problems is the complex scaling

[15]. However, its implementation also contains numerical difficulties as there is no complete

mathematical theory for the application of complex scaling to time-dependent problems [14].

Although in the present paper we are dealing with the problem of the static-field ionization,

its results can be used in the adiabatic theory of ionization in ac fields [16, 17].

Several other theories are based on semiclassical propagation of the electron wave function

from the inner region dominated by the atomic field to the outer region dominated by the

electric field. This can be accomplished, for example, by the complex-time method [18–

20]. This method, due to its semiclassical character, fails close to the classical ionization

threshold.

Apparently we need an one-electron theory of ionization in a static field which can give

the answer with an arbitrary accuracy, similar to that developed for the hydrogen atom

[5, 21]. Recently such a theory was developed by Batishchev et al [22]. It is based on the

solution of equations involving nonadiabatic coupling between parabolic channels caused

by deviation of the atomic potential from a pure Coulomb potential. The authors have

calculated ionization rates and the transverse momentum distribution of ionized electrons

for rare-gas atoms.

In the present paper we develop an alternative method incorporating the correct boundary

condition by using the Green’s function for the electron in the superposition of the Coulomb

and electric fields. A similar method was used before for calculations of the decay rate of

negative ions in electric fields [23] and for calculations of molecular Rydberg states [24, 25].

We calculate the ionization rate for Ar atoms in a wide range of electric fields and compare

the results with the ADK theory and its empirical modification [8]. Atomic units (a.u.) are

used throughout the paper.
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II. THEORY

A. Basic equations

We approximate the problem by the one-electron Hamiltonian with the potential [26]

V (r) = U(r) + Fz, (1)

where F is the force on the electron due to the external field (directed along the negative

z axis), and U(r) is a one-electron potential describing electron interaction with the rest of

the atom. Generally it is a nonlocal operator whose form is [27]

U(r) =
∑

lm

|Ylm〉Ul(r)〈Ylm|, (2)

where Ul(r) is a partial potential for a specific value of the angular momentum l.

We divide now the whole space into two regions separated by a spherical surface of radius

r0 that should be chosen such that at r > r0 the equation

U(r) = −Z
r

is valid with a good accuracy. Here Z is the charge of the ion residue. In particular, for

ionization of neutral atoms Z = 1.

At r < r0 we seek the solution of the Schrödinger equation in the form

ψm(r) =
∑

ll′

Am
l′
χm
ll′(r)

r
Ylm(r̂), (3)

where m is the conserved projection of the angular momentum on the z axis. (To simplify

notations from now on we drop index m from ψ, χ and A). In the radial function χll′(r)

the first index lists different channels, and the second different solutions. The unknown

coefficients Al′ are determined from the boundary conditions at r → ∞.

The radial functions χll′(r) satisfy the following set of coupled equations
[

d2

dr2
+ 2E − l′(l′ + 1)

r2
− 2Ul′(r)

]

χl′l(r)− 2F
∑

l
′′

(z)l′l′′χl′′ l(r) = 0 (4)

which are solved by numerical integration. The function ψ(r) should be matched with the

external solution satisfying the outgoing-wave boundary condition. This can be achieved by

writing a Kirchhoff-type integral equation [23]
∫

[G(r, r′)∇rψ(r)− ψ(r)∇rG(r, r
′)]dr̂ = 0, (5)
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where r′ < r, G(r, r′) is the Green’s function for electron motion in the superposition of the

Coulomb field and the external field (or the Stark Green’s function), corresponding to the

outgoing-wave boundary condition, and the integration is performed over the surface of the

sphere of radius r. Alternatively, if r′ > r, we have

∫

[G(r, r′)∇rψ(r)− ψ(r)∇rG(r, r
′)]dr̂ = 2ψ(r′). (6)

This representation can be used for calculation of the electron flux distribution in the position

and momentum space at r′ ≫ r0.

Projecting Eq. (5) on the spherical harmonic Yl′m(r̂
′) and taking the limit r = r0,

r′ → r0 − 0, we obtain a system of homogeneous algebraic equations for the coefficients Al

∑

l

AlMl
′′
l = 0 (7)

where

Ml′′ l =
∑

l′

[

〈l′′m|G|l′m〉dul′l
dr

− 〈l′′m|∂G
∂r

|l′m〉ul′l
]

(8)

where r = r0, r
′ = r0 − 0, ul′l(r) = χl′l(r)/r. The eigenenergy E is found as a solution of

the equation

detMl′′ l = 0. (9)

Because of the outgoing-wave boundary condition, the energy E is complex and is repre-

sented in the form

E = E0 +∆− i
Γ

2
(10)

where E0 is the unperturbed energy of the stationary state, ∆ is the energy shift, and Γ is

the decay width which is the same as the ionization rate in a.u. At weak fields

∆ = −1

2
αF 2 (11)

where α is the dipole polarizability of the atom.

Like in any theory requiring matching of the internal and external wavefunctions, the

matching radius r0 enters the calculations, but the physical results should not depend on it.

In our case the matching radius should be such that at r > r0 the atomic potential U(r) is

pure Coulombic. On the other hand, r0 should not be too large, otherwise the expansion

(3) is converging too slowly. In practical calculations for Ar we varied r0 between 4.5 and 7

a.u. without noticeable change of the result for Γ.
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B. Green’s function

In the parabolic coordinates ξ = r + z, η = r − z, φ = tan−1(y/x) the Stark Green’s

function [28] has the form

G(r, r′) =
1

2π

∑

βm

gZβ (η, η
′)

(ηη′)1/2
uβ(ξ)uβ(ξ

′)

(ξξ′)1/2
eim(φ−φ′) (12)

where β, uβ(ξ) are eigenvalues and eigenfunctions of the equation
(

d2

dξ2
+

1−m2

4ξ2
+
β

ξ
− F

4
ξ +

E

2

)

uβ(ξ) = 0, (13)

and gZβ (η, η
′) is the Green’s function for the motion along the η coordinate satisfying the

equation
d2gZβ (η)

dη2
+

(

1−m2

4η2
+
Z − β

η
+
F

4
η +

E

2

)

gZβ (η) = 2δ(η − η′). (14)

gZβ (η, η
′) can be calculated as

gZβ (η, η
′) =

2v+β (η>)v
r
β(η<)

W (vrβ, v
+
β )

(15)

where η<, η> are lesser or greater of η, η′, v+β (η) is the solution of the corresponding ho-

mogeneous equation satisfying the outgoing-wave boundary condition, vrβ(η) is the solution

regular at the origin, and W (vrβ, v
+
β ) is the constant Wronskian of these two solutions. The

function v+β (η) at η → ∞ behaves as

v+β (η) ∼ Bi(−x) + iAi(−x)

where

x =

(

η +
2E

F

)(

F

4

)1/3

and Ai, Bi are standard regular and irregular Airy functions. This form of v+β (η) guarantees

the outgoing-wave (or Siegert) boundary condition.

Because of the invariance of the Eqs. (13), (14) under transformation m→ −m, the sum

in Eq. (12) can be limited to m ≥ 0 by the replacement

exp[im(φ − φ′)] → (2− δm0) cos[m(φ− φ′)].

However, even after this reduction, the sum in Eq. (12) converges slowly, therefore we use

the closure procedure in the form

G(r, r′) = G(0)(r, r′) + ∆G(r, r′) (16)
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where G(0)(r, r′) is the Green’s function without inclusion of the Coulomb field, and ∆G(r, r′)

is a correction that can be written as

∆G(r, r′) =
1

2π

∑

βm≥0

gZβ (η, η
′)− g0β(η, η

′)

(ηη′)1/2
u(ξ)u(ξ′)

(ξξ′)1/2
(2− δm0) cos[m(φ− φ′)]. (17)

This sum converges very rapidly, and for most fields of our interest one term is sufficient.

The Green’s function G(0)(r, r′) is known in a closed analytical form [29]

G(0)(r, r′) = − 1

2|r− r′|(f1f
′
2 − f ′

1f2) (18)

where f1, f2 are Airy functions defined as

f1 = Ai(ζ0 − ζ1) f2 = Bi(ζ0 − ζ2) + iAi(ζ0 − ζ2) (19)

ζ0 = −2E/(2F )2/3 ζ2,1 =
1

2
(2F )1/3(z + z′ ± |r− r′|) (20)

and the primed symbols in Eq. (18) indicate derivatives with respect to the arguments of

the Airy functions. Again, like in Eq. (15) the choice of the specific Airy function for f2

guarantees the outgoing-wave boundary conditions.

Since both G and G(0) are singular at r′ → r, we introduce the regular Green’s function

Gr

G(r, r′) = − 1

2π|r− r′| +Gr(r, r
′). (21)

Gr can be calculated as

Gr(r, r
′) = G(0)

r (r, r′) + ∆G(r, r′) (22)

where ∆G is given by Eq. (17).

C. Final equations

After substitution of Eqs. (21), (22) into Eq. (8), all singular terms can be evaluated

analytically. Expanding the 1/|r− r′| term in spherical harmonics, we obtain for r = r′

〈

l′m

∣

∣

∣

∣

1

|r− r′|

∣

∣

∣

∣

lm

〉

=
4π

(2l + 1)r
δll′

and
〈

l′m

∣

∣

∣

∣

∂

∂r

1

|r− r′|

∣

∣

∣

∣

lm

〉

= − 4π(l + 1)

(2l + 1)r2
δll′.
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The required derivative of the Green’s function G(0)(r, r′) can be also obtained in an ana-

lytical form. Writing

∂

∂r
G(0)(r, r′) =

1

2

[

s(r, r′) +
1

π

]

∂

∂r

1

|r− r′| +
1

2|r− r′|
∂

∂r
s(r, r′)

where

s(r, r′) = −f1f ′
2 + f ′

1f2,

as defined in Eqs. (18)-(20), we find first

∂

∂r

1

|r− r′| = − 1

2r|r− r′| , r = r′.

To find the derivative of s(r, r′), we use the equations

f
′′

1 = (ζ0 − ζ1)f1, f
′′

2 = (ζ0 − ζ2)f2,

following from the Airy equation, and

∂

∂r
(ζ2 + ζ1) = (2F )1/3 cos θ,

∂

∂r
(ζ2 − ζ1) = (2F )1/3

(

1− cos θ12
2

)1/2

where θ12 is the angle between r and r′.

Finally

∂

∂r
(f ′

1f2 − f1f
′
2) = (2F )1/3

(

1− cos θ12
2

)1/2

h(r, r′)

where

h(r, r′) =
(2F )1/3

4r
[−f ′

1f
′
2 + ζ0f1f2 −

1

2
(2F )1/3r(3 cos θ + cos θ′)f1f2], (23)

and we obtain the following equation for the matrix Ml′l convenient for calculations

rMl′l =
∑

l′′

〈

l′m

∣

∣

∣

∣

dχl
′′
l

dr
(G(0)

r +∆G)− χl′′ l

[

1

2r
G(0)

r + h +
1

r
∆G+

∂∆G

∂r

]
∣

∣

∣

∣

l
′′

m

〉

(24)

+
1

πr(2l′ + 1)

[

dχl′l

dr
+
l′

r
χl′l

]

where all quantities are calculated at r = r′ = r0.

D. Analytical continuation

To solve Eq. (9) we need to calculate the M matrix for complex energies. This means

evaluation of the solution set χll′ and the Green’s function for complex E. To avoid related
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complications, as a first step towards solution of the problem, we use the method of analytical

continuation. That is, we calculate detM for several real energies close to the unperturbed

energy E0 and approximate the results by a polynomial

detM =
∑

n

cn(E −E0)
n. (25)

The complex energy is obtained as an appropriate zero of this polynomial. We first tried

this method for the zero-range potential problem [30] and the hydrogen-atom problem.

In the former case we obtained an excellent agreement between the method of analytical

continuation and the direct solution of the corresponding transcendental equation in the

complex plane. In the hydrogen atom case we obtained a very good agreement with the

results of Damburg and Kolosov [5, 21] for the ground and excited states.

Calculations for the Ar atom showed that the procedure is very stable below the field Fc

corresponding to the classical ionization limit. In this region even the linear approximation

for detM produces correct results. However, the procedure becomes unstable for higher

fields and requires averaging over several calculations involving different approximations for

detM . With such an average we are able to perform calculations for ionization of the Ar

atom (ionization potential 0.579 a.u., Fc = 0.084 a.u.) for fields up to 0.2 a.u. For stronger

fields more direct methods based on calculation of the solution set χll′(r) and the Green’s

function for complex energies are necessary.

E. Atomic potentials

Since many calculations of strong-field ionization incorporate the single active electron

model, it is customary to introduce a model central-field potential U(r) representing the

field of the nucleus and the effective field of the other electrons [31]. At small distances this

potential behaves as −ZN/r, where ZN is the nuclear charge. Tong and Lin [8], using the

density-functional theory for rare-gas atoms, obtained effective potentials which were used

by other authors [32] for laser ionization calculations. Model potentials were also used for

calculation of static-field ionization [22]. However, this type of the potential does not take

into account the Pauli exclusion principle preventing the active electron from transitions to

lower states occupied by inner electrons. As a result, in the presence of an external field,

the electron can be involved in virtual transitions to lower states. This reduces the dipole
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polarizability of the atom and can make it even negative leading to the wrong sign of the

Stark shift according to Eq. (11).

To avoid such a spurious effect, we need to use a pseudopotential containing a repulsive

core which prevents formation of states with energies lower than that of the highest occupied

orbital. In the case of Ar, for example, the lowest state generated by the pseudopotential

should have the p symmetry and no nodes, in contrast to the actual 3p orbital having one

node. The excited state should have the s symmetry, also with no nodes, in contrast to the

4s orbital with three nodes. Obviously such a potential should be dependent on the angular

momentum l and can be represented in the form (2). The repulsive core due to the Pauli

exclusion principle can be modelled as [33, 34]

Urep(r) =
B

rn
e−βr

where n is an integer, and B, β fit parameters. In the present paper we have chosen the

following form of the partial potential Ul(r)

Ul(r) = −Zn

r
e−αr +

B

r3
e−β∗r − Z

r
. (26)

The parameter Zn not necessarily equals the nuclear charge, since at low energies the electron

does not penetrate deeply into the atomic core. Therefore all the parameters in Eq. (26),

except Z, are considered as l-dependent fitting parameters which should reproduce the main

features of the corresponding bound state: binding energy, expectation value of r, 〈r〉, and
the shape of the atomic orbital outside the atomic core.

TABLE I: Pseudopotential parameters for Ar. Expectation values of r for the 4s and 3p orbitals

are calculated with the present pseudopotential and the model potential of Tong and Lin [8].

l Zn α B β 〈r〉 〈r〉 (model)

0 2.3 2.2 5.215 0.50 4.940 4.977

1 10.0 1.2 1.709 0.50 1.536 1.665

≥ 2 2.3 2.2 0. – – –

Table I presents the list of parameters and expectation values of 〈r〉 for the 4s and 3p

orbitals calculated with the present pseudopotential and the model potential of Tong and

Lin [8]. At l ≥ 2 the exact form of the potential is not important because of the dominance

of the centrifugal barrier, therefore we use the same parameters for all l exceeding 1.
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FIG. 1: (Color online). Ar 3p and 4s orbitals. Black solid curves: pseudoorbitals. Red dashed

curves: orbitals calculated with the model potential of Tong and Lin [8].

In Fig. 1 we present 3p and 4s orbitals χ(r) = ru(r) for Ar calculated for the model

potential of Tong and Lin [8] and compare them with p and s pseudo-orbitals. The node

of the 3p orbital is located at the distance r = 0.50 a.u. from the nucleus and should

not influence the tunneling process. However, the different shapes of the s orbitals and the

existence of lower s (mainly 3s) orbitals in the model potential make the static polarizability

and the Stark shift quite different. Calculations show that the Ar polarizability calculated

with the model potential is 1.95 a.u., whereas that calculated with the pseudopotential is

about 6.5 a.u. However, even the latter is substantially lower than the actual polarizability

of Ar, 11.1 a.u. The disagreement is apparently due to the one active electron approximation

used in the present calculations.
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F. Asymptotic coefficient

An important characteristic of an atomic orbital is the coefficient Cl appearing in the

asymptotic behavior of the orbital

ul(r) ∼ Clr
Z/κ−1e−κr, κ = (−2E)1/2. (27)

In particular the ADK ionization rate is proportional to C2
l . This asymptotic value is

actually achieved at very large distances well beyond the core of the atom. To demonstrate

this, in Fig. 2 we plot the quantity

C1(r) = ul(r)r
−Z/κ+1eκr (28)

as a function of r for two types of orbitals, one obtained from the model potential, and

the other from the pseudopotential. Both approach their asymptotic values very slowly and

don’t reach them even at r = 14 a.u. This creates a problem in application of the ADK

theory. Indeed, the original tunneling theory [6] assumes that the asymptotic behavior (27)

is reached in the region where the electric field can still be neglected as compared to the

Coulomb field. Apparently such an assumption can be made only for distances r < (Z/F )1/2,

or r < 5 a.u. if Z = 1, F = 0.04 a.u. To fix this deficiency one may suggest that Cl(r)

should be taken not at r = ∞ but at r = (Z/F )1/2. However, this suggests that Cl grows

with F that contradicts the semiempirical extrapolation formula of Tong and Lin [8].

In what follows, when comparing our results with the ADK theory, we will be using the

value of the coefficient C1 for Ar following from the model potential of Tong and Lin [8],

C1 = 2.44 a.u., but because of the aforementioned inconsistency, it is not clear what is the

accuracy of the obtained ADK rate.

III. AR IONIZATION RATES

In Fig. 3 we present the ionization rate for the 3p0 orbital of Ar as a function of the

electric field in the field range close to the classical ionization threshold, Fc = 0.084 a.u.,

and above it up to F = 0.2 a.u. The ionization rate for the 3p1 orbital is significantly

smaller and is not included in the present calculation. To simplify the comparison with

other theories, we do not multiply the rate by the occupation number 2 for the 3p0 orbital,

although this is actually necessary to obtain the correct magnitude of the ionization rate
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FIG. 2: (Color online). The function Cl(r), Eq. (28), for the Ar 3p orbital. Black solid curves:

pseudopotential calculation. Red dashed curves: model potential calculation.

[35]. For comparison with the ADK formula we use its modification proposed by Damburg

and Kolosov [5] who suggested to use the Stark-shifted energy when calculating the decay

width by the asymptotic formula. Since for the ground state the Stark shift is negative,

this modification reduces the ionization rate and improves agreement with more accurate

calculations. When calculating the Stark shift we used Eq. (11) with the actual polarizability

of Ar, α = 11.1 a.u., although the present calculations give a lower effective polarizability, as

discussed in the previous section. In addition, at high fields the perturbation theory for the

Stark shift is not supposed to work. Still, the Damburg-Kolosov modification overestimates

the ionization rate by a factor of 5 at F = 0.16 a.u. whereas the original ADK formula

overestimates the ionization rate by a factor of 8.

Results of the calculations with the model potential of Tong and Lin are very close to
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FIG. 3: (Color online). Ionization rates for the 3p0 orbital of Ar. Lower black curve: calculation

with the model potential of Tong and Lin [8]. Blue dotted curve: calculation with the pseudopoten-

tial. Red dashed curve: semiempirical formula of Tong and Lin. Upper black curve ’ADK (mod)’:

ADK theory with the Stark-shifted energy.

their semiempirical formula. The calculations with the pseudopotential, corresponding to a

higher polarizability of Ar, produce a lower rate at lower fields. However, the rate grows

faster with F at F > 0.12 a.u. and starts to exceed the model-potential rate at F = 0.18

a.u. The difference, however, is substantially smaller than the difference between the ADK

rate and the numerical rate. The fact that the pseudopotential rate is lower than the model

potential rate at low fields, can be explained by higher effective polarizability which makes

the Stark-shifted state to lie lower.

Batishchev et al [22] calculated ionization rates for rare-gas atoms in a broad range of fields

up to 1 a.u. Their method incorporates nonadiabatic coupling between parabolic channels
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and employs model potentials [31]. We find good agreement with their results for Ar in the

range of fields considered in the present paper. We also note that our pseudopotential results

demonstrate linear growth with F for F > 0.15 a.u. that is consistent with the theoretical

prediction for hydrogen [9, 10]. However, in the model potential approach the linear regime

is reached at substantially higher fields. This is confirmed by calculations of Batishchev et

al [22] which demonstrate the linear behavior at F > 0.5 a.u. In this connection we should

emphasize the limited range of validity of the semiempirical extrapolation formula [8] which,

in contrast to the linear growth, predicts exponential suppression at higher fields.
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To compare results of static-field ionization theory with experiments performed with ac

fields, the static ionization rate Γ has to be converted into the ac rate Γdyn according to the

equation [4, 7]

Γdyn =

√

3F

πκ3
Γ.

In Fig. 4 we compare the dependence of the ionization rate on the laser intensity with

experimental ionization probability measured by Guo et al [36] with the Ti:sapphire laser of

wavelength 800 nm and pulse duration 30 fs. Since the experimental results are relative, we

normalize them to the theoretical value, obtained with the model potential, at the intensity

I = 2×1014 W/cm2. Note that in this figure the ionization rate incorporates the occupation

number (2) of the 2p0 orbital. This factor is necessary to obtain the correct absolute value

of Γ [35]. The overall agreement is very good except the low-intensity region below I = 1014

W/cm2 where the Keldysh parameter exceeds 1 and the the static-field approximation starts

to fail. Note that the classical ionization threshold corresponds to the intensity I = 2.48×
1014 W/cm2.

Regarding the high-intensity region, we should note that whereas at low laser intensities

the ionization probability w is proportional to the ionization rate Γ, at higher intensities the

probability should be calculated as [8]

w = 1− exp[−
∫

Γ(F (t))dt] (29)

where F (t) is the laser field amplitude as a function of time. For a 30-fs laser pulse the

saturation, i.e. deviation from w ∝ Γ, is reached at about Is = 3 × 1014 W/cm2. This can

be seen from the figure showing that the experimental probability is growing slower than

the theoretical rate at I > Is where Eq. (29) should be used. Spatial effects can play role

too [37]. However, a detailed comparison with experiments is not a primary purpose of the

present paper, and Fig. 4 serves just illustrative purposes.

It is interesting that even at the low intensity I = 0.56 × 1014 W/cm2, corresponding

to F = 0.04 a.u., the ADK result exceeds the present result by the factor 1.9. For the

hydrogen-atom problem the asymptotic (“ADK”) formula gives

Γas =
4

F
e−2/(3F )

whereas the exact result for F = 0.04 a.u. is Γ = 0.389 × 10−5 a.u. [5], therefore Γas/Γ =

1.485. Although for both atoms at lower fields numerical results converge to corresponding
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asymptotic values, apparently this convergence for Ar is slower than for hydrogen. This

difference can be explained by the uncertainty in determination of the asymptotic coefficient

Cl for multielectron atoms, as discussed in Sec. II F: for the hydrogen atom the asymptotic

form of the 1s orbital is exact and valid in the whole space, whereas for a complex atom

like Ar the asymptotic form is reached only at large r where the electric-field effects are

substantial even for the field as small as 0.04 a.u.

Otobe et al [13] calculated the Ar ionization rate as a function of intensity in the range of

intensities between 0.3×1014 and 1.4×1014 W/cm2 using the absorbing boundary conditions.

Surprisingly, their ionization rates exceed the ADK rates in the whole range of covered

intensities. This overestimate of the ionization rate is probably due to spherical symmetry

of their absorption potential which does not correspond to the parabolic symmetry of the

problem. Comparison with the semiclassical results obtained by the complex time method

[20, 35] shows a good agreement with the present calculations at F < Fc. However, this

method fails when F is close to Fc.

IV. CONCLUSION

Incorporation of outgoing-wave boundary condition in calculations of the static-field ion-

ization rates often presents a big challenge to theory. In the present paper we have proposed

a method based on the use of the Green’s function in the superposition of the laser and the

Coulomb fields. It works below as well as above the classical ionization limit. Our method

is an alternative to a recently developed theory [22] based on inclusion of nonadiabatic

coupling between parabolic channels by employing the slow-variable discretization method

[38]. In addition to calculation of complex energies of the quasistationary (Siegert) states,

Batishchev et al [22] calculated the transverse momentum distribution of the ionized elec-

trons. The present method also allows this calculation by using Eq. (6) for the wavefunction

at r′ ≫ r0.

Both methods are in principle exact in the sense that for a given atomic potential ion-

ization rate can be calculated with an arbitary accuracy. However, the present method is

able to incorporate l-dependent pseudopotentials for description of the electron-atom in-

teraction. Our method is computationally less demanding for weaker fields (below about

2Fc). However, for stronger fields the method of analytical continuation employed in the
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present paper becomes unstable, and calculations of the Green’s function directly at complex

energies becomes necessary.

A generalization of the present method to tunneling ionization of molecules with arbitrary

orientation with respect to the static field is straightforward. Since for not very weak fields

the Keldysh characteristic time

τ =

√
−2E

F

is significantly shorter than the rotational period, the approximation of the fixed molecular

orientation can be used. If molecules are randomly oriented, the fixed-nuclei result can be

averaged over molecular orientations, see, for example, [35, 39] and references therein.

A more challenging task is the extension of the present method to time-dependent laser

fields. For inclusion of the rescattering effect, the time-dependent Green’s function (or what

can be called the Coulomb-Volkov propagator) should be incorporated. The basic idea was

presented by Popov [18], but his basic equations contain a simplified form of the propagator,

not including the Coulomb field. In this case, according to Feynman [40], the propagator is

simplified significantly. Such a propagator corresponds to the very commonly used strong

field approximation. The Coulomb effect has been treated in the form of a correction to

the action functional [18, 19]. For a more accurate inclusion of the Coulomb field in the

propagator semiclassical methods [41, 42] can be applied.
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