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Abstract

We describe a new theoretical approach to molecular photoionization that includes first-order

corrections to the dipole approximation. The theoretical formalism is presented and applied to

photoionization of H2 over the 20–180 eV photon energy range. The angle-integrated cross section

σ, the electric dipole anisotropy parameter βe, the molecular alignment anisotropy parameter βm,

and the first-order nondipole asymmetry parameters γ and δ were calculated within the single-

channel, static-exchange approximation. The calculated parameters are compared with previous

measurements of σ and βm and new measurements of βe and γ + 3δ. The dipole and nondipole

angular distribution parameters were determined simultaneously using an efficient, multi-angle

measurement technique. Good overall agreement is observed between the magnitudes and spectral

variations of the calculated and measured parameters. The nondipole asymmetries of He 1s and

Ne 2p photoelectrons were also measured in the course of this work.
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I. INTRODUCTION

Photoionization of H2 is of fundamental interest and is an important process in astronom-

ical environments [1, 2]. H2 is a two-electron system, like atomic He, but with the additional

complexities of nonspherical structure and nuclear degrees of freedom. Several aspects of

molecular photoionization have been studied in H2, beginning with the total and dissociative

photoionization cross sections [2–4]. Other aspects include ion–pair formation [5], double

photoionization [6], vibrational autoionization [7], rotational and vibrational structure in the

photoelectron spectrum [8, 9], resonant photoionization involving doubly excited states [10–

12], and the photoelectron [13] and photoion [6, 14] angular distributions. Other research

includes a study of competition between photodissociation and photoionization [15], non-

perturbative time-dependent calculations of ionization by femtosecond xuv laser pulses [16],

strong–field infrared laser ionization [17], and symmetry breaking in dissociative photoion-

ization [18]. Those processes can be understood and treated within the dipole approximation

to the photon-electron interaction. Here we discuss a new aspect of H2 photoionization –

nondipole asymmetries of photoelectron angular distributions.

Nondipole interactions produce asymmetries in photoelectron angular distributions that

are neglected in the dipole approximation. A measureable effect of these interactions is

to redistribute the differential photoionization cross section asymmetrically in the forward

and backward directions with respect to the photon propagation vector. Early theories

of the photoeffect were geared toward x-ray photoionization and large kinetic energies, and

nondipole asymmetries were treated by retardation corrections in the point–Coulomb poten-

tial [19, 20]. This model neglects screening and may be inaccurate as the energy is lowered

toward threshold [21–23]. Recent theories adopt the “first retardation correction” to the

dipole approximation, which includes cross terms of electric dipole (E1) photoionization

amplitudes with electric quadrupole (E2) and magnetic dipole (M1) amplitudes [21, 22, 24–

26]. For photoionization of randomly oriented atoms or molecules by a linearly polarized

photon beam, the differential cross section can be expressed as [24]

dσ

dΩ
(θ, φ) =

σ

4π

{
1 + βeP2(cos θ) + (δ + γ cos2 θ) sin θ cosφ

}
, (1)

where σ is the angle-integrated cross section, βe is the electric dipole anisotropy parameter,

P2(cos θ) = (3 cos2 θ−1)/2 is the second Legendre polynomial, and δ and γ are the first-order

nondipole asymmetry parameters resulting from E1 − E2 and E1 −M1 cross terms. The
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Figure 1: (Color online) The coordinate system for calculations and measurements of photoelectron

angular distributions is defined by the photon propagation vector k along the x axis and linear

polarization vector ε along the z axis. The arrows labeled 1–4 represent the angular positions of

the four electron analyzers used in the present work. The analyzers are positioned symmetrically

around the y axis and are rotatable about that axis. See text for details.

polar and azimuthal angles θ and φ of the emitted photoelectrons are defined with respect

to the coordinate system shown in Fig. 1 with x axis along the photon propagation vector

k and z axis along the polarization vector ε. The dipole and nondipole angular distribution

parameters can be determined from measurements of the photoelectron intensities with

respect to k and ε [23, 27].

Screened wavefunctions have been used to accurately calculate nondipole asymmetries of

atoms over energy ranges extending from near threshold to thousands of electron volts [21–

23]. Since nondipole asymmetries are generally proportional to the photon momentum

or energy, relatively large asymmetries are observed for inner-shell electrons in the x-ray

regime [23, 28]. However, nondipole asymmetries have also been studied in valence-shell

photoionization over the ∼20–200 eV photon energy range. The accurate methods that were

developed for calculations of atomic photoionization within the dipole approximation [29, 30]

have been extended to calculations of nondipole asymmetries, including bound-continuum
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and continuum-continuum interactions [25, 26]. Nondipole asymmetries yield new insight

into photoionization dynamics such as Cooper minima and interchannel coupling [27, 31, 32].

Molecular photoionization theory is more challenging due to the nonspherical molecular

potential and nuclear degrees of freedom. Only a few calculations of molecular nondipole

asymmetries have been reported [33–36]. Here we describe a theory of molecular photoion-

ization that includes E1 − E2 and E1 −M1 cross terms for calculations of the nondipole

asymmetry parameters γ and δ in addition to the dipole parameters σ and βe. The theory

also provides calculations of the molecular anisotropy parameter βm that describes alignment

of the molecular axis in the photoionization process [14].

The theory was first applied to calculation of valence-shell nondipole asymmetries of N2

over the 20–200 eV photon energy range that were compared with measurements in Ref. [37].

The nondipole asymmetries of the 3σg, 1πu, and 2σu electrons of N2 display different spectral

variations and therefore are sensitive to the bound and continuum molecular wavefunctions.

Here we describe the theoretical formalism in detail and apply it to calculations of H2 over

the 20–180 eV photon energy range. The calculated parameters are compared with existing

measurements of σ and βm and with new measurements of βe and γ + 3δ. In comparison

with previous theoretical treatments of nondipole effects in molecular photoionization, Refs.

[33–36], the present work is distinguished by being both very general in its development and

by employing well tested frozen-core Hartree-Fock calculational codes [38].

Section II of this paper describes the theoretical formalism and calculational methods.

Section III describes the photoelectron spectrometer and measurements. Section IV com-

pares measured and calculated photoionization parameters. Conclusions and suggestions for

future research are given in section V.

II. THEORY

A. Photon states of definite angular momentum and parity

One can find a number of multipole descriptions of photons [39–41], so the description

used in this article will be brief. Starting from the Rayleigh expansion, the plane wave

describing a photon can be expanded using vector spherical harmonics [42] and the transverse
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nature of the photon wave (kp · ε = 0) into the multipole series [43]

ε exp(ikp · r) =
∑
LMx

Cx
LM(k̂p) axLM(r). (2)

ε is the electric vector of the photon and k̂p is the normalized photon momentum. (Through-

out the paper a hat over a vector indicates that it is normalized.) L and M are the multipole

angular indices and x = 0, 1 characterizes the parity of the multipole, i.e., x = 0 refers to a

magnetic and x = 1 to an electric multipole. The radial dependence is defined using vector

spherical harmonics [42] as

a0
LM(r) = jL(kpr)Y

L
LM(r̂) (3)

a1
LM(r) =

√
L+ 1

2L+ 1
jL−1(kpr)Y

L−1
LM (r̂)−

√
L

2L+ 1
jL+1(kpr)Y

L+1
LM (r̂). (4)

jl(z) is a spherical Bessel function: jl(z) =
√
π/(2z) Jl+1/2(z). The polarization part is

combined to

Cx
LM(k̂p) = 4π iL−x

(
ε ·Y(x)∗

LM (k̂p)
)
. (5)

The density matrix ρp of the photon state is then

ρp =
∑
LM x
L′M ′x′

∣∣∣Cx
LM(k̂p) axLM(r)

〉〈
Cx′

L′M ′(k̂p) ax
′

L′M ′(r)
∣∣∣ . (6)

In the last equations vector spherical harmonics are used. They are defined as [42]

YL
JM(r̂) =

∑
m,σ

(Lm, 1σ|JM)YLm(r̂) eσ, (7)

where (.., ..|..) are the Clebsch-Gordan coefficients and Ylm are the normal spherical harmon-

ics. The other widely used vector spherical harmonics are defined as

Y
(0)
JM(r̂) = YJ

JM(r̂) (8)

Y
(1)
JM(r̂) =

√
J + 1

2J + 1
YJ−1
JM (r̂) +

√
J

2J + 1
YJ+1
JM (r̂). (9)

Following [44] we introduce a quantum number p defined as p ≡ 1−x. It is p = 0 for electric

multipoles and p = 1 for magnetic multipoles. The parity Π is Π = (−1)L+p. This notation

is different than in Devons and Goldfarb [40] and in Ferguson [41] where p defines the parity.

The coordinate system shown in Fig. 1 and the differential cross section expressed in

Eq. 1 take the x axis along the photon propagation direction and z axis along the linear
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polarization direction. This geometry is commonly adopted when the photons are highly

linearly polarized as in the present experiment. However, a more general description of the

photon polarization employs the Stokes parameters [45]. The Stokes parameters are defined

in a reference frame in which the z axis is parallel to the photon momentum. The complete

basis set to describe the photon polarization in this frame, due to the tranverse nature of

the light, contains the left and right circular states, |eλ=+1〉 and |eλ=−1〉, respectively. So it

is natural to transform the polarization part into that frame by

ρp =
∑
λ,λ′

∑
LM p
L′M ′p′

DL∗λM(ω)
∣∣∣C1−p

Lλ (k̂p) a1−p
LM (r)

〉〈
C1−p′
L′λ′ (k̂p) a1−p′

L′M ′(r)
∣∣∣ DL′

λ′M ′(ω), (10)

with D as matrix elements of the Wigner rotation matrices and ω as Euler angles. Using

the properties of the vector spherical harmonics [42] it can be shown that

ρp =
∑
Γγ

∑
LM x
L′M ′x′

(−)L−M Γ̂

 L L′ Γ

M −M ′ −γ

L (pL, p′L′)Γγ

∣∣ a1−p
LM (r)

〉 〈
a1−p′
L′M ′(r)

∣∣∣ (11)

with (in the Stokes parameter reference frame)

L(pL, p′L′)Γγ0 ≡ 2π iL+p−L′−p′ L̂ L̂′
∑
λλ′

δ(λ,±1)δ(λ′,±1)(−λ)p (−λ′)p
′

(−1)L−λ Γ̂

 L L′ Γ

λ −λ′ −γ0

 ρsλλ′ , (12)

which transform to an arbitrary reference frame, like the one used in Eq. (11), like

L(pL, p′L′)Γγ =
∑
γ0

L(pL, p′L′)Γγ0DΓ∗
γ0γ

(ω). (13)

In Eqs. (11) and (12) Wigner 3J symbols have been used. The ρsλλ′ in Eq. (12) are the

matrix elements of the polarization matrix ρs

ρs =

 ρs+1,+1 ρs+1,−1

ρs−1,+1 ρs−1,−1

 =
I

2

 1 + p3 −p1 + ip2

−p1 − ip2 1− p3

 (14)

with the Stokes parameters I as total intensity and the polarization components p1, p2 and

p3 [45].
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B. Molecular photoionization

First it is essential to derive a model to describe the aspects of the photoionization

process we are interested in. The whole system can then be completely characterized by a

density matrix. We have to specify the quantum states of the photons (see last section), the

molecule, and the outgoing electron. We assume that the electrostatic interactions within

the molecule are stronger than spin-orbit interactions and rotational interactions, i.e., we

assume that Hund’s coupling cases (a) and (b) apply (see for instance [46]). We denote the

ground electronic state of the neutral molecule and the state of the singly charged molecular

core by |Λ0〉 and |Λ+〉, respectively. In the following we will sum over unresolved vibrational

states. We assume that the molecular orientation m does not change during the process.

The outgoing electron will be in a well defined state
∣∣∣k(−)

e

〉
[47] with well defined spin se.

The density matrix after photoionization by a single photon is therefore

ρa =
∣∣mΛ+ k(−)

e se

〉 〈
mΛ+ k(−)

e se

∣∣
= T

∣∣∣mΛ0

(
−
akp
c

)
ε exp (ikp · r)

〉〈
mΛ0

(
−
akp
c

)
ε exp (ikp · r)

∣∣∣ T+, (15)

where T is the transition operator from the initial state to the final state. In this expression

the state of a photon is not simply |ε exp (ikp · r)〉 but rather
∣∣− (akp/c) ε exp (ikp · r)

〉
with akp = c

√
2π/ωp. The differential cross section is then [30]

σ(m,ke, se,kp) =
2π

c
tr (ρa) . (16)

The last equations are general, but one has to be more specific to perform a calculation. The

transition or interaction operator has several forms, depending on the approximation chosen

(‘length’, ‘velocity’, ‘acceleration’) [29, 30, 48]. Ideally, the results of the calculation do not

depend on the chosen form of the transition operator, but in practice each form is sensitive

to particular regions of the molecular potential [29]. In the velocity form the non-relativistic

transition operator for a certain photon multipole is

T vLMm
(p) = p · a1−p

LMm
(r), (17)

where p = −i∇ is the momentum operator of the electron. The operator in Eq. 17 is defined

in the molecular body frame. (Throughout the article quantum numbers in that frame are

denoted by an index m.) It is useful intuitively to calculate the transition amplitudes in

7



this frame due to the decreased symmetry of molecular potentials compared to atoms. To

derive the length form of the transition operator we use [48, 49]

p = i [H, r] . (18)

If ψ and ψ′ are eigenfunctions of H with eigenvalues E and E ′, respectively, the electronic

transition amplitudes in length and velocity forms are related by

〈ψ′|p · a1
1Mm

(r) |ψ〉 = i ω 〈ψ′| r · a1
1Mm

(r) |ψ〉 , (19)

〈ψ′|p · a1
2Mm

(r) |ψ〉 = i
ω

2
〈ψ| r · a1

2Mm
(r) |ψ′〉 , (20)

with ω = E ′−E. Here ω = ωp, since the energy of the system is changed by absorption of one

photon. Since Eqs. 19 and 20 are based on the assumption that ψ and ψ′ are eigenfunctions

of H, they are sensitive to the quality of the wavefunctions used in calculations. The nature

of the magnetic interaction is different from the electric one, because in first order the angular

momentum does not change. In the magnetic dipole operator this is reflected by the cross

product L = r× p. The components of the operator are

TLMm(1) = i kp
1√
24π

LMm . (21)

The magnetic dipole transition operator exists only in one form. The transition operators

seem to be different from their dyadic forms [48, 49]. This is due to the detachment of

the polarization in our notation. If the polarization is included the operators again become

identical to their dyadic forms

p ·
∑
M

C1
1M(k̂p) a1

1M(r) = p · ε, (22)

p ·
∑
M

C0
1M(k̂p) a0

1M(r) =
i

2
((kp × ε) (r× p)) , (23)

p ·
∑
M

C1
2M(k̂p) a1

2M(r) =
i

2
((ε · p) (kp · r) + (ε · r) (kp · p)) . (24)

In the following we will chose an ansatz in which partial waves are employed. The electronic

wavefunction
∣∣∣k(−)

e

〉
is expanded into spherical harmonics [50]. However, due to the non-

spherical molecular potential, only the projection of the angular momentum on the molecular

axis is a good quantum number – not the angular momentum itself. Dipole selection rules

therefore do not restrict the expansion of
∣∣∣k(−)

e

〉
, as they do in atoms. Nevertheless, conver-

gence of the partial wave expansion is reached quite rapidly. To a very good approximation,

a limited number of terms is sufficient, and the expansion can be truncated at a certain lmax.
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In the following we assume that the spin of the electron will not be detected. (On how

to incorporate the spin as well and for more details in general, see [51]). Integration over

the electronic spin leads to

〈
mΛ+ k(−)

e

∣∣ ρ ∣∣mΛ+ k(−)
e

〉
≡
√

2

4 π

∫ 〈
mΛ+ k(−)

e se

∣∣ ρa ∣∣mΛ+ k(−)
e se

〉
dse. (25)

After some extensive Racah algebra and considering Eq. 16, one gets for the cross section

σ(m,ke,kp) =
4π2

ωp c

∑
pp′

∑
LL′

∑
dLΓ

MdLΓ(pL, p′L′)FdLΓ(pL, p′L′). (26)

Two types of terms are introduced in Eq. 26, i.e., dynamical or kinematical terms,

M(pL, p′L′)dLΓ, and geometrical terms, F (pL, p′L′)dLΓ, which contain all dependencies on

the dynamics and geometries, respectively, of the molecular single photoionization process.

In particular they are defined as

FdLΓ(pL, p′L′) =
∑
γ

L(pL, p′L′)Γγ Y
dL

Γγ (m, k̂e), (27)

where Y dL
Γγ are the bipolar spherical harmonics [42]; and as

MdLΓ(pL, p′L′) = d̂ L̂
∑

MmM ′
m

∑
lmm
l′m′

m

(−)L+Mm+m′
m+Γ l̂ l̂′

 l l′ L

0 0 0

 l l′ L

−mm m′m −αm

 L L′ Γ

Mm −M ′
m αm

 d L Γ

0 αm −αm


il−l

′
exp (i(∆l −∆l′)) 〈Λ+ lmm|TLMm(p) |Λ0〉 〈Λ+ l

′m′m|TL′M ′
m

(p′) |Λ0〉∗ . (28)

Here 〈Λ+ lmm|TLMm(p) |Λ0〉 are the complex transition amplitudes.

It is evident that a large number of dynamical coefficients must be calculated to derive

the angular distribution of photoelectrons from fixed-in-space molecules. However, one can

deduce some useful dependencies and decrease the number of non-redundant coefficients

dramatically. From Eq. 28 follows

MdLΓ(pL, p′L′) = (−)L+L′+d+L+ΓMdLΓ(p′L′, p L)∗. (29)

Furthermore, parity conservation restricts the values of L: L and the sum (p+ L+ p′ + L′)

are both either even or odd. Additional restrictions arise from symmetries of the molecular

potential [52]: (a) if a molecule possesses a center of symmetry then there exists a basis of
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energy eigenfunctions with defined symmetry. (Obviously, heteronuclear molecules do not

have such a symmetry center.) Now if the initial and final molecular states have a well

defined parity, then due to parity conservation L just has even values and (b) the matrix

elements for molecules with cylindrical symmetry are invariant if the signs of all projection

quantum numbers on the cylinder axis are changed.

Considering these restrictions one gets for the angle-integrated cross section σ

σ =

∫ ∫ ∫
σ(m,ke,kp) dm dke dkp (30)

=
4π2

ωp c
4π
∑
{pL}

L̂

2
M000(pL, pL). (31)

The cross section in dipole approximation is therefore

σ =
4π2

ωp c
4 π

√
3

2
M000(01, 01). (32)

With the equations derived so far a detailed analysis of photoionization processes beyond

the dipole approximation is possible. Many possibilities arise. However, in the following we

will focus on ongoing experiments. If one considers multipole terms up to first order only,

i.e. E1, M1, E2 terms, then the differential cross section is given by Eq. 1, and the angular

distribution parameters are expressed

βe = −
√

10M022(01, 01)/M000(01, 01) (33)

δ =
[
3
√

2 (M011(01, 11)−M011(01, 02))− 2
√

7M033(01, 02)
]
/M000(01, 01) (34)

γ = 10
√

7M033(01, 02)/M000(01, 01). (35)

In the last equations only electric dipole contributions and interference terms of electric

dipole and magnetic dipole/electric quadrupole are considered. Those should still be much

larger than terms of higher order than dipole alone. We also obtain an expression for the

molecular alignment anisotropy parameter βm [14] by averaging the dipole photoelectron

angular distribution over the electronic orientation:

βm = −
√

10M202(01, 01)/M000(01, 01). (36)

For the calculations, we used codes developed at the California Institute of Technology

(for an early reference see [38]). As a check for the quality of the wave functions used, the

transition amplitudes in both length and velocity form were calculated. The velocity form

results are compared with measurements in Section IV.
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III. EXPERIMENTAL METHODS

The experiments were done at the University of Wisconsin’s Synchrotron Radiation Cen-

ter using a tunable, linearly polarized photon beam provided by an undulator and plane grat-

ing monochromator [53]. The bandwidth varied from 0.005 eV to 0.130 eV over the 20–150

eV photon energy range. The flux over that energy range was ∼109− 1010 photons/(s·mA),

and the stored electron current varied over 100–200 mA. The undulator was stepped along

with the monochromator at each energy to maintain maximum flux and a degree of linear

polarization >0.99 [54]. Photoelectron intensities were normalized to the photocurrents from

nickel meshes located at the front and back of the spectrometer chamber.

The electron spectrometer system and measurement methods have been described in

Refs. [23, 27]. As shown in Fig. 1, the coordinate system is defined by the propagation

vector k along x and photon beam polarization vector ε along z. Four 45◦-parallel-plate

electron analyzers (PPAs) [55] are mounted on a rotation stage with its rotation axis along

the y axis, i.e., perpendicular to both k and ε. The angular positions of the PPAs are fixed

at 125.3◦ with respect to the rotation axis. At the positions shown in Fig. 1 and the top

frame of Fig. 2, the PPAs accept photoelectrons emitted at angles that are “magic” with

respect to all three coordinate axes, i.e., the direction cosines are all ±1/
√

3. At these angles,

P2(cos θ) = 0, and the dependence on βe vanishes in Eq. 1. Defining N1, N2, N3, and N4

to be the photoelectron intensities at these “nondipole” angles, the combined asymmetry

parameter is given by

γ + 3δ =
√

27

(
N1 −N2 −N3 +N4

N1 +N2 +N3 +N4

)
. (37)

Note that the sum of the photoelectron intensities, N1 + N2 + N3 + N4, is independent of

βe, γ, and δ and is proportional to the angle-integrated cross section σ. Equation 37 shows

that γ + 3δ is given by the forward–backward asymmetry of photoelectron intensities with

respect to k normalized to the angle-integrated intensity.

Rotating the analyzers by 45◦ about y places them as shown in the bottom frame of

Fig. 2. At that position, the polar angles of PPAs 1 and 3 are θ = 90◦ ± 54.7◦, where 54.7◦

is a magic angle, and the polar angles of PPAs 2 and 4 are θ = 90◦. P2(cos θ) is nonzero

at those angles, and the photoelectron intensities depend on βe. Defining D1, D2, D3, and

D4 to be the photoelectron intensities at these “dipole” angles, the βe parameter is given by
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either of the following two equations:

βe = 4

(
s0

s⊥

)(
D1 +D3

N1 +N2 +N3 +N4

)
− 2 (38)

and

βe = 2− 4

(
s0

s‖

)(
D2 +D4

N1 +N2 +N3 +N4

)
. (39)

The parameters s0, s⊥, and s‖ in Eqs. 38 and 39 represent the different fractions of the

photoelectron source volume observed by the PPAs at different angular positions. The

source volume has a cylindrical shape produced by the photon beam passing through the

gas jet. s0 represents the fraction of the source volume observed by the PPAs at the nondipole

angles depicted in the top frame of Fig. 2. All PPAs observe the same fraction, so s0 does

not appear in Eq. 37. At the dipole angles shown in the bottom frame of Fig. 2, PPAs 1

and 3 are perpendicular to the photon beam and observe a source volume fraction s⊥, while

PPAs 2 and 4 are parallel to the photon beam and observe a source volume fraction s‖.

The ratios s0/s⊥ and s0/s‖ can be determined by inverting Eqs. 38 and 39 and measuring

photoelectron intensities from transitions of known βe values. The He 1s βe = 2 at photon

energies below the doubly-excited states near ∼60 eV, and the Ne 2p βe vs. energy is

accurately known through measurements and theory [56–61]. Measurements of He 1s and

Ne 2p photoelectrons were used to determine s0/s⊥ = 1.1 − 1.2 over the 5–130 eV kinetic

energy range. βe values for H2 were then determined using Eq. 38. Equation 39 was not

used, because He and H2 both have large βe values for which the D2 and D4 intensities are

weak. For each photon energy, the rotation platform was positioned at eight angles in steps

of 45◦ so that each PPA recorded photoelectron intensities at the eight positions indicated

in Fig. 2, and the results from the four analyzers were averaged.

Photoelectron spectra of H2 have been recorded that resolve vibrational and rotational

structure of the H+
2 ion [8, 9]. The goal of the present experiments was to accurately measure

vibrationally averaged angular distributions for comparison with fixed-nuclei calculations.

The PPAs were operated at fixed pass energies of 100 eV, and the kinetic energy resolution

was measured to be 2.2 eV full width at half maximum (FWHM). A constant ionic state

(CIS) method was used to record photoelectron intensities vs. photon energy [27]. In

this technique, the potentials on the PPAs are stepped along with the photon energy and

undulator energy to record photoelectron intensities at fixed ionization energy of the atom or

molecule. Accounting for the 2.2 eV FWHM kinetic energy resolution, the ionization energy

12



3

k

2

1

3

2

4

ε

ε

4

1

k

Figure 2: (Color online) The positions of the four electron analyzers projected onto the ε-k plane.

The top frame shows the positions used to measure nondipole asymmetries γ + 3δ. The bottom

frame shows the positions used to measure dipole anisotropies βe.

band measured for H2 was 16.4± 1.1 eV. Comparison with the high resolution spectrum [8]

shows that the peak of the ionization energy band was near the υ′ = 4 vibrational level of

H+
2 and the band encompassed υ′ = 0− 10.

Contact potentials and stray electric and magnetic fields should be minimized for accurate

measurements of photoelectron angular distributions, particularly for low kinetic energies.

13



Technical improvements were made since our previous experiments [23, 27, 31, 37] to further

reduce spurious effects. The vacuum chamber is shielded with two layers of high permeability

mu-metal that reduce the magnetic field to <1 mG. However, stray magnetic fields can be

produced by steel spectrometer parts, so those were replaced with parts made of nonmagnetic

materials. With the PPAs mounted on the rotation platform, the magnetic field in the

interaction region varied within 0.35–0.75 mG as the platform was rotated by 360◦. The gas

nozzle was made of copper capillary tubing and was positioned ∼1 mm above the photon

beam. The gas nozzle and PPA entrance snouts were coated with colloidal graphite to

reduce contact potentials.

Photoelectrons of kinetic energy Ek are emitted from the interaction region, enter a PPA

snout, and pass through a grid that accelerates or decelerates them to the pass energy Ep

(100 eV for these experiments). The potential on this grid is the same as the potential Vl

on the lower plate of the PPA. According to the electron-optical model of a 45◦ PPA [55],

the upper plate should be at the potential Vu = Vl + 0.6Ep, where 0.6 is referred to as the

“spectrometer factor”. By stepping the potentials Vl and Vu according to this relation, the

photoelectron spectrum can be recorded at a given photon energy, or a CIS scan can be

recorded by stepping the potentials along with the photon energy. However, the measured

spectrometer factors are slightly different from 0.6 for each PPA. Consequently, since Vl

and Vu for the four PPAs are provided by the same two voltage sources, the measured

photoelectron spectra do not accurately match or track with changes in photon energy. Five

equally-spaced field-termination plates are mounted between the upper and lower plates of

each PPA, and an internal voltage divider determines the potentials on the seven plates. To

match the spectrometer factors of the four PPAs, external trim resistors were added between

the Vu source and the voltage divider. To account for individual contact potentials, externally

adjustable offsets were added to Vl for each PPA. Also, the gas nozzle was electrically isolated

and biased to -0.15 V to account for its contact potential. These procedures resulted in

photoelectron spectra well matched to known ionization energies of the rare gases and H2.

The CIS method was tested at selected photon energies by scanning the entire He 1s, Ne

2p, or H2 photoelectron spectra at the eight positions of the rotation platform as described

earlier. Relative photoelectron intensities at the peak maxima agree well with intensities

summed over the entire spectra for each PPA at the eight angular positions. With these

technical improvements, the βe and γ + 3δ parameters could be measured to as low as ∼3

14
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Figure 3: (Color online) Nondipole asymmetry parameter γ of He 1s photoelectrons. The present

results (open circles) are compared with previous measurements (closed circles) and RPAE calcu-

lations from Ref. [27].

eV kinetic energy.

IV. RESULTS AND DISCUSSION

As discussed above, He 1s and Ne 2p photoelectrons were used to determine relative

source volumes observed by the electron analyzers in measurements of βe parameters. The

nondipole asymmetries derived from those measurements are plotted in Figs. 3 and 4. The

He 1s measurements agree well with earlier measurements and with calculated asymmetries

using the random phase approximation with exchange (RPAE) [27]. The present measure-

ments confirm the RPAE calculations at lower kinetic energies. For Ne 2p, the RPAE

calculations of Ref. [26] match the measured asymmetries fairly well, although with small

deviations at lower kinetic energies.

Our primary results are shown in Fig. 5 where the calculated photoionization parameters

of H2 are compared with measurements over the 20–180 eV photon energy range. The

calculated total cross section σ in panel 5(a) is in excellent agreement with measurements [4].

The present measurements of βe and γ+3δ are compared with the calculated curves in panels
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Figure 4: (Color online) Nondipole asymmetry parameter γ + 3δ of Ne 2p photoelectrons. The

present measurements (open circles) are compared with RPAE calculations from Ref. [26].

5(b) and 5(c). Good overall agreement is observed for the magnitudes and energy variations

of these parameters. The measured βe passes through a minimum near 30 eV. Doubly-

excited states appear in this energy region [10–12], and oscillations in the βe parameter are

predicted when doubly-excited states are included in calculations [12]. The observed feature

does not appear in the present calculations that do not treat doubly-excited states. The

deviation of the measured γ+3δ parameter from the calculated curve in the 20–30 eV range

may also be due to the doubly-excited states. The measured βe and γ + 3δ parameters

also deviate from the calculated curves at energies above 100 eV. Our calculations employ

partial wave expansions which might not be fully converged at higher energies. This could

account for some of the difference between measurements and calculations. At lower energies

our method provides converged solutions for the photoelectron within the limitations of the

assumed static-exchange potential.

The molecular alignment anisotropy parameter βm is sensitive to the relative strengths

of the Σ→ Σ and Σ→ Π dipole transitions, and can be determined from measurements of

the angular distributions of protons ejected in dissociative photoionization [14]. Kossmann

et al. [6] determined βm parameters for double photoionization of H2 over 52–110 eV, and

their measurements are compared with the calculated curve in Fig. 5(d). Although the
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Figure 5: (Color online) Calculated and measured photoionization parameters of molecular H2. (a)

Total cross section σ compared with measurements from Ref. [4]. (b) Electric dipole anisotropy

parameter βe compared with present measurements. (c) Nondipole asymmetry parameter γ + 3δ

compared with present measurements. (d) Molecular alignment anisotropy parameter βm compared

with double photoionization measurements from Ref. [6].

calculations are not for the double photoionization process, the calculated βm shows a similar

magnitude and energy variation as the measurements. The βm parameter is negative due

to the strength of the Σ → Π transition [14] and passes through a broad minimum as the

relative strengths of the two dipole symmetries vary with energy.
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V. CONCLUSION

We present a theory of molecular photoionization that includes cross terms of electric

dipole (E1) amplitudes with electric quadrupole (E2) and magnetic dipole (M1) ampli-

tudes that give rise to nondipole asymmetries in photoelectron angular distributions. The

photoionization cross section, dipole and nondipole photoelectron angular distribution pa-

rameters, and the molecular alignment parameter of H2 are calculated over 20–180 eV and

compared with measurements. We describe new measurements of the dipole and nondipole

photoelectron angular distribution parameters. The calculations are in excellent agreement

with measured total cross sections [4] and compare well overall with the magnitudes and

energy variations of the photoelectron angular distribution parameters. The measured pa-

rameters show features attributed to doubly-excited states [12].

The theory, calculations, and measurements presented here for H2 and for N2 in Ref. [37]

show that nondipole asymmetries provide insight into low energy photoionization that adds

to the numerous observations that can be treated within the dipole approximation. Fu-

ture work could include other diatomic and polyatomic molecules, vibrationally resolved

results, and studies of double excitation and other interchannel interactions. In related

work, there is significant interest in confinement resonances that arise in photoionization of

atoms contained in C60 molecular cages [62]. Strong nondipole effects have been predicted

in photoionization calculations on confined atoms [63, 64].
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S. Schössler, B. Ulrich, P. P. Rajeev, et al., Phys. Rev. Lett. 98, 073003 (2007).

[18] F. Mart́ın, J. Fernández, T. Havermeier, L. Foucar, Th. Weber, K. Kreidi, M. Schöffler,
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