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The displacement effect studied in a recent paper (Ivanov et al., Phys. Rev. A 90 (2014) 043401)
in atomic ionization by a short XUV pulse is investigated in more detail. It is shown that achieving
a significant displacement critically depends on the assumption of a plateau in the envelope function
of the electric field, and that the ramp-on is fine-tuned in such a way that a drift velocity generated
during the ramp-on phase can increase this displacement further. Seemingly minor variations in
the electric fields defined in slightly different ways cause significant changes in the final results, in
particular regarding the angular-momentum distribution of the ejected electron. In light of such a
strong sensitivity seen in the predictions made with idealized pulse shapes and the likely difficulties
of preparing such pulses experimentally, an experimental realization of the displacement effect will
likely be a major challenge.

PACS numbers: 32.80.Rm, 32.80.Fb, 42.50.Hz, 32.90.+a

I. INTRODUCTION

In a recent paper [1], strong-field ionization of atomic
hydrogen as well as lithium driven by a short extreme
ultraviolet (XUV) pulse was studied. The key results
of the paper were some peculiar effects in the angular-
momentum distribution of the ejected electron, provided
the pulse alone caused a significant non-zero displace-
ment of the electron without it leaving the laser focus.
The displacement is defined as the time integral of the
pulse vector potential taken over the pulse duration, i.e.,
essentially the second integral over time of the electric
field. These effects should be visible in the photoelectron
angular distribution (PAD).

As noted already in the above paper, an important is-
sue concerns the occurrence of pulses with a nonzero dis-
placement experimentally. While half-cycle and single-
cycle pulses with non-zero displacement have been ob-
served [2, 3], and in some cases such pulses are pre-
dicted to even deliver nonzero momentum to a free elec-
tron [4], further attempts to identify the origin of the ef-
fect seemed a worthwhile effort. We emphasize that sev-
eral theoretical papers (see, for example, [5, 6]) strongly
favor pulses with a vanishing displacement. However, the
condition is not of practical importance for very short
pulses, for which the displacement would be small rela-
tive to the focusing region [7].

In the present paper, we investigate in detail the origin
of the displacement, as it applies to the waveform that
we (and many other authors in this field) have been us-
ing. We begin by discussing the advantages of choosing a
particular (sine-squared) envelope function for the ramp-
on and ramp-off parts of the pulse, compared to other
common choices such as Gaussian or linear ramp-on/off.
We then investigate the potential role of a plateau, i.e.,

a constant value of the envelope function, between the
ramp-on and ramp-off phases.

Most importantly, we will discuss the differences re-
sulting from either setting the electric field or the vec-
tor potential of the pulse first via a particular envelope
function and then calculating the respective second one
from the field defined first, i.e., by either integrating the
electric field over time or by differentiating the vector po-
tential with respect to time. The resulting electric fields
will be (slightly) different in the two scenarios. Obtain-
ing different results, therefore, does not violate the re-
quirement of gauge-invariance, i.e., the need to predict
the same observable quantities in the length and velocity
gauges of the dipole operator. For this gauge invariance
to hold, only the two fields generated directly from each
other must yield the same answer. This is, indeed, the
case for all calculations presented in this work.

Unless indicated otherwise, atomic units will be used
throughout this paper.

II. PULSE SHAPES

The fields studied in the present paper are of the gen-
eral form

S(t) = f(t)S0 sin(ωt+ φ)ẑ, (1)

where f(t) is the envelope function, ω is the central an-
gular frequency, φ is the carrier-envelope phase (CEP),
S(t) is either the electric field E(t) or the vector poten-
tial A(t), and S0 is the corresponding amplitude. We
assume linearly polarized transversal fields with a com-
ponent only along the ẑ direction, as well as the dipole
approximation, i.e., there is no spatial dependence in the
field that needs to be accounted for.
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A popular shape of the envelope function is the gener-
alized form:

f(t) =


sin2

(
πt

2n1T

)
, 0 ≤ t ≤ n1T ;

1, n1T ≤ t ≤ (n1 + n2)T ;

1− sin2
(
πt

2n3T

)
, (n1 + n2)T ≤ t ≤ tf ;

0, otherwise.

(2)
Here T = 2π/ω is the period for one cycle of the cen-
tral frequency, while n1, n2, and n3 denote the number
of cycles in the ramp-on, plateau, and ramp-off phases
of the pulse, respectively. We start the n1-n2-n3 pulse
at the initial time ti = 0, and the field is zero again at
the final time tf = (n1 + n2 + n3)T . As will be shown
below, n1, n2, and n3 do not necessarily have to be inte-
ger numbers, although some restrictions apply in order to
ensure a physical pulse that can propagate according to
Maxwell’s classical equations for electromagnetic waves
in vacuum. For the purpose of the present work, we will
restrict ourselves to cases with n1 = n3, but we will allow
n2 6= 0.

We begin by recalling the relationship between the
electric field E(t) and the vector potential A(t). The for-
mer is used in the length gauge of the electric dipole op-
erator while the latter is employed in the velocity gauge.
The two fields are related by

E(t) = −1

c

d

dt
A(t) (3)

and

A(t) = −c
∫ t

0

E(t′)dt′, (4)

where c is the speed of light in vacuum. For infinitely long
sinusoidal “pulses”, i.e., those used in standard treat-
ments of weak-field photoionization processes, one can
still start by setting A(t) as schematically outlined in
Eq. (1) with the envelope of Eq. (2) and then obtain-
ing E(t) from Eq. (3) before performing the calculation
in the length gauge. The only differences would be a fac-
tor 1/ω and an extra phase of π/2 (90◦) in A(t) relative
to E(t). With those adjustments made, the predictions
should be identical, i.e., gauge-invariant for cases such as
atomic hydrogen, where the orbitals are eigenfunctions of
the corresponding field-free hamiltonian. For pulses of fi-
nite length, the results will still be very similar, provided
the effect of the additional time derivative of the enve-
lope function during the ramp-on/off phases is effectively
negligible.

Another important aspect of choosing suitable pulses
concerns the boundary conditions at the beginning and
the end of the pulse. In any realistic scenario, the electric
field should vanish before and after the pulse, unless one
wants to introduce some overlaying direct current (DC)
field to further stir the ejected electrons. The immediate
consequence of a vanishing electric field is the fact that

a pure Gaussian ramp-on/off is not realistic. At the very
least, one would require some smooth correction on the
edges of the pulse envelope, or be prepared to treat such
a long pulse that this condition is sufficiently well fulfilled
to avoid any numerical artifacts by jumping from zero to
non-zero values and back.

While the above problem can easily be avoided by
employing sine-squared or even linear ramp-on/off func-
tions, another condition concerns the time integral of the
electric field, which is proportional to the vector potential
when the pulse is over. For a pulse to fulfill Maxwell’s
classical equations for electromagnetic waves, this inte-
gral needs to vanish as well. According to Madsen [5],
in theoretical calculations this condition should be taken
“literally”. As a consequence, we cannot choose arbitrary
values for n1, n2, n3, and φ if the electric field is defined
as outlined above. It is straightforward to construct un-
physical cases where the integral would not vanish.

The latter problem, in turn, can be avoided by start-
ing with the vector potential A(t) instead of the electric
field E(t). In that case, however, care has to be taken
that the latter approaches its zero value smoothly at ti
and tf . This is not necessarily the case, for example,
when a linear ramp-on/off envelope is chosen for A(t),
with the details depending on the CEP.

Finally, we consider the displacement, i.e., the first
time integral of the vector potential or the second time
integral of the electric field. As shown below, large non-
zero displacements can be constructed by defining the
electric field with a long plateau in the envelope func-
tion. On the other hand, if the vector potential is set via
Eqs. (1,2), even the plateau will not generate a significant
displacement.

Figure 1 exhibits a few examples of the situation de-
scribed so far. Specifically, we assume a few-cycle lin-
early polarized laser field of peak intensity 1014 W/cm2

(i.e., maximum field amplitude 0.05338 a.u.) with a cen-
tral frequency of 0.70 a.u. Except for the length of the
plateau, which was reduced from 36 optical cycles (o.c.)
to 5.5 o.c. or 6.0 o.c., such pulses were discussed in the
earlier work [1]. The principal reason for reducing the
length of the plateau in the present illustration is to limit
the displacement shown in some of the panels and hence
improve the visibility.

The left column of Fig. 1 shows cases in which the elec-
tric field E is defined through Eqs. (1,2), while the right
column exhibits the corresponding cases for setting A
this way. On first sight the electric fields and the vector
potentials in each row might be mistaken as being the
same. They are, indeed, very similar, but they differ due
to the way either the electric field or the vector poten-
tial is obtained from its respective counterpart during the
ramp-on/off phases.

We start our discussion with the left column of Fig. 1,
i.e., cases in which we define the electric field E via
Eqs. (1,2). Each panel exhibits the z-component of E
and that of the vector potential A (obtained from the
time integral of E), as well as the classical displacement
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FIG. 1: z-components of the electric field E and the vector potential A/c, and the displacement Zcl for a linearly polarized
laser field of peak intensity 1014 W/cm2 with a central frequency of 0.70 a.u. The header of each panel indicates the number of
ramp-on–plateau–ramp-off cycles. In the left panels, the electric field is set as outlined in the text for the CEP indicated, while
the vector potential and the displacement are obtained by integrating the field once or twice, respectively. In the right panels,
we start with the vector potential instead. The field and the displacement are then obtained by differentiating with respect to
or integrating over time (once).
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(i.e., the time integral of the linear momentum associated
with the A-field). This displacement is defined as

Zcl(t) =

∫ t

0

A(t′) dt′. (5)

The header of each panel indicates the number of ramp-
on–plateau–ramp-off cycles, as well as the CEP. Starting
with panels a), c), and e), which are all for 1.5 o.c. for
the ramp-on/off parts, we see that changing the length of
the plateau from 5.5 o.c. in panel a) to 6.0 o.c. in panel
c) creates a non-zero displacement. That displacement,
however, vanishes again if the CEP is changed from 0◦

to 90◦ in panel e).

Moving on to panels g), i), and k), each of which are
for 1.75 o.c. for the ramp-on/off parts, we see a non-
zero displacement for all three cases. Note, however, that
panel i) represents a pulse with non-zero value of the
vector potential at the end. This is difficult to see in
the curve for A/c itself, but it can be inferred from the
clearly nonzero derivative of the displacement Zcl when
the pulse is over. Since we want to limit our discussion to
pulses that do not deliver a finite linear momentum to the
electron, this case should be excluded. We only present it
here in order to show that care has to be taken when the
electric field is set. Panels g) and k), on the other hand,
do yield a vanishing vector potential at the end of the
pulse, but circumventing the problem of generating an
unphysical pulse requires particular choices of the CEP
and/or the length of the plateau.

Finally, panel m) is a very similar case to the 2-36-2
pulse presented previously in Fig. 5 of [1]. In this case,
there is apparently a non-zero linear momentum, or a
drift velocity, delivered to the electron during the ramp-
on phase. Furthermore, it is important that the displace-
ment generated during this phase is in the same direction
as the drift velocity. This somewhat coincidental out-
come then allows the plateau to make the linear momen-
tum oscillate around this value, with the net effect of in-
creasing the displacement further, basically proportional
to the length of the plateau. During the ramp-off phase,
the linear momentum is brought back to zero, thereby
yielding both a vanishing electric field E and vector po-
tential A. Hence this pulse fulfills the minimum require-
ments from Maxwell’s equations.

Let us now consider the changes that occur in the fields
and the displacement when the vector potential A is set
via Eqs. (1,2) instead of the electric field E. The cor-
responding cases are shown in the panels in the right
column of Fig. 1. Close inspection of the figures, as well
as the underlying equations, shows immediately that any
choice for the ramp-on/off periods and the plateau, as
well as the carrier envelope phase, guarantees both E and
A to vanish before and after the pulse, and that they do
so in a smooth way if the ramp-on/off parts are set via
a sine-squared envelope function. We emphasize again
that this cannot be guaranteed for a linear ramp-on/off,
nor for a pure Gaussian. For a corrected Gaussian en-
velope that causes the fields to completely vanish before

and after, one would have to ensure that the correction is
done in a way that ensures a smooth behavior of the elec-
tric field, i.e., the time derivative of the vector potential.
The importance of using pulses without discontinuities,
in particular without discontinuities of the derivative at
the edges of the pulse, was also emphasized in [7].

Furthermore, it is virtually impossible to generate a
significant nonzero displacement at the end of the pulse
when the vector potential is set. In principle, the ramp-
on phase can produce some displacement, but in this case
the plateau will only cause oscillations around this value
rather than a significant further deviation from it.

We stress again that the panels on the left and the
right of Fig. 1 describe different physical situations. The
fields are slightly different, but on each side they are in-
dividually connected via Eqs. (3) and (4), respectively.

III. NUMERICAL RESULTS

Most of the calculations for the present work were per-
formed in the length gauge of the electric dipole opera-
tor with the Crank-Nicolson [8] time propagation scheme.
We used an updated version of a computer program orig-
inally developed for coherent control of atomic hydro-
gen [9]. As reported in our previous work [1], the nu-
merical results were checked using the velocity gauge in
connection with a matrix iteration [10, 11] propagator.
The code is very stable and has been employed exten-
sively in recent benchmark calculations for both atomic
hydrogen [12–15] and lithium [16, 17] targets. Within
the thickness of the lines or the size of the symbols, our
results are independent of both the gauge and the prop-
agation scheme.

Example results for some of the pulses introduced
above, as well as some longer plateaus, are shown in Fig-
ures 2-4. We start with a 1.5-6.0-1.5 pulse, corresponding
to panels c)-f) of Fig. 1. Once again, we emphasize that
the pulses obtained with setting E (left column) or A
(right column) according to Eqs. (1,2) look extremely
similar, but they describe different physical situations.
Defining the electric field this way causes a non-zero dis-
placement for φ = 0◦, but that displacement does not
grow significantly further after the ramp-on, due to the
special choice of 1.5 o.c. for the duration of the ramp-on.
We see already that the angular-momentum distribution
of the ejected electron is different depending on which
field we start with in Eq. (1). The case that produces a
non-zero displacement has a slightly enhanced tendency
of generating “unusual” angular momenta, i.e., those that
differ from l = 1 expected from the standard weak-field
one-photon ionization process.

Moving on to Fig. 3, where only the length of the
plateau is extended, we see a very similar pattern. The
pulse with the electric field being defined via Eqs. (1,2)
again creates a small non-zero displacement for φ = 0◦,
but other than enhancing the overall ionization probabil-
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FIG. 2: (Color online): Electric field, classical displacement, energy-differential ionization probability, and l-decomposition for
a 1.5-6.0-1.5 pulse with a central frequency of 0.7 a.u. and a peak intensity of 1014 W/cm2. In the left (right) panels, the electric
field (vector potential) is set according to Eqs. (1,2). For space reasons, the CEP used for panels a)-f) is indicated only in
panels e) and f).

ity due to the increased length of the pulse, the plateau
does not have any significant effect.

However, the plateau does play a major role if the
ramp-on/off time is extended from 1.5 to 2.0 o.c. This
is shown in Fig. 4. The φ = 0◦ pulse with E being set
according to Eqs. (1,2) now causes a much larger dis-

placement, which simply grows proportionately to the
length of the plateau and the nonzero linear momentum
generated during the ramp-on. Since the latter is pro-
portional to the amplitude of the field, the displacement
grows to about 3.5 a.u. for a pulse with quadrupled peak
intensity (twice the amplitude) and a plateau of 36 o.c.
(c.f. Fig. 5 of [1]). Already for the pulse shown in Fig. 4,
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FIG. 3: (Color online): Same as Fig. 2 for a 1.5-16.0-1.5 pulse.

the likelihood of finding angular momenta other than the
expected l = 1 is substantial, and it grows dramatically
with increasing displacement (c.f. Fig. 3 of [1]).

IV. CONSEQUENCES

The above findings are significant regarding both theo-
retical predictions in general and for detailed comparison

with experimental measurements. It is important to keep
in mind that virtually all theoretical calculations are per-
formed with idealized pulse shapes, which are unlikely to
be present in concrete experiments. Hence it is impor-
tant to investigate the stability of theoretical predictions
against minor changes of the input parameters. If there is
a high sensitivity, the challenges to experimentally verify
such predictions would likely be increased dramatically.

Even though setting either the electric field E or the
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FIG. 4: (Color online): Same as Fig. 2 for a 2.0-16.0-2.0 pulse.

vector potential A according to Eqs. (1,2) and obtain-
ing the other one by either differentiating with respect to
or by integrating over time produces electric fields that
are hardly distinguishable on first sight, the ramp-on/off
parts cause some differences between the fields obtained
in the two approaches. These differences, in turn, can
lead to significant displacements under certain circum-
stances. They are then reflected in the angular momen-
tum of the ejected electron and, ultimately, in its angular

distribution as a directly (at least in principle) measur-
able observable. Examples of the latter are shown in
Figs. 4 and 7 of [1].

Most importantly, the displacement is always small if
the vector potential is set via Eqs. (1,2). For sufficiently
smooth ramp-on/off parts of the envelope function (e.g.,
a sine-squared behavior), therefore, setting A this way
will virtually guarantee “normal” results regarding the
angular momentum distribution of the ejected electron.
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Furthermore, those results are very stable, i.e., they are
qualitatively independent of the carrier-envelope phase,
the length of the ramp-on/off phases, and the length
of any plateau that may be there. Specifically, ioniza-
tion from an atomic S-state with radiation of sufficiently
high central frequency to cause a “one-photon” transi-
tion will essentially produce a p-electron, even for very
short pulses.

Defining the electric field according to Eqs. (1,2), on
the other hand, may lead to significant displacements,
which can theoretically be increased without limit by
simply extending the plateau in the envelope function.
Since the displacement is strongly dependent on the de-
tails of the ramp-on/off parts, the carrier envelope phase,
and the length of the plateau, realizing such pulses will
likely be a serious experimental challenge. As noted ear-
lier, pulses with nonzero displacement and even nonzero
linear momentum transfer have been generated and dis-
cussed before [2–4], albeit for much different pulse shapes
than those discussed here and in our previous work [1].

V. CONCLUDING REMARKS

We have analyzed in detail the effect of pulse shapes
on theoretical predictions for atomic ionization by short

XUV pulses. Given the sensitivity of some of these pre-
dictions to the details of the pulses, even when they fulfill
the basic requirements of Maxwell’s classical theory, we
believe that defining A according to Eqs. (1,2) is gener-
ally more appropriate than using those equations for E
in theoretical studies that typically employ some ideal-
ized pulse shapes. The perfect scenario, of course, would
be an experimental determination of the pulse character-
istics. This could be fed into a computer code on a time
grid and would then allow for a direct comparison be-
tween experimental results and theoretical predictions for
any observable of interest. Given the likely experimental
challenges associated with such a procedure, however, it
is not clear when/if this will become reality.
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