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Quantum information can be encoded in the set of steady-states (SSS) of a driven-dissipative system. Non
steady-states are separated by a large dissipative gap that adiabatically decouples them way while the dynamics
inside the SSS is governed by an effective, dissipation-projected, Hamiltonian. The latter results from a non-
trivial interplay between a weak driving with the fast relaxation process that continuously projects the system
back to the SSS. This amounts to a novel type of environment-induced quantum Zeno effect. We prove that the
dissipation-projected dynamics is of geometric nature and that it is robust against different types of hamiltonian
and dissipative perturbations. Remarkably, in some cases an effective unitary dynamics can emerge out of purely
dissipative interactions.

I. INTRODUCTION

Since the earliest days of quantum information processing
(QIP) weak coupling to the environmental degrees of freedom
has been regarded as one of the essential prerequisites. In
fact decoherence and dissipation generally spoil the unitary
character of the quantum dynamics and induce errors into the
computational process. In order to overcome such an obstacle
a variety of techniques have been devised including quantum
error correction [1], decoherence-free subspaces (DFSs) [2–
4], noiseless subsystems (NS) [5–8] and geometric/holonomic
quantum computation [9–11].

However, it has been recently realized that dissipation and
decoherence may even play a positive role to the aim of coher-
ent quantum manipulations. Indeed, it has been shown that,
properly engineered, dissipative dynamics can in principle be
used to enact QIP primitives (see Ref [12] for an early im-
portant contribution in this direction) such as quantum state
preparation [13–15], quantum simulation [16] and computa-
tion [17]. Exotic physical properties such as topological order
[18] and non-abelian synthetic gauge fields [19] can also be
achieved by engineered dissipation.

In a nutshell the idea is that one can design driven-
dissipative systems such that their steady-states enjoy some
computationally desirable property. For example in Ref. [14]
the unique steady-state is maximally entangled, while in
Ref. [17] the steady states encode for an arbitrary quantum
computation! Moreover, the irreversible and attractive nature
of dissipative dynamics endows these techniques with a de-
gree of robustness against imperfections in preparation and
control. All this leads to a dramatic paradigm shift in QIP:
noise and dissipation should not be viewed as detrimental but
may in fact be considered as a resource.

In this paper we will build upon our recent discovery on
how to enact coherent dynamics over the set of steady states
(SSS) of a strongly dissipative system [20]. Quantum infor-
mation is encoded in sectors of the SSS while non steady-
states are separated by the large dissipative gap that adiabati-
cally decouples them away. A weak Hamiltonian control gives
rise to an effective dynamics inside the SSS that is ruled by a
dissipation-projected Hamiltonian. The latter results from a
non-trivial interplay between the control and the fast relax-
ation process that continuously projects the system back onto

the SSS. This amounts to a novel type of environment-induced
quantum Zeno effect [21, 22].

In this paper we will show that the dissipation-projected dy-
namics is geometric in nature. This means that this approach
can be regarded as a dissipative extension of the fault-tolerant
techniques of geometric and holonomic quantum computa-
tion [9–11]. We will also prove that the dissipation-projected
Hamiltonians are protected against several types of perturba-
tions (unitary and dissipative) and may allow for robust QIP.
Finally we will show how an effective unitary evolution may
emerge out of suitable dissipative perturbations of a purely
dissipative dynamics. This “emerging unitarity" phenomenon
is perhaps the single most surprising one of our results.

II. THE DISSIPATION-PROJECTION THEOREM

We will consider quantum open systems whose dynamics
is described by the equation

dρ(t)
dt

= L ρ(t). (1)

The superoperator L will be referred as to the Liouvillian
An open quantum system generically admits a unique steady-
state ρ∞ that is approached by the time-evolving density ma-
trix ρ(t) as the time goes to infinity. Asymptotically the
information-theoretic distance D(ρ(t), ρ∞) := 1

2‖ρ(t) − ρ∞‖1
decays exponentially with time where the time-scale τR is re-
ferred to as the relaxation time. For t � τR the time-evolved
state becomes indistinguishable from the steady state. Ac-
cording to Eq. (1) the steady state satisfies L(ρ∞) = 0 i.e. it
lies lies in the kernel of the Liouvillian. Uniqueness of the
steady-state translates into a one-dimensional kernel. In this
paper we will focus on the case in which the Liouvillian can
be decomposed as L = L0 +L1 in such a way that

• i) The relaxation time of L0 is the shortest time-scale
of the problem. Equivalently, the dissipative gap of L0,
τ−1

R , is the largest energy scale.

• ii) The kernel of L0 is high-dimensional and attractive
(the non-zero eigenvalues of L0 have a negative real
part)
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We will denote by P0 (Q0 = 1 − P0) the projection onto the
kernel of L0 (its complementary). The steady-state set (SSS)
is given by those states ρ such that P0(ρ) = ρ. The critical as-
sumption is that the SSS is high-dimensional. A prototypical
instance of this non-generic situation is the following:

Example 0.- Suppose a system S is joined to a system B and
that the dissipation acts only on the latter. Let ρB denote the
(generically) unique steady-state of B and by ρ any state of S .
It is then obvious that any bi-partite state of the form ρ⊗ρB is a
steady-state of the full dynamical system when the S and B are
decoupled. Clearly, any transformation over S is a symmetry
of the dynamics. For the sake of concreteness one may think
of a two-level atom S weakly coupled to a leaky cavity mode
B. To a good approximation dissipation acts directly just on B.
Formally, the Hilbert space isH = HS ⊗HB andL0 = 1S ⊗LB
where the Liouvillian LB admits a unique steady-state ρB. In
this case P0(X) = TrB(X)⊗ρB, the kernel ofL0 has dimension
(dimHS )2, and the SSS can be identified with the state-space
of S . This apparently trivial example will be later considerably
generalized resorting to the theory of NSs [5].

The fundamental technical result we would like to build
upon is the following fact proved in [20] (see also Sec. A):

Projection Theorem.- Suppose L = L0 + L1 with ‖L1‖ =

O(1/T ) then

sup
t∈[0,T ]

‖(Et − etLeff )P0‖ = O(1/T ) (2)

where Leff := P0LP0 = P0L1 P0 and Et = etL.

In words: if the system is prepared at time t = 0 inside the SSS
then, in the large T limit, the time-evolution leaves the SSS
invariant and it is governed by the effective generator Leff.

In several of the applications we will discuss below the per-
turbation will be of Hamiltonian type i.e.,L1 = −i[K, •], (K =

K†); in that case it will be denoted byK . The key point is that
Keff = P0K P0 turns out to be an Hamiltonian; it will be re-
ferred to as the dissipation-projected Hamiltonian. Physically,
this means that strong dissipation, while dressing the Hamilto-
nian by a continuous projection onto the SSS, does not alter its
unitary character. Non steady-states are adiabatically decou-
pled away. The SSS and unitarity are protected by the large
dissipative gap of L0.

For example, in the Example 0 discussed above, where the
Liouvillian LB has a unique steady-state ρB, one finds Keff =

−i[Keff, •] where Keff = TrB(KρB) ⊗ 1B. We see that in fact
Keff is Hamiltonian.

In Sec. A we prove Eq. (2) and we give a rigorous estimate
for the coefficient in its RHS. It turns out [see Eq. (A14)] that
the numerical factor is cτR where τR is the relaxation time of
the unperturbed dynamics and c is a O(1) constant. This fact
is important as it implies that the error can be made small, ei-
ther by making T larger (which also makes the waiting time
O(T ) longer) or by making dissipation faster (i.e. τR smaller).
Indeed, measuring times in unit of τR one realizes that the ex-
pansion parameter in Eq. (2) is really τR/T . In other terms the
“long T limit” just means that the Hamiltonian norm has to be
much smaller than the dissipative gap [= O(τ−1

R )]. The latter
represents the physical quantity that in real applications has to

be engineered in order to make it as large as possible. Equiv-
alently, one wants to make the relaxation time τR as short as
possible. We have to operate in the deep dissipative regime.

III. DISSIPATIVE HOLONOMIES

Let us now discuss the intimate relation between our basic
result (2) and geometric and holonomic quantum computation
[9, 10]. We will show that the effective evolution (2) is in fact
geometric and is given by a super-operator holonomy.

The possibility of merging dissipation dynamics and holo-
nomic quantum computation [10, 11, 23] by reservoir engi-
neering was first suggested in Refs. [24, 25]. More specifi-
cally, in [25] a time-dependent Lindbladian dynamics admit-
ting a DFS was considered, and it was shown that under a
suitable adiabatic condition, a state initially in a DFS remains
inside the subspace and, hence, is rigidly transported around
the Hilbert space together with the DFS. The evolution is, in
fact, coherent, although entirely produced by an incoherent
phenomenon. Moreover, when the DFS eventually returns to
its initial configuration, the net effect is a holonomic transfor-
mation on the states in the subspace. Counterintuitively, the
effect of the dissipation on the (time-dependent) DFS can be
made smaller by making the dissipation rate larger. The au-
thors qualitatively explain this phenomenon in terms of some
sort of environment-induced quantum Zeno effect where the
action of a strong environment can be regarded as a measuring
apparatus continuously monitoring the slowly moving DFS.

In order to establish a connection between these findings
and the results we have discussed so far it suffices to move to
a rotated reference frame by defining ρ̃(t) := U†t ρ(t) where
Ut(X) := etK (X) = e−itK XeitK . In this rotated frame ρ̃(t)
evolves in a time-dependent bath

dρ̃(t)
dt

= Lt ρ̃(t), Lt := U†t L0Ut (3)

In the rotated frame the dynamical semi-group is given by
Ẽt = U

†
t Et and a state ρ̃t is an instantaneous steady-state

of Lt iff ρ̃t = U
†
t ρ0 where ρ0 is a steady-state of L0. It

follows that the projector onto the kernel of Lt is given by
Pt = U

†
t P0Ut = e−tKP0etK . Moreover, in the rotated-frame

the dissipation-projected dynamics is geometric.

Proposition 1.– a) The Projection Theorem (2) can be re-
formulated in the form

‖Ẽt P0 − T exp(
∫ t

0
dτ [Ṗτ, Pτ])P0‖ = O(1/T ) (4)

where T denotes the chronological ordering symbol.
b) The T-ordered geometric superoperator in (4) can be

rewritten as

X(t) = lim
N→∞

T
N∏

j=1

Pt j = e−tK lim
N→∞

(
e

t
NKP0

)N
(5)

where t j = jt/N, j = 0, . . . ,N. Namely the evolution corre-
sponds to an infinite, time-ordered, succession of projections
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onto the instantaneous SSS. Equivalently, to a succession of
P0 interleaved with infinitesimal unitaries evolutions e

1
NK .

Proof.– a) From unitarity ofUt = etK and Eq. (2) one has

‖EtP0 − etP0KP0P0‖ = ‖ẼtP0 − X(t)‖ = O(1/T ) (6)

where X(t) := e−tKetP0KP0P0. By differentiation

Ẋ(t) = −Ke−tKetP0KP0P0 + e−tKP0KP0etP0KP0P0 =

− KPtX(t) + PtKX(t) = [−K , Pt]X(t) = Ṗt X(t) (7)

Notice also thatPtX(t) = X(t) and PtṖtPt = 0,whence Ẋ(t) =

Ṗt X(t) = ṖtPt X(t) = (ṖtPt − PtṖt)PtX(t), namely

dX(t)
dt

= [Ṗt, Pt] X(t)⇒ X(t) = T e
∫ t

0 dτ [Ṗτ,Pτ]X(0). (8)

Eq. (4) is now obtained by using (6) and X(0) = P0.
b) Proceeding formally, if X̃(t) =

∏
τ∈[0, t] Pτ then

X̃(t + dt) − X̃(t) = Pt+dtX̃(t) − X̃(t) =

(Pt+dt − Pt)X̃(t) = ṖtX̃(t)dt + O(dt2). (9)

Whence ˙̃X(t) = ṖtX̃(t). Since X(t) and X̃(t) fulfill the same
ODE and the same initial condition X(0) = X̃(0) = P0 they
have to be the same function. This proves the first equality in
(5) while the second can be verified by direct inspection using
the definition of the Pt’s. �

The integral in (4) is clearly invariant under time
reparametrizations τ → τ′ = τ′(τ) and it is therefore of ge-
ometric nature i.e., it depends only on the path t → Pt in
the space of (super) projections. We also see that the super-
operator holonomy is the line integral of the “tautological”
connectionA = [Ṗ(τ), P(τ)] [26].

If one replaces in Eq. (5) the projection P0 with a more-
general CP map e.g., generalized measurement, basically all
the Quantum-Zeno like QIP protocols recently discussed in
the literature are recovered [24, 27–29]. In all these works
the geometric and holonomic nature of the resulting dynamics
have been discussed on the basis of the particular case at hand,
and a general comprehensive theoretical understanding seems
to be lacking. The formalism discussed in this paper may be
able to provide such an underlying conceptual framework.

IV. SSS AND INTERACTION ALGEBRAS

In this section we would like to discuss an important class
of dissipative systems whose SSS can be fully characterized
on general algebraic grounds and at the same time describes
physically relevant cases.

Let us consider the most general dissipative generator L0
of a Markovian quantum dynamical semi-group Et := etL0 .
Thanks to the Lindblad theorem [30] the Liouvillian can be
written as

L0(ρ) =
∑
α

(LαρL†α −
1
2
{L†αLα, ρ}) (10)

The Lα’s are the co-called Lindblad operators. Let us now
define two operator algebras associated with (10)

A := Alg[{Lα, L†α}α], A′ := {X ∈ L(H) / [X, A] = 0}
(11)

The algebraA is the associative algebra (with unit) generated
by the Lindblad operators Lα and their hermitian conjugates,
it will be referred to as the interaction algebra [5] and A′ as
its commutant. These algebras play a fundamental role in uni-
fying all the quantum information stabilization techniques de-
veloped so far [6, 7]. BothA andA′ are closed under hermi-
tian conjugation and can be regarded as (finite-dimensional)
C∗−algebras. Standard structure-theorems then imply that the
state-space breaks down into dJ–dimensional irreducible rep-
resentations of A (labeled by J) each of them appearing with
multiplicity nJ:

H �
⊕

J

CnJ ⊗ CdJ . (12)

From this it follows that at the algebra level one has

A �
⊕

J

11nJ ⊗ L(CdJ ), A′ �
⊕

J

L(CnJ ) ⊗ 11dJ . (13)

From the first Eq. in (13) it follows that the Liouvillian (10)
preserves the direct-sum structure of the Hilbert space i.e.,
L is J block-diagonal, and that it has a trivial action on the
CnJ factors. For this reason the latter are termed “noiseless-
subsystems” and is where quantum information can be stored
safely from the influence of the environment described by of
L0 (more on this in the next section) [5]. In each of the L0-
invariant J blocks the situation coincides with the one of Ex-
ample 0. In other terms Eq. (10) corresponds to a direct sum
of bi-partite systems in which the noise acts just on one of
the two (virtual) subsystems i.e., CdJ . In this sense this class
of models can be regarded as a far reaching generalization of
Example 0 [20].

We now assume that
∑
α[Lα, L†α] = 0. Under these assump-

tions the dynamical semi-group {etL0 }t≥0 leaves the identity
fixed as L0(11) = 0 and KerL0 = A′ [31]. Such a L0 will
be referred to as unital. From the second Eq. in (13) we see
that the SSS is given by the convex hull of states of the form
ωJ ⊗ 11dJ/dJ where ωJ is a state over the factor CnJ . Since
KerL0 = A′ it follows that P0 is the projection onto the com-
mutant algebraA′, namely [20]

P0(X) =

∫
dU UXU† =

∑
J

TrdJ (ΠJ X ΠJ) ⊗ 11dJ/dJ ∈ A
′

(14)
where the Haar-measure integral is performed over the unitary
group of the algebraA and ΠJ := 11nJ ⊗ 11dJ are the projectors
on the CnJ ⊗ CdJ sectors of H . In Ref. [20] we have shown
that

Keff|KerL0 = −i[Keff, •], Keff := P0(K) ∈ A′. (15)

The effective Hamiltonian P0(K) clearly commutes with the
whole unitary group of the interaction algebra. In this sense
Keff is a dissipation-projection symmetrized [32] version of K.
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FIG. 1. Robustness against dissipative errors. Distance from the
exact evolution and the effective one as a function of 1/T. The un-
perturbed Lindbladian is of the form L0 =

∑
α γαL

α, where Lα

is generated by a collective Lindblad operator S α =
∑N

j=1 σ
α
j with

N = 4. The control Hamiltonians are Kα = −i [Hα, •] with Hx =

(3/2)
(
σz

1σ
z
2 + σz

2σ
z
3

)
+ 11 and Hz = −(

√
3/2)

(
σz

1σ
z
2 − σ

z
2σ

z
3

)
+ σz

1.
The effective dynamics generate the unitary gates uα = exp (−iθσα)
with an arbitrary angle ϑ up to an error O(T−1) (see also [20]).
The same dynamics is obtained (up to an error O(T−1) with possi-
bly a different prefactor) with an error on L0 which replaces S α →

S α + T−1Xα. For the numerical simulation we used Xα = gσ1 ·σ2S z.
The plot is obtained fixing γα = g = ϑ = 1. The norm used is the
maximum singular value of the maps realized as matrices overH⊗ 2.
The linear fit is obtained using the four most significant points.

As a consequence, its action is trivial on the “noise-full” CdJ

factors in (12). In other terms dissipation can also be regarded
as a resource to the end of dynamical decoupling [32–35].

V. ROBUSTNESS

One of the main motivations behind the type of dissipation-
assisted manipulations we are considering, is that it features
built-in resilience against certain types of perturbations. This
means that dissipation, besides providing assistance for QIP,
may provide protection. This stems from the simple observa-
tion that the projection theorem (2) clearly indicates that any
extra term V in the Liouvillian, either Hamiltonian or dissi-
pative, such that ‖V‖ = O(1/T ) = and

P0VP0 = 0, (16)

will not contribute to the effective dynamics (2). For instance
in the context of Example 0 any pair of Hamiltonians K1 and
K2 such that TrB[ρB(K1 − K2)] = λ11S , (λ ∈ R) generate the
same projected dynamics.

A. Hamiltonian perturbations: unital case

In the Interaction Algebra case associated with the unital
Liouvillian in Eq. (10), one can prove the following result
which is reminiscent of the correctability condition in oper-
ator error correction [36] (see e.g., Eq. (4) therein).

Proposition 2.– Eq. (16) is satisfied by an Hamiltonian
perturbation V iff

P0(V) ∈ A ∩A′ =: Z(A). (17)

The solution space of the Hamiltonian robustness Eq. (17) is
a linear subspace of the full operator algebra L(H) with codi-
mension

∑
J(n2

J − 1). This subspace, in particular, contains the
kernel of P0 and the interaction algebraA.

Proof.– From Eq. (15) we see that the condition (16), for
V = −i[V, •], means [P0(V), ρ] = 0, ∀ρ ∈ A′, namely the
projected dynamics does not change by perturbing K with any
term V such that ‖V‖ = O(1/T ) and P0(V) ∈ A′′ = A. Since,
by constructionP0(V) ∈ A′ as well one finds that (16) is satis-
fied by an Hamiltonian perturbation V iff Eq. (17) is satisfied.
Moreover, if V ∈ Z(A) ⇒ P0(V) = V implies that the solu-
tion space of Eq. (17) is the linear space KerP0 +Z(A). More
concretely, the Hamiltonian perturbations V fulfilling the ro-
bustness condition Eq. (17) have the form

V = Voff +
∑
Jβ

Xβ
J ⊗ Yβ

J +
∑

J

λJ11nJ ⊗ 11dJ (18)

where Tr(Yβ
J ) = 0, (∀J, β), and Voffis off-diagonal in the de-

composition (13). The first two terms in the (18) repre-
sent KerP0 whose dimension is then

∑
J,J′ (nJdJ)(n′Jd′J) +∑

J n2
J(d2

j−1) = (
∑

J nJdJ)2−
∑

J n2
J = dim L(H)−dimA′. The

third term in (18) represent the centerZ(A) of the interaction
algebra whose dimension is

∑
J 1. Overall we see that the so-

lution space of (17) has dimension dim L(H)−
∑

J n2
J +

∑
J 1 =

dim L(H) −
∑

J(n2
J − 1) i.e., it has codimension

∑
J(n2

J − 1). �

For example, in the collective decoherence case the interac-
tion algebra A is the algebra of permutation-invariant opera-
tors acting on the N-qubit space [2, 3]. Since

P0(σαj ) =

∫
S U(2)

dUU⊗Nσαj U†⊗N =

∫
S U(2)

dUUσαj U†

= Tr(σαj ) 11 = 0 (α = x, y, z; j = 1, . . . ,N),

it follows that all symmetry-breaking V’s of the form V =∑N
j=1.α=x,y,z δ

j
ασ

α
j with |δ j

α| = O(1/T ) can be tolerated.

B. Perturbation of the Lindblad operators

Besides unitary perturbations K → K + V in practical ap-
plications one has also to consider dissipative ones L0 →

L0 + L1 where L1 denotes a dissipative Liouvillian with
‖L1‖ = O(1/T ). It is important to stress that the resilience of
the projected dynamics extends to non-unitary perturbations
e.g., extra noise sources.

To begin with, we observe that in the unit-preserving case
all Lindbladian perturbations L1 of the form of Eq. (10)
whose Lindblad operators are in the interaction algebraA [see
Eq. (11], satisfy P0L1P0 = 0. Let us then consider perturba-
tions that take the Lindblad operators outside ofA. More pre-
cisely, we consider Eq. (10) with Lindblad operators given by
collective spin operators S µ =

∑N
j=1 σ

µ
j (µ = x, y, z) and then
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FIG. 2. Unitarity from dissipation: a unitary dynamics is gener-
ated out of a purely dissipative one. To highlight the unitary char-
acter we use the method described in [37]. For unitary dynamics
one has ρ(t) = e−itHeffρ0eitHeff =

∑
n,m e−it(En−Em) [ρ0

]
n,m |n〉〈m|, with

Heff =
∑

n En|n〉〈n|. In the figure we plot the real and imaginary
part of 〈1|ρ(t)|2〉. Left panel: two qubit example generating the ef-
fective Hamiltonian He f f = σy ⊗ 11. The time evolution window is
t ∈ [T/100, 10T ] and T = 100 arbitrary units (AU). Right panel: four
qubit example with perturbed collective noise. The effective Hamil-
tonian is given in Eq. 28. The time evolution window is [T/2, 4T ]
with T = 100 AU.

we perturb them by permutational symmetry breaking terms
S µ 7→ S µ + T−1Xµ where ‖Xµ‖ = O(1). This leads to a per-
turbed Liouvillian L̃0 = L0 + T−1L1 + T−2L2. Where

L1(ρ) =
∑
µ

(
XµρS µ + S µρXµ −

1
2
{ {Xµ, S µ}, ρ}

)
(19)

and L2 is a quadratic expression in the Xµ’s.

Proposition 3.– If L1 is given by (19) then P0L1 P0 = 0.
Proof.– To see that is enough to notice that ρ ∈ A′ ⇒ ρ =

⊕JρJ ⊗ 11dJ , and S µ = ⊕J11nJ ⊗ S µ
J . Since P0 annihilates any

off-diagonal contribution in (19) one can assume a J block-
diagonal structure for the perturbation: Xµ = ⊕J Xµ

J ⊗ Yµ
J .

Therefore by considering, for example, the term P0(XµρS µ) =

P0(XµS µρ) = P0(XαS µ)ρ one obtains

P0(XµS µ) = P0

(
⊕Xµ

J ⊗ YJS µ
J

)
= ⊕JTrdJ (YJS µ

J) Xα
J ⊗ 11/dJ

= ⊕JTrdJ (S µ
JYJ) Xµ

J ⊗ 11/dJ = P0(S µXµ). (20)

This shows that any term in P0L1 P0 arising e.g., from the
first term in (19), is canceled by an identical one arising
from the anti-commutator side as P0(XµS µρ + S µXµρ) =

2P0(S µXµ)ρ. Notice that in particular for Xµ ∈ A′ one has
the stronger property L1P0 = 0. �

In Fig. 1 we report a numerical simulation for the four
qubits system discussed in the former section. The simula-
tion confirms that for small 1/T the Liouvillians L0 and L̃0
generate the same projected dynamics [20]. In words: one
can exploit (symmetric) noise to wash out other noise.

VI. EMERGING UNITARITY

A unitary dynamics gives rise to a non-unitary one as soon
as some unobserved degrees of freedom are traced out. This
is an ubiquitous situation in physics. The converse process,

to obtain a unitary evolution from an underlying dissipative
one, appears a much more difficult task. Here we show how
this phenomenon of emerging unitarity manifests itself in the
context we have discussed in this paper.

We begin by slightly generalizing our set-up i.e., going be-
yond the unital case where the kernel of L0 is the commutant
of the interaction algebra. According to Ref [38] any gen-
erator of the Lindblad type (10) is such that its SSS is given
by states ρ of the form ρ =

∑⊕
J λJ ωJ ⊗ ρ0,J where the state

space block structure is still of the form (12). Here the ωJ are
arbitrary states in CnJ , the ρ0,J’s are uniquely defined states in
CnJ and the λJ’s are non-negative scalars. In the unital case
we mostly considered so far ρ0,J = 11dJ/dJ . The robustness
calculation of the the former section can be now generalized
to this non-unital Liouvillians case. As before we perturb the
(not necessarily hermitean) Lindblad operators Lα 7→ Lα+δLα
and consider as perturbation the first order variation of L0.

L1(ρ) =
∑
α

(δLαρL†α −
1
2

(δL†αLα + L†αδLα) ρ + h.c.) (21)

If ‖δLα‖ = O(1/T ) then Eq. (2) holds with K̃ replaced by L1.

Proposition 4.– Let us add, to a Liouvillian generator of
the type (10), a perturbation of the form (21). Then, for ρ in
the SSS, one has that P0L1P0(ρ) = −i[A, ρ], where

A = Im
∑
α

⊕∑
J

TrdJ

(
δL†αLα (11nJ ⊗ ρ0,J)

)
⊗ 11dJ = A† (22)

in which Im X := 1
2i (X − X†). In particular, for the unital case

L0(11) = 0, one can write

A = ImP0 (
∑
α

δL†αLα). (23)

Proof.– Let us consider the Lindbladian L0(ρ) = LρL† −
1
2 {L

†L, ρ}. Perturbing the Lindblad operators L 7→ L + δL one
finds the variation L0 7→ L0 + δL, where

δL(ρ) = δLρL† −
1
2

(L†δL + δL†L) ρ + h.c, (24)

Without loss of generality we can consider δL as block-
diagonal in the decomposition (13) and work on a fixed J sec-
tor CnJ ⊗ CdJ . In that sector we write: δL = X ⊗ Y, L = 11 ⊗ L̃
and ρ = ω⊗ρ0 in the SSS. Here ρ0 denotes the unique steady-
state in the CdJ factor of the J block i.e., 11dJ/dJ in the unital
case. The first three terms in (24) give rise to the following
three contributions respectively

Xω ⊗ Yρ0L̃†, −
1
2

Xω ⊗ L̃†Yρ0, −
1
2

X†ω ⊗ Y†L̃ ρ0.

Applying P0 : A ⊗ B 7→ Tr(B) A ⊗ ρ0 and adding the h.c.,
terms one finds

P0δLP0(ρ) = (
α

2
Xω −

ᾱ

2
X†ω) ⊗ ρ0 + h.c. =

− i [
ᾱX† − αX

2i
, ω] ⊗ ρ0, α := Tr(L̃†Yρ0). (25)
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FIG. 3. Unitarity from dissipation: a unitary dynamics is gen-
erated out of a purely dissipative one. Here we plot real and
imaginary part of the eigenvalues of the exact map ETP0 =

exp
[
T (L0 + 1

TL1 + 1
T 2L2)

]
P0 for different T . The examples are the

same as in Fig. 2, i.e. two (four) qubit example on the left (right)
panel. Increasing T the eigenvalues tend to go on the unit circle.
Left panel: T ∈ [1, 1000] AU, the eigenvalues approach e±2i, 1, con-
sistently with Eq. (26). Right panel: T ∈ [5, 600] AU. The eigenval-
ues of the effective Hamiltonians (28) are ±8, 0. Consequently the
eigenvalues of ET P0 approach e±16i, e±8i, 1.

On the other hand δL†L = (X† ⊗ Y†)(11 ⊗ L̃) = X† ⊗ Y†L̃ from
which we see that (25) can be written as −i[Ã, ω ⊗ ρ0] where
Ã = Im TrdJ

(
δL†L (11 ⊗ ρ0)

)
⊗ 11dJ . Here the index dJ denotes

the second factor i.e., CdJ in the bipartition of the given J
block. Let us now consider a Liouvillian L0 with more than
one Lindblad operator {Lα}α. Putting together all the different
J-blocks, we obtain P0L1P0(ρ) = −i[A, ρ] where A is given
by Eq. (22) with ρ =

∑⊕
J ωJ ⊗ ρ0,J , (P0(ρ) = ρ). In the unital

case one has ρ0,,J = 11dJ/dJ and Eq. (23) follows from (22)
and (14). �

Remark i) If all the Lα’s and perturbations δLα’s are Her-
mitean A = 0; ii) If δLα ∈ A′(⇒ (Xα)J ∼ 11nJ ) then
AJ ∼ 11nJ ⇒ P0δLP0 = 0.

While mathematically simple the Proposition 4 is, on phys-
ical grounds, a remarkable and surprising result. Combined
with the dissipation-projection theorem Eq. (2), it indeed im-
plies that a small, generic, Lindblad perturbation induces an
effective unitary dynamics over the SSS generated by the
Hamiltonian (22). This even in absence of any Hamiltonian
term in both the unperturbed and unperturbed Liouvillian. In
principle, by tailoring the dissipative terms δLα’s, one can ob-
tain a desired effective unitary generator A.

A. Examples

To illustrate this mechanism we first consider a simple two-
qubit example. We set L = 11 ⊗ σz and δL = σ− ⊗ σz. In this
caseP0(X) = TrB (X(11 ⊗ |0〉〈0|))⊗|0〉〈0|+TrB (X(11 ⊗ |1〉〈1|))⊗
|1〉〈1|, where TrB denotes the partial trace over the second
qubit. Using Eqs. (25), (22) with J = 0, 1; d0 = d1 = 1; ρ0,0 =

|0〉〈0|, ρ0,1 = |1〉〈1|; X = σ− and Y = σz one finds

A = ImP0(δL†L) = σy ⊗ |0〉〈0| + σy ⊗ |1〉〈1| = σy ⊗ 11. (26)

A numerical simulation of this dissipation generated gate is
shown in Figs. 2, 3 left panel. To highlight the unitary char-

acter of the dynamics we use the fact that matrix elements
of the density matrix ρ(t) evolve as phases in the Hamilto-
nian eigenbasis and therefore result in circles on the complex
plane [Fig. 2]. Similarly as ET approaches a unitary evolution
within the SSS, the eigenvalues of ETP0 converge to the unit
circle increasing T as depicted in Fig. 3.

Let us now consider a four-qubit system subject to general
collective decoherence [2, 3]. In this caseL0 has the form (10)
with the Lindblad operators given by collective spin operators
i.e., Lα =

∑4
j=1 σ

α
j , (α = x, y, z). In this unital case the inter-

action algebra A coincides with algebra of totally symmet-
ric operators and the commutant A′ is 14−dimensional [20]
and generated by qubit permutation operators in the group S4.
We consider perturbations of the form δLα = U Lα = Lα U
where U ∈ S4. Then

∑
α δL†αLα = 4U†S2, where S is the

total spin operator. We also have P0

(
U†S2

)
= U†S2 and

U†S2 − US2 = 2(U† − U). We further fix U to perform the
right-shift permutation (1, 2, 3, 4)→ (4, 1, 2, 3). One obtains

A = 4 ImP0

(
U†S2

)
= 8 Im(U†) (27)

= [(σ1 + σ2) × σ3] · σ4 + [σ2 × (σ3 + σ4)] · σ1 , (28)

where in the last equation we used the fact that U =

S 2,3S 3,4S 1,4 with S i, j =
(
11 + σi · σ j

)
/2 the operator swapping

site i with j. A numerical simulation confirming this unitary
behavior emerging from a dissipative dynamics, is shown in
Figs. 2,3 right panel.

VII. CONCLUSIONS

The traditional avenue to quantum information processing
(QIP) primitives, such as quantum gates, requires the dissipa-
tion due to the environment to be as small a possible compared
to the control Hamiltonian. A number of powerful techniques
have been develop to combat the detrimental effects of dissi-
pation [1]. However, over the last few years there has been a
growing amount of evidence that dissipation may on the con-
trary provide a resource for QIP see e.g., [13, 14, 16–19].

In this spirit in ref. [20] we have shown how it is possible
to generate coherent quantum manipulations also in the oppo-
site regime in which the dissipation is much stronger than the
control Hamiltonian. The only requirement is essentially that
the dissipation must provide a degenerate set of steady states
(SSS). The coherent control drives the system away from the
SSS but the strong dissipation effectively projects the dynam-
ics back onto the SSS. As a consequence a quantum evolu-
tion governed by an effective Hamiltonian coherently unfolds
within the SSS [20].

In this paper we further investigated the consequences of
this approach. The following are the main findings of this
paper. i) We provided further details on the rigorous es-
timate of the error between the exact evolution and the ef-
fective projected dynamics. ii) Moving to a suitable rotated
frame, we have shown that the effective dynamics in the SSS
is of geometric origin i.e., it is the holonomy associated with a
superoperator-valued connection. iii) The effective dynamics
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is protected against a large class of Hamiltonian and dissipa-
tive perturbations. iv) As a corollary of this result, we have
shown that certain dissipative perturbations of purely, dissipa-
tive, Lindbladian (i.e. one for which the eigenvalues are real
negative) generate an effective unitary dynamics.

Dissipative dynamics is easily obtained from a unitary one
as soon as some degrees of freedom are traced out. On the
contrary the emergent unitarity phenomenon we have dis-
cussed is a quite surprising example of a unitary dynamics
obtained from a purely dissipative one. Understanding its

fundamental origin and potential application in QIP is a topic
worthwhile of future investigations.
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Appendix A: Error estimate

Here we are going to estimate the error term appearing in
the RHS of Eq. (2). In this section we use the following nota-
tion for the total Liouvillian: L(x) = L0 + xL1, where L0 is
the dominant, dissipative, term, L1 is the perturbation (which
often will be taken as a unitary generator, i.e. L1 = K), and
x is a small dimensionless parameter. The relation between x
and the T in the main text is T−1 = xτ−1

0 where τ0 is some
time-scale which will become more explicit below. We are
going to show that the expression inside the norm in the LHS
of Eq. (2) is analytic in x around zero starting with a lin-
ear term and we are going to estimate its coefficient. Let
us assume that Ker(L0) is d-dimensional, i.e. d eigenvalues
of L0 are zero. If we turn on the perturbation xL1, some
of these eigenvalues will move a little bit. The collection of
all these d eigenvalues forms the so called λ-group [39] and
identifies an invariant subspace of L(x). The projection P(x)
onto such subspace turns out to be an analytic function of x
[39]. As shown in [39], the restriction of L(x) to the λ-group,
R(x) := P(x)L(x) = L(x)P(x) = P(x)L(x)P(x), is also an
analytic function of x. The λ−group projection P(x) is a stan-
dard tool in the spectral theory of linear operators (see e.g.,
the classic Kato’s book [39] ). It is basically the sum of all
the (non necessarily orthogonal) spectral projections associ-
ated with λ−group itself and is analytic even at the exceptional
points where the degeneracy changes. It can be obtained by
integrating the resolvent (z−L(x))−1 along a contour enclosing
all (and only) the eigenvalues belonging to the λ−group.

One has the following expansions

P(x) = P0 + xP1 + O(x2) (A1)
R(x) = xR1 + x2R2 + x3R3 + O(x4). (A2)

The Liouvillian character of L0 (i.e. that fact that P0 =

limt→∞ etL) assures that zero is a semisimple eigenvalue ofL0,
i.e. there is no Jordan block associated with the zero eigen-
value of L0. Whereas this is not strictly required it does sim-
plify the following formulae. In the semisimple case one has
for instance [39]:

P1 = −(P0L1S + SL1P0) (A3)
R1 = P0L1P0 (A4)
R2 = − (P0L1P0L1S + P0L1SL1P0 + SL1P0L1P0) .

(A5)

In the above formulae, S is the projected resolvent of L0 at
zero satisfying L0S = SL0 = 11 − P0 and is given by

S = − lim
z→0

(z − L0)−1(1 − P0) (A6)

= −
∑
k,0

(−λk)−1P(k) +

mk−1∑
n=1

(−λk)−n−1
(
D(k)

)n
 . (A7)

In the last equation we assumed that L0 has the following Jor-
dan decomposition

L0 =
∑

k

(
λkP

(k) +D(k)
)

(A8)
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with λk eigenvalues with (algebraic) multiplicity mk, projec-
tors P(k) and nilpotent blocks D(k) (note that λ0 = 0 and
P(0) ≡ P0). Note that all the L j, R

′
js have the dimension

of inverse of time, the P j’s are dimensionless and S has units
of time. In particular xR1 is precisely Leff in our applications.
We denote it Re f f := txR1 here for notational consistency.

Clearly P(x) commutes with L(x) and so one has the iden-
tity

etL(x)P(x) = etR(x)P(x). (A9)

We now choose times t such that tx is bounded by a given
finite time in some unit, i.e. tx = O(1)τ0. In the follow-
ing we will adopt the so-called 1 − 1 norm for maps E
i.e., ‖E‖ := sup‖X‖1=1 ‖E(X)‖1. This is a submultiplicative
and automorfism-invariant norm for superoperators such that∥∥∥etL(x)

∥∥∥ ≤ 1.
Note that

∥∥∥etL(x)
∥∥∥ ≤ 1 because the evolution maps states

to states (i.e. because of complete positivity). Instead from∥∥∥etR(x)
∥∥∥ ≤ exp ‖tR(x)‖ we get

∥∥∥etR(x)
∥∥∥ ≤ O(1). Hence we ob-

tain(
etL(x) − etR(x)

)
P0 = −

(
etL(x) − etR(x)

)
xP1 + O(x2). (A10)

Now define ∆ := etR(x) − etxR1 . Clearly ∆ = O(x) (we will
later determine the coefficient), so we finally get(

etL(x) − etxR1
)
P0 = +∆P0 −

(
etL(x) − etxR1

)
xP1 + O

(
x2

)
.

(A11)
Using Dyson expansion one can easily estimate ∆:

∆ = tx2
∫ 1

0
e(1−s)Re f fR2esRe f f ds + O

(
x2

)
. (A12)

We now take the norm of Eq. (A11), use triangle in-
equality and bound all the resulting terms. Defining C =

sups∈[0,1]

∥∥∥esReff

∥∥∥, we get ‖∆‖ ≤ tx2C2 ‖R2‖ + O(x2), ‖R2‖ ≤

3 ‖P0‖
2
‖L1‖

2
‖S ‖, and ‖P1‖ ≤ 2 ‖P0‖ ‖L1‖ ‖S ‖. Putting

things together we finally obtain

∥∥∥∥(etL(x) − eReff

)
P0

∥∥∥∥ ≤ x ‖S‖ ‖L1‖ ‖P0‖

×
(
3txC2 ‖P0‖

2
‖L1‖ + 2(C + 1)

)
+ O(x2). (A13)

In order to make more apparent the connection with phys-
ical constants, we define dimensionless (tilded) operators via
L = γ0L̃0 + γ1L̃1 such that γ−1

0 = τR is the (short) relax-
ation time of the unperturbed dissipation and γ−1

1 = T is the
timescale of the control term. Measuring times in units of
τR the evolution becomes exp

[
(t/τR)

(
L̃0 + xL̃1

)]
and we see

that x = γ1/γ0 = τR/T is the small parameter. The require-
ment that the effective generator R̃eff = tγ1P̃0L̃1P̃0 is finite
and non-zero implies tγ0x = tγ1 = O(1). This means that the
waiting time is given by t = O(T ). The bound Eq. (A13) then
translates into (all the tilded operators are dimensionless)

∥∥∥∥(etL − eR̃eff

)
P0

∥∥∥∥ ≤ τR

T

∥∥∥S̃∥∥∥ ∥∥∥L̃1
∥∥∥ ∥∥∥P̃0

∥∥∥
×

(
3

t
T

C2
∥∥∥P̃0

∥∥∥2 ∥∥∥L̃1
∥∥∥ + 2(C + 1)

)
+ O(x2). (A14)

Equation above can often be further simplified. For example,
if L0 generate a positive map

∥∥∥P̃0
∥∥∥ = 1, whereas if Reff gen-

erates a unitary one has C = 1.


