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We study the creation process of electron-positron pairs from the quantum electrodynamical 

vacuum under very strong electric fields by solving the quantum field theoretical Dirac equation on 

a space-time grid.  We investigate the role of bound-bound state mixing in such a process, which 

can be studied if the external force can be modeled by a combination of a potential barrier and a 

potential well.  By increasing the magnitude of the two potentials, discrete states that originate from 

the positive and negative energy continua can become quasi-degenerate in the mass gap region 

(between –mc2 and mc2).  We show that this bound-bound state mixing is quite different from the 

usual bound-continuum state mixing where the particles are created until the Pauli exclusion 

principle inhibits this process.  In the case of bound-bound mixing the particle number exhibits a 

characteristic oscillatory behavior that in principle can last forever.  All of these findings can be 

modeled accurately by an effective two-state model. 
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1. Introduction 

 One of the most striking predictions of quantum electrodynamics is the possibility to convert 

light directly into matter.  Early works of Sauter [1] and Heisenberg and Euler [2] have suggested 

that a sufficiently strong external electric field could break down the vacuum and create 

particle-anti-particle pairs.  In 1951 Schwinger [3] used a non-perturbative approach to calculate 

the required electric field strength required to observe such a process.  However, the threshold for 

the amplitude of the electric field to generate a significant amount of pairs was estimated to be on 

the order of ~1016 V/cm, commonly known as the Schwinger field.  So far this threshold has not 

been reached in an experimental setting such that a direct field-matter energy conversion has not 

been verified in the laboratory yet.  Recently several laboratories [4] have begun to develop a new 

generation of laser systems that could produce sufficiently intense pulses to observe the pair 

creation process.  The intensity for a laser pulse necessary to break down the vacuum is estimated to 

be on the order of around 1029 W/cm2.  Several laboratories are aiming to achieve this critical 

intensity in the future thus enabling us to observe this fascinating nonlinear quantum 

electrodynamical process. 

 Following Schwinger, many theoretical studies [5,6] have continued to calculate the 

long-time pair creation behavior for spatially inhomogeneous electric fields and several proposals 

[7-10] have emerged from investigations involving the combination of different static electric, 

magnetic and time-dependent laser fields in hope to predict the pair creation in a more controllable 

environment.  Many theoretical approaches have been employed to study the pair creation 

phenomena, such as the proper time method [11-13], WKB approach [14] and various world line 

instanton techniques [15,16].   

 Within these theoretical works, there are two challenges that researchers have focused on.  

One challenge has been to obtain more accurate predictions for realistic laboratory conditions for 

the onset of pair creation through various spatial and temporal arrangements.  The other focus has 

been to better understand the underlying fundamental mechanisms using large-scale numerical 

simulations of simplified model systems.  In this case the parameters are sometimes chosen beyond 

experimental feasibility to discover new phenomena.  The present work belongs to the latter 

category where we try to obtain a better understanding of the role of the interactions between 

electronic and positronic bound states. 

 In an important work [17,18] it was suggested that electronic bound states that are embedded 

into the negative energy continuum could be responsible for pair creation in addition to the usual 
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continuum-continuum state mixing.  Recently, several works [19-21] have also suggested that 

discrete states can act as a transfer channel for population between the positive and negative energy 

states and thus enhance the pair creation yield.   

 It is interesting that discrete states have some dynamical relevance even for pair creation 

scenarios for which the energy spectrum of the underlying Hamiltonian is exclusively continuous.  

For example, it was recently pointed out that the well-known complex coordinate rotation 

technique can be applied directly to determine the pair creation rate.  Here this technique [22-26] is 

able to extract truly discrete (and normalizable) states from the continuum.  In contrast to the 

non-relativistic interpretation in terms of finite resonances, in a quantum field theoretical 

framework of the Dirac multi-particle theory, the lifetime of these states can be associated with pair 

creation rates. 

 In this work we study the pair creation process in a novel regime where electronic and 

positronic bound states in the mass gap are quasi-degenerate.  The dynamics of these discrete states 

turns out to be rather different from the usual bound-free state coupling discussed in the seventies 

[17].  In order to study the interaction due to these bound states, we require an unusual external field 

configuration described by a combination of a potential well and a barrier.  By varying the height of 

the potential barrier and well, we can change the energy of the discrete states associated with 

electronic and positronic energy manifolds and shift them such that they can cross each other.  The 

spatial densities of the created particles suggest that most particles are produced close to the joint of 

the potential well and the barrier, where the force (proportional to dV/dx) is the maximum.  

 This paper is organized as follows.  In section 2, we describe the physical mechanism for the 

bound-bound mixing process based on the energy spectrum of the Dirac Hamiltonian.  In section 3, 

we use a one-dimensional potential to investigate the role of discrete electronic and positronic states 

in the mass gap.  This kind of interaction between different discrete electronic and positronic states 

can be modeled by a simplified two-level system. In Section 4 we study the more complicated case 

of a time dependent potential, in which we can control the interaction strength between the two 

bound states.  In section 5, more than two bound states are involved and the interaction between 

different bound states is investigated.  In the last section, we provide a brief discussion.  

 

 

2. The quantum field theoretical approach to pair creation 

2.1 The Dirac model system 
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In order to explore the dynamics of the interaction between discrete states, we use a simplified 

model described by the Dirac equation for a combination of a potential well with a potential barrier 

as shown in Fig. 1.  The two potentials are separated by a distance F: 

 

  V(x) = V0 [U(x+F/2) - U(x-F/2)]                      (2.1) 

 

where each potential is defined as U(y) = [ –tanh[(y-D/2)/W] + tanh[(y+D/2)/W] ]/2 for simplicity.  

We assume that the potential well and barrier have the same shape and height.  This configuration 

can be characterized by three lengths: W is a measure for the extension of each edge, D is the total 

width of the potential well or the barrier and F is the length of the region between the barrier and the 

well.  

 We can study the number of created electron-positron pairs N(t) as well as the spatial 

distribution for various parameters.  In appendix A we provide the numerical details of how N(t) 

was computed in quantum field theory from the one-dimensional Dirac equation for the 

electron-positron field operator. 

 

 

Figure 1      Sketch of the combination of a potential barrier and a potential well.  The 
parameter F is the distance between the two portions of the potential and D is the width of 
each potential.  V0 (–V0) is the height of the potential barrier (well).  The upper (lower) 
shaded portion indicates the positive (negative) continuum.  The dashed lines show the 
bound states in the potential well and barrier.  Here the dotted lines indicate the first bound 
states from the negative continuum and positive continuum that can have the same energy.   
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Before analyzing the simulation results in more detail, let us first describe the resonance 

mechanism of two bound states in more detail.  The field-free positive (E>c2) and negative 

continuum  (E<–c2) states do not overlap in the absence of forces.  If a potential well (barrier) is 

turned on, unfilled (filled) bound states emerge from the positive (negative) continuum.  We 

associate the bound states of the potential well (barrier) with electronic (positronic) states that are 

initially unoccupied (occupied) consistent with the Dirac sea representing the vacuum state.  

By increasing the height V0 of the potential, the bound states emerging from the positive and 

negative continua come closer to each other and can even cross if the potentials are sufficiently 

large.  This process can be associated with the creation of an electron-positron pair.  The created 

electron is then trapped in the potential well, while the positron is captured by the barrier. 

To be more quantitative, we show in Figure 2 the energy spectrum of the total Dirac 

Hamiltonian as a function of the height V0.  Due to the presence of the bound states, the spectrum in 

the energy gap forms a “net” like structure in the shape of arrays of quadrangles.  The three vertical 

lines indicate the first four avoided crossing points.  In this work we focus our attention to the 

properties of the four crossing points in the first quadrangle.  When the potential strength V0 is 

1.102c2 (labeled 1) there are a total of eight bound states emerged from the positive and negative 

energy continua.  The first positive and negative bound states approach each other in the middle of 

the mass gap region, close to E=0 c2, but keep a minimum separation of 0.00414c2 characteristic of 

an avoided crossing.  For V0=1.235c2, there are two avoided crossings (labeled 2 and 3) 0.129c2 

(0.126c2 and 0.133c2) and –0.129c2 (-0.126c2 and -0.133c2).  The minimum separations are 0.006c2 

in both cases.  Moreover, when V0=1.375c2 (labeled 4), the second set of discrete states (first 

excited states) from the two continua show an avoided crossing with the two energies 0.0056c2 and 

-0.0056c2. 
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Figure 2     The energy spectrum of the total Dirac Hamiltonian as a function of the height V0 of 
the potential displayed in Figure 1.  The four vertical lines mark the first four avoided crossing 
points.  [The parameters are W=0.3/c, D=6/c and F=2.4/c] 

 
The total number of the avoid crossings in the energy gap (from –c2 to +c2) for D=6/c 

alternates between five and six for large values of V0.  However, if we increase the potential well 

(barrier) width D, the maximum number of crossing points increases, and when D approaches 

infinity, the number of crossing points is sufficiently large such that the bound states in the gap 

become very dense leading to an overlap of effectively positive and negative quasi-continua.  The 

energy difference at each crossing point decreases with the increasing of F, which is related to the 

coupling strength between the two states as we will discuss in more detail below. 

 

2.2 The model based on the two-level approximation 

 In this section we motivate the two-state approximation.  It is important to remember that in 

this study (and in almost any other works in the literature [27]) the definition of the created particles 

is based on the projection on the force-free (and not the actual) energy eigenstates, denoted in Eq. 

(A.3) as |p〉 and |n〉.  Also, in this work we have assumed that in each simulation the external force is 

absent initially, such that the vacuum state is described by the sum of all occupied states |n〉. 

 If the external force is then turned on abruptly (or over a sufficiently short time period), then 

the total overlap of the electronic manifold of the energy eigenstates of the coupled system with all 

states |n〉 determines the number of created particle pairs.  For example, the usual relativistic 
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hydrogen atom is a pure one-electron system, but nevertheless its ground state |1s〉 has a 

non-vanishing overlap with the force-free states 〈n|1s〉 ≠ 0.  This means that if a proton were 

suddenly inserted into the universe, the resulting boost to the vacuum would create 

electron-positron pairs, where part of the electron could occupy the ground state (in this newly 

formed hydrogen atom) with a probability that is given by Σn |〈1s|�〉|2.  Equivalently, if the proton 

were removed instantly from a hydrogen atom in its ground state, positrons with an average number 

of Σn |〈1s|�〉|2 would occur.  It is therefore important to study the overlap of the states |�〉 with the 

true energy eigenstates of our specific system, defined by the Dirac Hamiltonian in Eq. (A.1). 

 In Figure 3 we have graphed this total overlap On(E) ≡ Σn |〈E|�〉|2 for the positronic ground 

state with all force-free states of the negative energy as a function of the ground state energy, which 

depends directly on V0.  Its should be obvious that the corresponding overlap with the states |p〉 is 

simply given by Op(E) ≡ Σp |〈E|p〉|2 = 1 –  On(E).  

 

 

Figure 3  The overlap of the positronic bound state with all force-free states of the negative energy 
as a function of the energy of this state, Σn |〈E|n〉|2.  V0 was increased from 0 to 2.2c2. 

[other parameters are W=0.3/c, D=6/c, only the well portion of the potential was used 
corresponding to F→ ∞]. 
 

 

The data suggest that the weight factors {√Op, √On} for this particular state change from {0,1} for 

E= –c2 (corresponding to V0=0) to {0.1764, 0.9843} for E=0.99c2 (corresponding to V0=2.2c2).  
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Similarly (not shown), the corresponding electronic ground state would change from {1,0} for E=c2 

to {0.9838, 0.1792} for E=-0.99c2.  In other words, while the energy of these states changes 

significantly by 2c2, the weight factors did not change too much and stayed rather robustly the same 

close to 1. 

 The data were obtained for the potential well.  In the dynamical region close to the avoided 

crossing of an electronic and positronic bound state the pair creation dynamics is largely governed 

by only two eigenstates.  In the absence of any coupling (corresponding to an infinite spacing 

between the well and barrier, F→∞) we loosely label the electronic states as {1,0} and positronic 

state as {0,1} for all V0 as suggested by the data in Figure 3.  The energy of these states as a function 

of V0 could be modeled by the matrix  

 

  H = [{c2-v(V0), 0},{ 0, -c2+v(V0)}]  (2.2) 

 

where we defined the scaled potential height as v(V0) ≡V0/1.102 for the first avoided crossing.  The 

scaling of the height was introduced such that (for F→∞) , the two eigenvalues of H, c2−V0/1.102 

and − c2 + V0/1.102, can follow a similar path as a function of V0 as the exact electronic and 

positronic bound states shown in Fig. 2.  For example, for V0 =1.102c2 we would have a perfect 

energy degeneracy.  Here the eigen vectors remain precisely {1,0} and {0,1}, independent of V0. 

 To include the effect of a non-infinite spacing F, the dynamical evolution of the two discrete 

states can be approximately described in this basis by an effective two-state Hamiltonian given by 

the 2×2 matrix 

 

  H = [{c2-v(V0), λ(F)},{ λ(F), -c2+v(V0)}]  (2.3) 

 

To find the best match for our numerical parameters, we have to define an effective coupling λ(F).  

The coupling λ(F) between the two states has to decrease as the spacing F increases.  In atomic 

units any energy is inversely proportional to the square of a length.  In order to model an effective 

coupling interaction energy we chose λ(F) =0.02765 c2
 exp(-F/0.898) for the first avoided crossing.  

This particular pre-factor was chosen phenomenologically based on the minimum energy spacing at 

the avoided crossing. 
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 In the sections 3, 4 and 5 below, we will describe several scenarios where the potential height 

V0(t) and the spacing F(t) between the two potentials vary in time.  In the two-state model we can 

approximate this by permitting the parameters v and λ to become time dependent.  The general time 

evolution from an initial state |Ψ(t=0)〉 = {0,1} to the state |Ψ(t)〉 = C1(t) {1,0} + C2(t) {0,1} can be 

obtained easily from this model by solving the coupled equations for a given v(t) and λ(t). 

  i dC1(t)/dt  =  [c2-v(t)] C1(t)  +  λ(t) C2(t) (2.4a) 

  i dC2(t)/dt  =  [-c2+v(t)] C2(t)  + λ(t) C1(t) (2.4b) 

 

In this model the number of created particle pairs trapped in the bound states is simply associated 

with the population of the state labeled {1,0}, as the overlap with the positive free states was 

denoted by the upper component, N(t) = |C1(t)|2 with N(t=0) = 0. 

 

 

Figure 4  (Color online) The number of the created electrons N(t) as function of time.  The red 
curve is the exact particle number and the black curve is the prediction from the solution of the 
two-level approximation.  Before t=0.05, F=2.4/c, and in the interval 0.05<t< 0.1, F is increased 
linearly from 2.4/c to 8/c [other parameters are W=0.3/c, D=6/c]. 
 

 In Figure 4 we have tested the validity of the two-level approximation for a system in which 

first the potential height was varied (for t≤0.002) and then the distance between the two potentials 

was increased (for 0.05≤t≤0.1).  More specifically, the amplitude V0 was turned on according to 

sin2(πt/0.004), while F was increased linearly from 2.4/c to 8/c with F=2.4/c +11.2(t−0.05)/c.  This 
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good agreement of the exact numerical curve and the predictions of this model for the overall 

behavior of N(t) establishes the validity of the phenomenological two-level model for a general 

condition.  

 

3. The pair creation around the first crossing point 

 As discussed in Figure 2, the first crossing point occurs at V0=1.102c2 close to the energy 

E=0c2.  As this energy is different than that of any other states, it seems reasonable to assume that 

the pair creation process close to this resonance can be modeled by only two states.  While it is 

numerically rather straightforward to solve the two equations numerically, one can obtain useful 

insight into the dynamics for more special situations where neither the amplitude V0 (modeled 

above by v) nor the spacing F (modeled by λ) vary too rapidly in time.  For example, in the 

adiabatic case, the instantaneous energy eigenvectors of the effective two-state Hamiltonian of Eq. 

(2.3) can play a significant role.  We show in Appendix B that if the force is turned on rather 

abruptly the number of created electron-positron pairs is given by the oscillatory function 

 

N(t) = |exp(-i Epos t) Vpos2Vpos1 + exp(-i Eneg t) Vneg2Vneg1|�  (3.1) 

 

where {Vpos1,Vpos2} and {Vneg1,Vneg2} are the components of the instantaneous energy states with 

energies Epos and Eneg . 

 

3.1 The particle yield N(t)  

 The inset of Figure 5 is the zoomed-in view of the energy spectrum of the total Hamiltonian as 

a function of V0 close to the first crossing point at V0=1.102c2, where the two states take the 

energies ±0.00207c2.  The five vertical lines indicate V0 = (1.095, 1.099, 1.102, 1.105 and 1.109) c2, 

with the corresponding energy differences ΔE = (0.0140, 0.0070, 0.0040, 0.0073 and 0.0144) c2.  

The solid curves in the inset are the energy spectrum obtained from the simple two-level model by 

diagonalizing the effective 2-state Hamiltonian of Eq. (2.3).  Here we choose for the energy v(V0) = 

V0/1.102 and for the coupling between the two states λ(F) = 0.02765c2 exp(–F/0.898).  We can see 

that the match is superb especially near the avoided crossing.  When V0 is increased or decreased 

from 1.102c2, the energy difference between the two discrete states ΔE grows.    
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The solid curves in the main Figure 5 are the corresponding time dependent numbers of 

created particles N(t) associated with five potential heights.  These heights are chosen symmetric 

around V0=1.102c2 and the data for N(t) show that the corresponding pair creation yields are also 

roughly symmetric around V0=1.102c2. 

We note that each graph is characterized by three different temporal regimes.  At very early 

times (ts<0.002) when the field was turned on [with an amplitude sin2(πt/0.004)] the number of 

pairs grows smoothly in time.  Had we chosen an even more abrupt turn on, N(t) would be more 

oscillatory, reflecting the high frequencies that are unavoidable for this rapid turn on.  In the next 

time regime the electrons (positrons) are created in the region between the two potentials and move 

away to the outside edges of the well (barrier).  Before they reach the other edges, the creation 

behavior can be characterized by a universal linear growth in time N(t)~r(V0,F) t, where the 

corresponding rate r(V0,F) depends on the height V0 (assumed to be the same for the potential 

barrier and the potential well) and the spacing F.  In this regime, our field configuration can be 

viewed as two subcritical potentials arranged side by side.  Similar configurations have been 

studied by Jiang et al. [19].  In the third regime, the pair creation yields for the five potentials begin 

to differ and exhibit an oscillatory behavior with a distinct period and amplitude for each graph.   

For example for V0=1.095c2 there are two full cycles.  The yield N(t) grows and at t=0.0138 a.u. it 

reaches a maximum of 0.117.  At time t=0.0254 a.u., N(t) takes the minimum value 0.034 leading to 

an overall period of T=0.0232 a.u..  For the other four heights [V0=(1.099, 1.102, 1.105 and 

1.109)c2] the periods are 0.0474, 0.0800, 0.0448 and 0.0223, respectively.  On the other hand, the 

corresponding highest yields are 0.117, 0.381, 1.027, 0.354 and 0.12. 
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Figure 5      The number of the created electrons as a function of time for the potential heights 
V0=1.095c2, 1.099c2, 1.102c2, 1.105c2 and 1.109c2 (vertical lines in the inset).  The dashed line 
[Eq. (3.2)] for V0=1.102c2 is the prediction of the two-state model.  The inset (dots) indicates the 
energy spectrum of the total Hamiltonian as a function of height V0 of the potential shown in 

Figure 1 and the two solid curves are due to the two-level theory. [Parameters are W=0.3/c and 
D=6/c, F=2.4/c.] 

 

 We therefore have the largest yield for V0 = 1.102c2, which also leads to the longest period.  In 

order to explain this phenomenon, we employ an effective two-level model.  The dashed curve in 

the Figure is the result from the two-level model calculation.  For V0=1.102c2, the agreement 

between the exact data and the prediction due to the simple two-level model is quite remarkable and 

suggests that indeed only the two discrete states are responsible for the total pair creation yield.  In 

the two-level system, the period of the oscillation T can be directly determined from the difference 

of the two energy levels ΔE, as T =2π/ΔE.  In our simulation, the period for V0=1.102c2 turned out 

to be T =0.0800 a.u., while the theoretical value from the two level is 0.0836 a.u.. The difference is 

only 4.5%. 

 Since only a single electronic and a positronic bound state are involved in the process, we 

would expect that the pair creation yield should become at most equal to 1.  However, from Figure 

5, we see that the height of potential V0 has a strong influence on the actual yield Nmax.  

 In Figure 6 we have therefore monitored the largest yield as a function of V0 for two different 

separations F.  Only when the system is closest to the avoided crossing point, the peak value of the 

curve is 1.  According to the two-level model [discussed in Appendix B], the maximum particle 
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number can be obtained as: 

 

Nmax = Vpos1
2 Vpos2

2 +Vneg1
2 Vneg2

2 + 2 |Vpos1 Vpos2 Vneg1 Vneg2|  (3.2) 

 

Where once again {Vpos1,Vpos2} and {Vneg1,Vneg2} are the components of the instantaneous energy 

eigenstates, which are functions of V0 and F.  The match between the data from the exact 

simulations and the theoretical approximations for F=2/c and 4/c is again quite remarkable. 

 For F=2/c, the maximum yield at V0 = 1.102c2 is 1.055.  The small amount of excess yield 

(0.055) is due to the turn-on of the field not being sufficiently slow.  When V0 increases or 

decreases around the crossing point, the yield is reduced symmetrically.  This is the same result as 

in Figure 5.  When the system is far away from the avoided crossing, the energy difference between 

the two states becomes large and the transition from the lower level to the upper level becomes 

difficult.  This can also be seen from the two-level model.  The instantaneous upper eigenstate of 

the two-level Hamiltonian is {–0.157, 0.988} for V0=1.095c2, while the corresponding state at the 

avoided crossing is {0.707, –0.707}. 

 The second factor that influences the peak value of the particle number Nmax is the distance F 

between the potential well and barrier.  In Figure 6 we also compare Nmax(V0) for two different F.  

The resonance profile for F=4/c is much narrower than the one for F=2/c.  The full width at half 

maximum of the peak for F=2/c is 0.0071c2, while for F=4/c it is only 0.0010c2.  
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Figure 6  (Color online) The largest yield Nmax as a function of the height V0 for F=2/c (black 

squares) and 4/c (red circles).  For comparison, the solid lines (black and red) are due to the 
two-level model Eq. (3.4). [Parameters are W=0.3/c and D=6/c]

 

3.2 The spatial distributions of the electrons and the positrons 

The yields N(t) in Figure 5 suggest that the electrons are created and then subsequently 

annihilated again.  In order to study this periodic phenomenon from a spatially resolved perspective 

we calculate the spatial distribution of the created electrons and positrons in Figure 7.  As a 

reference we also show the potential V(x) at the bottom of each panel. 

 In the figure, we compare the densities with those based on the two-level model.   Here use the 

true eigenstates, χ+(x) ≡ {P1(x), P2(x)} and χ−(x) ≡ {N1(x), N2(x)}, which are calculated by 

diagonalization of the full Hamiltonian in Eq. (B.1) in a spatial basis.  As a result, the state is Ψ(x,t) 

= exp(-i Epost) Vpos2 χ+(x) + exp(-i Enegt) Vneg2 χ−(x).  The coefficients Vpos2 and Vneg2 are 

determined directly from the two-level model.  The effective spatial density for electrons and 

positrons is then given by 

 

 ρelectron(x,t)  ≡  |〈{1,0}|Ψ〉|2 = | exp(-i Epost) Vpos2 P1(x)+ exp(-i Enegt) Vneg2 N1(x)|2  (3.3a) 

 ρpositron(x,t)  ≡  |〈{0,1}|Ψ〉|2 = | exp(-i Epost) Vpos1 P2(x) + exp(-i Enegt) Vneg1 N2(x)|2  (3.3b) 

 

In the Figure, the solid curves are the numerical results and the dashed lines are obtained from Eq. 

(3.3).  From the first two panels, we can see that the particles are created at short times near the 

potential well/barrier edges, where electric field is the strongest.  Consequently, they move to the 

middle of the potential well/barrier.  Note that both particles are present in the potential well and 

barrier indicating it takes time for charges to develop.  At later times the electrons (positrons) are 

located in the potential well (barrier) and their population increases and decreases in a periodic 

fashion.   
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Figure 7   (Color online) Snapshots of the electron (red curves) and positron (black curves) spatial 
densities at times ti = 0.002, 0.006, and 0.01a.u. (i=1,2,3) and  ti = 0.04, 0.07, and 0.10 
a.u.(i=4,5,6). The dashed curves are due to the two-level theory. [All parameters are the same as 
in Fig. 5, Nx=1024, L=0.5a.u., V0=1.102c2, D=6/c, F=2.4/c and W=0.3/c] 

 

 At t=0.01, the electron density (red curve) has four very small peaks, two of which are at the 

edge of the potential well.  Those can be viewed as the ghost states [20] as they do not change with 

time unless the external field changes.  The area under the main peak in the well is 0.1200, which is 

in close agreement with the particle number (0.1365) shown in Fig. 5.  When t=0.04 a.u., the peak 

grows and its area is 1.007, which is again in agreement with data (1.0208) of Fig. 5.  After this time, 
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the peak becomes small again. The area at t=0.07a.u. is 0.2370.  This represents the annihilation of 

the particles.  However, when t=0.10 a.u., the area again grows to 0.4073.  We also note that our 

simplified two-level model describes all of these data again rather well. 

 The created positrons (black curves), which are captured in the potential barrier, show a 

similar behavior as the electrons.  This synchronous but mirror symmetric behavior between the 

electrons and positrons is expected.  As the potential does not change in time the population of the 

energy eigenstates is constant in time.  The population of the created electrons, however, depends 

on the upper component of the superposition state of both eigenstates and therefore can change in 

time.  At the avoided crossing both bound states are equally and perfectly excited from the Dirac sea.  

But as each bound state represents only 50% of an electron (and positron) the maximum number of 

created electrons can be at most equal to 1. 

 We note that the spatial densities in each potential grow in synch.  In other words, the 

population does not tunnel periodically back and forth between both potentials as a single particle 

wave packet would between two nearly degenerate bound states.  This pair creation process at the 

avoided crossing point is also analogous to the bound-continuum degeneracy situation.  The only 

difference is that in the bound-bound mixing case, the potential must have a special height in order 

to induce the resonance while in the bound-continuum situation the potential just needs to be 

supercritical.  

 

4.  Control of the pair creation yield by time-depending force fields  

 We have seen that for a rather sudden turn on of the force the number of created particles can 

oscillate periodically due to the interference between both bound states.  We also observed that the 

period and amplitude of the oscillations are rather sensitive to the potential height and the 

separation between the potential barrier and well.  In the following we demonstrate how one can 

control the total yield by varying F and V0. 
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Figure  8       (Color online) The number of created pairs as a function of time for a 
time-varying force.  The top panel shows how the height V0 changes as a function of time.  
The three vertical lines indicate V0=1.112 c2, 1.102 c2 and 1.092c2.  The red curves are 
obtained from Eq. (3.2). F takes the value of 8/c in the white region and then becomes 2/c in 
the grey region. [Parameters are Tmax=0.23, D=6/c, W=0.3/c]. 

 
 

 In Figure 8 we show N(t) for a time-dependent potential.  During a short initial time interval 

(t≤0.002) the potential was turned on to V0 =1.112c2 with an amplitude function sin2(πt/0.004) 

while the well and the barrier are basically infinitely apart (F=8/c).  For V0 =1.112c2 the bound state 

originating from the negative continuum has a higher energy than the one from the positive 

continuum, and the yield approaches quickly the low value of 0.024, which is basically due to the 

unavoidably high frequency components of the turn-on amplitude.   

 In the second domain, 0.002≤t≤0.05, the height V0 = 1.112c2 and F=8/c are kept constant and 

the yield does not change.  The constant N(t) can be either associated with the fact that for (F=∞) 

only a single bound state has a significant overlap with the Dirac sea or (in case of equal excitation) 

both states are precisely energy degenerate and therefore evolve with the same phase.   

 In the third domain (0.05≤t≤0.06), we decreased the distance F between the potential well 

and barrier from the initial value 8/c to 2/c, according to function 8/c-600(t-0.05)/c.  In the forth 

domain (0.06≤t≤0.11), we kept all parameters constant to give the system sufficient time to react to 

the earlier changes.  Due to the coupling between the two bound states N(t) oscillates with a period 

of T=0.017, which is in nice agreement with the period (0.0176) calculated from T=2π/ΔE (where 
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ΔE=0.019c2).  The highest yield is now about 0.108, reflecting a strong coupling strength between 

the two bound states. 

 In the fifth domain (0.11≤t≤0.12), we lowered V0 linearly to 1.102c2 (the precise value for 

the avoided crossing) and then kept everything constant (0.12≤t≤0.15).  In this sixth time domain, 

the coupling strength between the two bound states is so large that N(t) oscillates with a large period 

and leads to a maximum yield of 0.936.  This is a rather unusual and counter-intuitive situation 

where the actual decrease of the external force strength can actually lead to an increase of the total 

pair creation yield. 

 It turns out that by an appropriate timing of the moments in time when the potential height is 

changed, we can actually maximize the yield and therefore avoid the annihilation.  We have made 

two subsequent simulations, both of which involve changing V0 from 1.102 to 1.092c2.  In the first 

simulation the change took place between from t=0.140 to 0.142 (dotted curve) while in the second 

simulation we have delayed this change a little bit and reduced V0 from t=0.150 to 0.152 (leading to 

the solid curve).  The resulting yields monitored in the last time domain are rather different.  While 

the earlier decrease of V0 enhanced the yield even more, the second case decreased it first.  In both 

situations we observe oscillations with the same period.  When V0 is 1.092c2, the curve oscillates 

with an amplitude of 0.05 around 0.98.  For the second case, N(t) oscillates with an amplitude 0.13 

around only 0.8.  Note that the period of 0.016 in both cases is dictated by the (same) energy 

spacing.  This example shows us that the pair creation yield can be controlled by an appropriate 

timing of the external field. 

 

5.  Combination of several avoided crossings 

 So far we have focused our attention only on the first avoided crossing.  Next we will 

investigate a rather interesting phenomenon that occurs if more than one crossing is dynamically 

relevant.  Below we will examine the case where the V0 is chosen initially such that the spectrum is 

in the region of the first avoided crossing and then (after a delay time T) the potential strength V0 is 

increased to the region of two avoided crossings.  Figure 9 gives a zoomed-in view (similarly to Fig. 

2) of the energy spectra of the corresponding four states.  As four levels are possibly involved in the 

dynamics we need to extend the two-level model developed so far.  The extension is summarized in 

Appendix C.  In this extension we have ignored the coupling between the top two-level system 

labeled |III〉 and |IV〉 and the bottom one labeled |V〉 and |VI〉 at the second and third avoided 
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crossings.  During the time at the first avoided crossing the states have evolved such that different 

initial conditions characterize the two two-level systems.  This may result in the excitation of only a 

single instantaneous energy state and can therefore lead to the absence of any oscillations in N(t).  

 

 

Figure 9    The energy spectrum as a function of V0. The +(−) labels indicate bound states directly 
before (after) the avoided crossings.  [Parameters are F=2.4/c, W=0.3/c, D=6/c.] 

 

 In Figure 9 we have drawn the energy level around the single and two crossings.  We label 

the instantaneous states at the crossings as |I〉, |II〉, |III〉, |IV〉, |V〉 and |VI〉, while the states slightly 

away from the avoided crossings are denoted by |1–〉, |2–〉, |1+〉, |2+〉, |3–〉, |4–〉, |5–〉 and |6–〉.  Here the 

– or + signs in the superscript denote the state before or after the crossing, respectively.  In our 

simulations V0 was increased at characteristic times (t1, t2 and t3) to bring the dynamics to the 

different spectral regions.  Before the first crossing, the (electronic) state |1–〉 was initially empty 

while the (positronic) state |2–〉 was occupied.  This initial excitation is due to the overlap with the 

fully occupied states of the (force-free) negative energy continuum.  When we increase V0 at time t1 

rather abruptly towards the first crossing point, both states |I〉 and |II〉 become excited and as a result 

the particle number oscillates between 0 and 1.  At time t2 we increase V0 further into the regime 

characterized by two crossings.  After time t3 the system is again in the domain of a single avoided 

crossing. 
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Figure 10  The yield N(t) as function of time as V0 is increased to the three values 1.102c2, 1.235c2 

and 1.375c2.  The three vertical lines present the moments when V0 was increased.  The dashed 
curve is the prediction of the two-level approximation. [Parameters are F=2.4/c, W=0.3/c, D=6/c] 

 

  Figure 10 shows the number of the created particles as the height V0 was increased in time.  

The three vertical lines denote the moments when potential was increased and naturally divide the 

evolution into regimes characteristic for V0 = 1.102c2, 1.235c2 and 1.375c2.  Again, at very early 

times, we increased the height V0 from 0 to 1.102c2 with an amplitude function V0(t) = 1.102c2 

sin2(πt/0.004) and moved the dynamics towards the first avoided crossing point.  After V0 =1.102c2 
we keep it unchanged and at time t=0.042 we have the highest yield of 1.06.  Then in the interval 

0.042 to 0.044  we increased the height V0 from 1.102 to 1.235c2 and kept the parameters 

unchanged for (0.044≤t≤0.1), which brings us to the region of two avoided crossings.  Quite 

remarkably, in this interval the yield remains nearly constant and there is no oscillatory behavior 

even though V0 = 1.235c2 corresponds to the simultaneous presence of the second and third avoided 

crossing.  Next we increase V0 to 1.375c2 (forth avoided crossing).  The yield oscillates again with 

a period of 0.03 and amplitude of 0.94.  

  The dashed line is obtained from the simplified discrete-level approximation as discussed in 

Appendix C.  The most important observation is that the yield N(t) in the domain of the second and 

third avoid crossing is nearly constant, which suggests that in this particular case only a single 

instantaneous energy eigenstate is excited and therefore involved in the dynamics.  However, it 

turns out that the time duration (t2–t1) when the system is in the single-avoided crossing regime 
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determines the yield N(t) in the two-avoided crossing regime.  In other words the build-up of the 

phases for t<t2 is crucially important for the next time regime t2<t.   

  We have illustrated this in Figure 11, which is identical to Figure 10, except that the switch 

time to region 2 was chosen earlier with t2 = 0.021 instead of t2=0.042. 

 

 

Figure 11   The yield N(t) as a function of time.  The top panel presents how the height V0 changes 
with time.  The vertical lines present the moments when the changes take place. The dashed curve 
is the two-level prediction Eq. (2.3).  [Parameters are F=2.4/c, W=0.3/c, D=6/c]  
 

In this case apparently all four energy eigenstates at the two avoided crossings are excited and as 

a result N(t) oscillates periodically in contrast to Figure 10.  

 

6.  Summary and outlook 

We have examined the pair-creation process for a static subcritical potential well next to a 

static potential barrier.  The analysis based on numerical solutions to the Dirac equation indicates 

that if the separation between the well and the barrier is not too large, the discrete states from the 

positive and negative continuum can led to dynamically important avoided crossings.  The coupling 

among these states can lead to the simultaneously creation of electrons subsequently trapped in the 

potential well and of positrons captured by the barrier.  The total particle yield N(t) can exhibit a 

periodic oscillatory behavior where the period can be directly related to the energy gap of the 

corresponding two bound states.  The highest yield is proportional to the total number of avoided 

crossings.  For the interesting case where the height of the potential is increased stepwise in time, 

the dynamics depends crucially on the (time-dependent) phases of the states at the avoided 
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crossings.  It is therefore (at least in principal) possible to control the pair creation yield (from 

oscillatory to constant in time) by an appropriate timing of the external force. 

The usual pair creation process based on a single (supercritical) well depends on the so-called 

diving of the lowest lying electronic bound state into the negative energy continuum [17,18].  In this 

case numerical studies based on (quasi) – continuum states [28] reveal that the path of the discrete 

energy level through the negative energy continuum is also characterized by consecutive sequences 

of avoided crossings.  However, in the true continuum limit we have unavoidably a true energy 

degeneracy between the discrete and continuum states.  If in this case the height of the potential was 

turned off adiabatically back to zero, the number of created electron-positron pairs would not return 

back to zero, as the corresponding positron had enough time to escape to infinity and would not be 

able to annihilate the trapped electron in the well region.  This (even adiabatically) irreversible pair 

creation behavior is conceptually different from our (sub-critical) dynamics, where both created 

particles remain trapped and therefore a truly adiabatic turn-off of the well and barrier could 

annihilate the pair completely. 

To the best of our knowledge, this is the first time that the pair creation process is predicted 

for a dynamics where both the created electron and the positron are captured by the external force 

field.  As a result only discrete states play a role and it is therefore possibly to model the pair 

creation process (as predicted by the Dirac equation) surprisingly accurately with a conceptually 

much easier phenomenological two-level model.  It turns out that all basic features can be predicted 

if we only use the minimum energy gap and the coupling strength as free parameters in this model 

(that are obtained from the full Dirac solution). 

In closing, we point out that while our combined well-barrier system is obviously an 

oversimplified and ideal theoretical model system to study the effect of discrete-discrete state 

interactions on the pair creation process, it is very difficult to find a concrete static realization for a 

direct experimental test.  However, with appropriately time and spaced time-dependent external 

force fields that can periodically reverse the force direction one could possibly engineer related 

field configurations with similar properties.  
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Appendix A    The numerical method to solve the Dirac equation 

 To study the electron-positron creation process, the single-particle quantum mechanical 

description is not sufficient and quantum field theory is necessary.  The particle creation and 

annihilation are described by the field operator that satisfies the time-dependent Heisenberg as well 

as the Dirac equation [18]: 

 

 i∂ ψ̂(x,t)/∂t = [cσ1px +  σ3 c
2+ V(x,t)] ψ̂(x,t) (A.1) 

 

In our model system the external force is represented by a scalar potential V(x) that varies only in 

the x-direction.  If we focus on a single spin, the usual four-component spinor wave function can be 

reduced to only two components, ψ(x, t) =
ϕ1

ϕ2

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

, and the Dirac matrices reduce to the usual 

Pauli matrices σi, with i=1, 2, 3.  We adopt atomic units from now on where the speed of light is 

c=137.036 a.u..  The field operator may be expanded using time independent or time evolved 

energy eigen-functions of the field-free Dirac equation as [29]: 

 

 †
p p n n

p p

ˆ ˆψ̂(x,t)= b (t)W (x)+ d (t)W (x)∑ ∑  

 = †
p p n n

p n

ˆ ˆb (t=0)W (x,t)+ d (t=0)W (x,t)∑ ∑  (A.2) 

 
Here Wp(x) and Wn(x) represent the field-free energy eigenstates |p〉 and |n〉 in the spatial 

representation at t=0.  Note that Wp(x,t) and Wn(x,t) satisfy the single-particle time-dependent 
Dirac equation Eq. (A1).  From Eq. (A2), we obtain 
 
 †

p p' n'
p' n'

ˆ ˆ ˆb (t)= b (t=0) p U(t) p' + d (t=0) p U(t) n'∑ ∑  (A.3a) 

 † †
n p' n'

p' n'

ˆ ˆ ˆd (t)= b (t=0) n U(t) p' + d (t=0) n U(t) n'∑ ∑  (A.3b) 

 
where the coefficients are the matrix elements of the time-ordered propagator U(t)=exp{–i ∫ tdt’ 

[cσ1p+σ3c2+V(x,t’)]} between the energy eigenstates. 

 The electrons’ spatial probability density can be obtained from the expectation value of the 
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product of the electronic field operators: 

 

  ρ(x,t) = 〈〈vac|| ψ̂e
†(x, t)ψ̂e (x, t) ||vac〉〉 (A.4) 

   

which can be considered as the electron probability density, here ψ̂e (x, t) ≡ bp (t)Wp (x)
p
∑

 
is the 

electronic portion of the field operator.  After some operator algebra and using the commutator 

relations b̂p, b̂p'
†⎡

⎣
⎤
⎦+

= b̂pb̂p'
† + b̂p'

† b̂p = δp,p'  and d̂n, d̂n'
†⎡

⎣
⎤
⎦+

= δn,n 'the density can be expressed through 

the field-free energy eigenstates of the single-particle Hamiltonian as: 
 

  
ρ(x, t) = Up,n (t)Wp (x)

p
∑

n
∑

2

 (A.5) 

 

where Up,n(t) = p n(t) = p U(t) n .  By integrating this equation over space, we obtain the total 

number of the created pairs as 
 

  N(t) = dx ρ(x, t) = Up,n (t)
p,n
∑∫

2
 (A.6) 

 
In order to compute the matrix elements Upn(t), we use the split operator numerical technique 

[30-33] to evolve each state |n〉 in time to get |n(t)〉 followed by the projection onto the states |p〉.  In 

contrast to the usual S-matrix method, this method can predict the creation behavior at any time and 

space. 

 

Appendix B    Instantaneous eigenstates and dynamics of the two-state approach 

 In dynamical regions where neither the amplitude V0 nor the spacing F varies too rapidly in 

time, the instantaneous energy eigenvectors and eigen energies of the effective two-state 

Hamiltonian are relevant.  At any instant of time t, the matrix H has a positive and negative 

eigenvalue determined by the eigenvalue equation: 

 

  [ c σ1 px + σ3 c2 + V(x,t) ] χ(x) = E χ(x) (B.1)  

  Epos  =    [(c2-v)2+ λ2]1/2   (B.2a) 
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  Eneg  = – [(c2-v)2+ λ2]1/2  (B.2b) 

 
and the corresponding eigenvectors  

 

  Vpos = {Vpos1,Vpos2}  =  Npos{c2-v+Epos, λ}  (B.3a) 

  Vneg = {Vneg1,Vneg2}  =  Nneg {c2-v-Epos, λ}  (B.3b) 

 

where Npos and Nneg denote the normalization factors.  We have shown above that as v is increased 

from 0 to 2c2 [for the special case of no coupling (λ=0)] the eigenvector remains {0,1} [denoted as 

Vneg for v<c2] and {1,0} [denoted as Vpos for v>c2].  On the other hand, as v grows from 0 to 2c2, 

the electronic state remains {1,0} while its eigenvalue is lowered from c2 to −c2.   

 For λ ≠ 0, however, and in the vicinity of the crossing (v=c2) the eigenvalues are Epos = λ and 

Eneg = − λ, while the eigenvectors are Vpos = {1, 1}/√2 and Vneg = {–1,1} √2.  This behavior is 

summarized in Fig. A.1, showing that this eigen state with negative energy changes from {0,1} to 

{1,0}.  In other words, it changes its character entirely from a positronic to an electronic state. 

 

 

Figure A1 The amplitudes {Op,On} of the instantaneous (negative) energy eigenvector of the 
effective two-state Hamiltonian as a function of the potential V0. 

 

 It turns out that the instantaneous eigenvectors can play an important role for both abruptly as 

well as adiabatically turned on force fields.  If the external force field was turned on very slowly 
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(adiabatically) all initially occupied states |�〉 would maintain their occupation but become the 

instantaneous eigenvectors.  This means that the positronic state analyzed above remains fully 

excited.  However, our definition of the particle yield corresponds to the actual particle number we 

would observe, if the potential was turned off abruptly.  Consistent with this definition we obtain N 

= On(Eneg) ≡ Σn |〈Eneg|n〉|2.  Figure A.1 therefore suggests that if v changes very slowly 

(adiabatically) from v=0 to v=2c2 (and the state remains in the lower energetic instantaneous 

eigenstate Vneg) according to this simplified model the total number of pairs (given by 

N(t)=|Vneg1|2) should change monotonically from N(t)=0 (for v=0) to N(t)=0.5 (for v=1.102c2) to 

finally N(t)=1 (for v=2c2).  

 

                          N(t) = |Vneg1|2  = { c2-v-Epos  }
2/ [{ c2-v-Epos }

2 + λ2] (B.4)  

 

 If, on the other hand, the external field V(x) is turned on rather abruptly to the avoided 

crossing, then the initially occupied negative energy eigenstates would instantly populate the two 

eigenstates Vpos and Vneg with an amplitude given by the overlap scalar product  〈{0,1}|Vpos〉 = 

Vpos2  and  〈{0,1}|Vneg〉 = Vneg2.  The time evolution of the state afterwards is then given by 

 

  |Ψ(t)〉 = exp(-i Epost) Vpos2|Vpos〉 + exp(-i Enegt) Vneg2|Vneg〉 (B.5) 

 

The associated number of created particles defined as N(t) = |〈(1,0)|Ψ(t)〉|2 would be 

 

           N(t) = |exp(-i Epos t) Vpos2Vpos1 + exp(-i Enegt) Vneg2Vneg1|�  (B.6)  

 

This describes an oscillatory behavior with a period T=2π/(Epos–Eneg) and a maximum value given 

by 

 

  Nmax = Vpos1
2 Vpos2

2 + Vneg1
2
 Vneg2

2 + 2 |Vpos1Vpos2Vneg1Vneg2|  (B.7) 

 

Note that in this model, we always have N(t=0)=0, as the initial state was assumed to be the vacuum 
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and it requires a time π/(Epos – Eneg) for the electron-positron pair to be created.  In other words, if 

the sudden turn-on of v was immediately followed by a sudden turn-off, we would not find any 

created particles.  Furthermore, if the abrupt turn-off would happen after an integer multiples of the 

period T, we would also not find any permanently created pairs.  This periodic creation and 

annihilation of pairs is an interesting coherence effect.   

 

Appendix C    The extension of the two-level model to multiple avoided crossings 

 In order to better understand what happens at multiple avoided crossings, we start our 

discussion with a summary of the case of a single avoided crossing.  The number of created 

electrons is defined from the time evolution of the (force-free) negative energy continuum state as 

 

                                            N(t) = Σn,p |〈p|n(t)〉|2   (C.1) 

 

Due to the relatively quick turn-on of the potential to the region of the first avoided crossing, we can 

expand each initial state |n〉 in the energy eigenbasis given by the bound states |I〉 and |II〉 and the 

other remaining instantaneous eigenstates |P〉, |N〉 (associated with the positive and negative energy 

continua) as 

 

                          |n〉  =  ΣP |P〉〈P|n〉 + ΣN |N〉〈N|n〉 +  |I〉〈I|n〉  +  |II〉〈II|n〉  (C.2) 

 

As each initial state |n〉 is from the negative (field-free) energy continuum its overlap with the 

(dressed) positive energy state 〈P|n〉 is negligible compared to other contributions in Eq. (C.2).  The 

time evolution of the state |n〉 can therefore be approximated as  

 

 |n(t)〉  =  exp(-i EI t)|I〉 〈I|n〉 + exp(-i EII t) |II〉 〈II|n〉 + ΣN exp(-i EN t) |N〉 〈N|n〉 (C.3) 

 

As a result the projection of |n(t)〉 onto the (field free) positive energy state |p〉 required in the 

determination of N(t) is 

 

〈p|n(t)〉  = exp(-i EI t) 〈p|I〉 〈I|n〉 + exp(-i EII t) 〈p|II〉 〈II|n〉  +  ΣN exp(-i EN t) 〈p|N〉 〈N|n〉        (C.4) 
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Using a similar reasoning as above, also the overlap between |p〉 and |N〉 is very small such that we 

can further approximate 〈p|n(t)〉 = exp(-i EI t) 〈p|I〉〈I|n〉 + exp(-i EII t) 〈p|II〉〈II|n〉.  With this 

expression the time-dependence of the particle number N(t) in the region of a single avoided 

crossing can be expressed as 

 

 N(t)  = Σn,p [〈p|I〉〈I|n〉〈n|I〉〈I|p〉 + 〈p|II〉〈II|n〉〈n|II〉〈II|p〉 + 

+ exp(-i ΔE t) 〈p|I〉〈I|n〉〈n|II〉〈II|p〉 + exp(i ΔE t) 〈p|II〉〈II|n〉〈n|I〉〈I|p〉]   (C.5) 

 

where ΔE  ≡ EI – EII.  Note that Σn,p [〈p|I〉〈I|n〉〈n|I〉〈I|p〉 + 〈p|II〉〈II|n〉〈n|II〉〈II|p〉] is constant while Σn,p 

[exp(-i ΔE t) 〈p|I〉〈I|n〉〈n|II〉〈II|p〉 + exp(i ΔE t) 〈p|II〉〈II|n〉〈n|I〉〈I|p〉] oscillates in time.  If we 

abbreviate the positive and negative energy subspace projection operators as P+ ≡ Σp |p〉〈p| and P– ≡ 

Σn |n〉〈n| , the expression for the yield N(t) simplifies to 

 

 N(t) = 〈I|P–|I〉〈I|P+|I〉 + 〈II|P–|II〉〈II|P+|II〉  +  

        + exp(-i ΔE t) 〈I|P–|II〉〈II|P+|I〉 + exp(i ΔE t) 〈II|P–|I〉〈I|P+|II〉  (C.6) 

 

In order to make contact with our instantaneous eigenvectors of the effective two-level theory we 

use P– = {0,1} ⊗ {0,1}T
 and similarly P+ = {1,0} ⊗ {1,0}T, where the T denotes the transposed 

vector.  Also, the instantaneous bound states can be expressed as |I〉={1,1}/√2 and |II〉={-1,1}/√2.  

According to these simplifications, we obtain the particle number as shown by the dashed line in 

Fig. 5, which oscillates between the values of 0 and 1.  

 Next we examine the more complicated situation where after a characteristic time T (which is 

spent at the first avoided crossing) the potential V0 is increased to enter the region where we have 

two avoided crossings.  Here we denote the bound states in the energy gap at the second and third 

avoided crossing points by |III〉, |IV〉, |V〉 and |VI〉 from top to bottom according to their energy 

value as shown in Fig. 9.  As these states are complicated superposition states of the (force-free) 

positive and negative energy manifold, it is advantageous to also introduce the states just before the 

avoided crossings, as these are either electronic or positronic.  These are denoted by |3–〉, |4–〉, |5–〉 

and |6–〉 in Figure 9.  For example, for V0 slightly before the avoided crossing |1–〉 is an electronic 
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state and |2–〉 is a positronic state, while just after the avoided crossing |1+〉 reverses its nature and 

becomes positronic while |2+〉 becomes electronic as suggested in Fig. A.1.  Expressed in these 

states, the state |n(T)〉 of the system at time T is 

 

 |n(T)〉 =  exp(-i EIT)|1+〉 〈1+|n〉 + exp(-i EIIT) |2+〉 〈2+|n〉 + ΣN exp(-i ENT) |N〉 〈N|n〉 

       ≡ CI,n(T) |1+〉 + CII,n(T) |2+〉 + ΣN CN,n(T) |N〉 (C.7) 

 

While the terms ΣN CN,n(T) |N〉 do not contribute the total particle yield N(t), they are crucially 

important with regard to the excitation of the eigenstates at the double avoided crossings for larger 

V0.  We can also decompose this state |n(T)〉 in terms of the instantaneous eigenstates, just before 

the second and third avoided crossing points: 

 

 |n(T)〉 = ΣP' |P'〉〈P'|n(T)〉 + ΣN' |N'〉〈N'|n(T)〉 + |3–〉〈3–|n(T)〉  

  + |4–〉〈4–|n(T)〉 + |5–〉〈5–|n(T)〉 + |6–〉〈6–|n(T)〉 (C.8) 

 

As |n(T)〉 is essentially a positronic state it has only a small overlap with the positive continuum 

states |P'〉 and we can ignore the first term in the expansion.  When we make the inner product with 

the positive field free state |p〉 to predict the creation yield, the second term in the expression is also 

negligible as 〈p|N'〉 << 1.  This means we can approximate |n(T)〉 as  

 

 |n(T)〉 =  |3–〉〈3–|n(T)〉 + |4–〉〈4–|n(T)〉 + |5–〉〈5–|n(T)〉 + |6–〉〈6–|n(T)〉 (C.9) 

 

We note that |3–〉 and |5–〉 are electronic states while |4–〉 and |6–〉 are positronic.  Moreover, |3–〉 and 

|6–〉 are the first excited states of the electron and positron, respectively, while |4–〉 and |5–〉 are the 

ground states.  If we insert the approximate expression for |n(T)〉 from Eq. (C.7) into the right 

hand-side of Eq. (C.9) we obtain the 12 terms 

 

 |n(T)〉 = CI,n(T) |3–〉〈3–|1+〉 + CII,n(T) |3–〉〈3–|2+〉 + ΣN CN,n(T) |3–〉〈3–|N〉 +  

      + CI,n(T) |4–〉〈4–|1+〉 + CII,n(T) |4–〉〈4–|2+〉 + ΣN CN,n(T) |4–〉〈4–|N〉 +  
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      + CI,n(T) |5–〉〈5–|1+〉 + CII,n(T) |5–〉〈5–|2+〉 + ΣN CN,n(T) |5–〉〈5–|N〉 + 

      + CI,n(T) |6–〉〈6–|1+〉 + CII,n(T) |6–〉〈6–|2+〉 + ΣN CN,n(T) |6–〉〈6–|N〉 (C.10) 

 

Fortunately several of these overlap matrix elements are rather small compared to others and can be 

omitted.  For example we can assume that any overlap of states of the positronic with those of the 

electronic manifold is small,   

 

 〈3–|1+〉 ≈ 0,    〈3–|2+〉 ≈ 0,    ΣN CN,n(T) 〈3–|N〉 ≈ 0 

 〈4–|1+〉 ≈ 1,    〈4–|2+〉 ≈ 0,    ΣN CN,n(T) 〈4–|N〉 ≈ 0 

 〈5–|1+〉 ≈ 0,    〈5–|2+〉 ≈ 1,    ΣN CN,n(T) 〈5–|N〉 ≈ 0 

 〈6–|1+〉 ≈ 0,    〈6–|2+〉 ≈ 0,    ΣN CN,n(T) 〈6–|N〉 ≈ Cs,n(T) (C.11) 

 

As a result, the state |n(T)〉 in (C.10) can be significantly simplified to: 

 

                     |n(T)〉  ≈ CI,n(T) |4–〉 + CII,n(T) |5–〉 + Cs,n(T) |6–〉 (C.12) 

 

The states |4–〉, |5–〉 and |6–〉 can be expressed in terms of the eigen states at the avoided crossing 

as |4–〉 = (|III〉 + |IV〉)/√2, |5–〉 = (|V〉 − |VI〉)/√2 and |6–〉 = (|V〉 + |VI〉)/√2.  If we replace the states 

with those states exactly at the avoided crossing, the state |n(T)〉 can be written as  

 

 |n(T)〉  ≈  CI,n (T)  ( |III〉 + |IV〉 )/√2 +  

+ ( CII,n (T) + Cs,n(T) )/√2 |V〉 + (Cs,n(T) − CII,n (T) )/√2 |VI〉  (C.13) 

 

 After these numerous projections, we finally evolve the state |n(T)〉 further in time for a new 

potential strength V0 for which the states |III〉, |IV〉, |V〉 and |VI〉 are energy eigenstates.  For t>T we 

obtain 

 

 |n(t)〉 = exp(-i EIII (t-T)) CI,n (T)/√2 |III〉 + exp(-i EIV (t-T)) CI,n (T)/√2 |IV〉 + 

+ exp(-i EV (t-T)) ( CII,n (T) + Cs,n(T) )/√2 |V〉  

+ exp(-i EVI (t-T)) (Cs,n(T) − CII,n (T) )/√2 |VI〉  (C.14) 
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We note that the second and third avoided crossings are decoupled from each other and have a 

similar spinor structure, such that we can treat them separately.  Thus we can approximate the state 

|n(t)〉 by 

 

 |n(t)〉 ≈ {exp(-i EIII (t-T) CI,n(T)+ exp(-i EV (t-T)) ( CII,n (T) + Cs,n(T) )}/√2 |III〉  

+ {exp(-i EIV (t-T)) CI,n(T)  + exp(-i EVI (t-T)) ( Cs,n(T) − CII,n (T) )}/√2 |IV〉 

        ≡ Λ+,n(t) |III〉 + Λ–,n(t) |IV〉  (C.15) 

 

We note that due to the structure of the coefficients Cs,n(T) and CII,n (T), it is possible to find some 

characteristic time T for which the co-factor Λ–,n(t) vanishes identically for all times t>T.  In other 

words, only the single state |III〉 might be excited then.  The particle number N(t) can be obtained by 

projecting the states |n(t)〉 onto |p〉 and we obtain the final result 

 

 N(t) = Σn [|Λ+,n(t)|2 〈III| P+|III〉 + |Λ–,n(t)|2 〈IV| P+|IV〉]+ 

+ Σn [Λ+,n(t)Λ–,n(t)∗ 〈IV| P+|III〉 + Λ–,n(t)Λ+,n(t)∗ 〈III| P+|IV〉] (C.16) 

 

This expression suggests that the evolution of N(t) for t>T depends crucially on the coefficients 

CI,n(T) and Cs,n(T) − CII,n (T). 
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