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Abstract

We propose a realistic physical scheme to produce one-dimensional (1D) and 2D weak-light

solitons in an atomic system with parity-time (PT ) symmetry. The system we suggest is a cold

three-level atomic gas with two species and driven by a control and a probe laser fields. We show

that by the interference of two Raman resonances highly adjustable probe-field refractive-index

with PT symmetry in 1D and 2D can be realized. We further show that it is possible to produce

various light solitons when the weak nonlinearity of the probe field is taken into account. Due

to resonant character of the system, the light solitons obtained in 1D and 2D have extremely low

light power (at the level of nanowatt). In addition, we demonstrate that the stability of these light

solitons can be actively controlled via PT phase transition of the system.
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I. INTRODUCTION

Non-Hermitian Hamiltonians can exhibit entirely real spectra provided they respect

parity-time (PT ) symmetry [1–4]. Due to the similarity between Schrödinger equation and

the Maxwell equation under paraxial approximation, optics provides a fertile ground where

PT -related concepts can be realized and experimentally tested [5, 6]. Since the complex,

space-dependent refractive index of a medium, n(x), plays the role of the optical potential,

the PT condition implies that real part of the index Re[n(x)] must be even while the imag-

inary part of the index Im[n(x)], which may have the property of loss or gain, must be odd.

That is to say, PT symmetry requires n(x) = n(−x)∗.

Due to the significant progress achieved in recent years by developing optical materials

with adjustable refractive index, PT -symmetric optical systems made of solid-state waveg-

uides and fiber networks [7–10], multi-level atomic systems [11–15], and microcavities [16, 17]

have been suggested or realized experimentally. Particularly, PT -symmetric system based

on atomic gas and laser fields [11–15] possesses unique advantages that it has the authen-

tic PT -symmetric refractive index, i.e., balanced gain and loss in the whole space, and

can be actively controlled and precisely manipulated by changing the system parameters

in situ. These advantages may be useful to the applications such as PT -symmetric laser

absorber [18], unidirectional invisibility [19], invisible cloak [20], and so on.

On the other hand, recently much attention has been paid to the light solitons formed in

PT -symmetric media. Various light solitons have been suggested in different types of PT -

symmetric models such as the nonlinear Schrödinger (NLS) equations with linear and/or

nonlinear PT -symmetric potentials [21–31], PT -symmetric couplers [32, 33], χ(2) systems

with PT -symmetric potentials [34], discrete NLS equations with PT -symmetric lattices [35,

36], vector NLS equations with PT -symmetric potentials [37], etc. Since a PT -symmetric

multi-level atomic system can be made highly nonlinear due to the existence of Raman

resonances [14, 15], it allows incorporating the PT symmetry into a nonlinear system and

may serve as a nice test bed for different types of light solitons by using low light intensity.

In this article, we propose a new, realistic physical scheme to produce one-dimensional

(1D) and 2D weak-light solitons in a system with PT symmetry. The system we suggested is

a cold three-level atomic gas with two species and driven by a control and a probe laser fields.

We show that, by the interference of two Raman resonances, a highly adjustable, periodic
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probe-field refractive index with PT symmetry in 1D and 2D can be realized. Different from

the result in Ref. [11], the PT -symmetric refractive index obtained here can be continuously

tunable and only a weak Stark laser field is needed. We further show that it is possible to

create 1D and 2D light solitons when the weak nonlinearity of the probe field is considered.

Due to resonant character of the system, the light solitons obtained have extremely low light

power (at the level of nanowatt). In addition, we demonstrate that the stability of these

light solitons can be actively controlled via PT phase transition of the system.

The article is arranged as follows. In Sec. II, the physical model under study is described.

Expressions of the linear and nonlinear optical susceptibilities are presented. In Sec. III, the

formation and stability of light solitons in 1D PT -symmetric potential is investigated, and

the threshold power for generating these light solitons is estimated. In Sec. IV, the active

control on the stability of the solitons via the PT -symmetric phase transition is discussed.

In Sec. V, the weak-light solitons in 2D PT -symmetric potential is studied. In Sec. VI we

summarize the main results obtained in this work.

II. MODEL

We start with the physical setting reported in [11], which consists of an atomic gas with

two isotopes, 87Rb (species 1) and 85Rb isotopes (species 2), as shown in Fig. 1(a). The

atoms are loaded into a cell at low temperature (∼ µK). Each isotope is represented by

three-level configuration with two ground-state sublevels |g, s〉 and |a, s〉, and one excited

state |e, s〉 (s = 1, 2 indicates the specie of the atoms). A weak pulsed probe field Ep and a

strong continuous control field Ec, propagating along the z-direction with wavenumbers kp

and kc, couple ground-state sublevels |g, s〉 and |a, s〉 to excited level |e, s〉, respectively. For

the mixture of rubidium isotopes we assign |g, s〉 = |5S1/2, F = 1〉, |a, s〉 = |5S1/2, F = 2〉,

and |e, s〉 = |5P1/2, F = 1〉. The half Rabi frequencies of the probe and control fields are

Ωp = |ep · peg|Ep/(2~) and Ωc = |ec · pea|Ec/(2~), respectively. Here peg (pea) represents

electric dipole matrix element associated with transition from |e, s〉 to |g, s〉 (|e, s〉 to |a, s〉),

which is assumed to be approximately equal for both isotopes. ep and ec (Ep and Ec) are,

respectively, the polarization unit vectors (envelopes) of the probe and control fields.

Under electric-dipole and rotating-wave approximations, the Hamiltonian of the system
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FIG. 1: (Color online) (a) Energy-level diagram and Raman resonance scheme of the mixture of two three-

level Λ systems. Ep: probe field (with the frequency ωp and wavevector kp). Ec: control field (with the

frequency ωc and wavevector kc). ∆s (s = 1, 2): one-photon detunings; δ1: two-photon detunings. The

black points indicate the levels initially populated. (b) Possible experimental arrangement. The control

(Stark) field Ec (ES) consists of a z-direction laser beam (i.e. Ec0 (ES0) ) and two pairs of laser beams (i.e.

E±
cj (E±

Sj) (j = 1, 2) ) with cross angle θc (θS).

in interaction picture reads

Ĥint =
2

∑

s=1

{~[δs|a, s〉〈a, s|+ (∆s + δs)|e, s〉〈e, s|]

− ~(Ωp|e, s〉〈g, s|+ Ωs|e, s〉〈a, s|+H.c.)} , (1)

where ∆s = ωs
e − ωs

a − ωc is the one-photon detuning and δs = ωs
a − ωs

g − (ωp − ωc) is the

two-photon detuning, with ωs
l (l = g, a, e) the eigenfrequency of the level |l, s〉.

The motion of atoms is governed by the master equation for the atomic density matrix
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[38]:

∂ρ

∂t
=

1

i~
[Ĥint, ρ] +

Γeg

2

2
∑

s=1

(2σ̂s
geρσ̂

s
eg − σ̂s

eeρ− ρσ̂s
ee) +

Γea

2

2
∑

s=1

(2σ̂s
aeρσ̂

s
ea − σ̂s

eeρ− ρσ̂s
ee)

+
γa,deph

2

2
∑

s=1

(2σ̂s
aaρσ̂

s
aa − σ̂s

aaρ− ρσ̂s
aa) +

γe,deph
2

2
∑

s=1

(2σ̂s
eeρσ̂

s
ee − σ̂s

eeρ− ρσ̂s
ee), (2)

where σ̂s
jk = |j, s〉〈k, s| is the atomic projection operator (j, k = g, a, e). Γea and Γeg

are the spontaneous-emission decay rates from the excited state |e, s〉 to two ground-state

sublevels |a, s〉 and |g, s〉, respectively. They are assumed to be approximately equal for both

isotopes. The decay rate from |a, s〉 to |g, s〉 is about four orders smaller than Γeg or Γea, and

hence can be safely neglected. We have also introduced the energy-conserving dephasing

processes with rates γa,deph and γe,deph. Thus, the coherence decay rates are defined as

γeg = (Γeg + Γea + γe,deph)/2, γea = (Γeg + Γea + γe,deph + γa,deph)/2, and γag = γa,deph/2.

As the isotopes are loaded in a cell at low temperature, the spontaneous-emission decay

rates are given by Γeg ≈ Γea ≈ π × 5.75 MHz for Rubidium atoms [39], while the dephasing

rates can be very small. In addition, for simplicity the two-photon detuning of the second

isotope is taken as zero, i.e. δ2 = 0, which can be achieved by tuning the frequency of the

probe field ωp and the elimination of the Doppler broadening due to low temperature.

Taking into account above considerations, the Bloch equation describing the motion of

atoms is given by

iρ̇sgg = iΓegρ
s
ee − Ω∗

pρ
s
eg + Ωpρ

s∗
eg, (3a)

iρ̇saa = iΓeaρ
s
ee − Ω∗

cρ
s
ea + Ωcρ

s∗
ea, (3b)

iρ̇see = −i(Γeg + Γea)ρ
s
ee + Ω∗

pρ
s
eg − Ωpρ

s∗
eg + Ω∗

cρ
s
ea − Ωcρ

s∗
ea, (3c)

iρ̇sag = −dsagρ
s
ag + Ωpρ

s∗
ea − Ω∗

cρ
s
eg, (3d)

iρ̇seg = −dsegρ
s
eg + Ωp(ρ

s
ee − ρsgg)− Ωcρ

s
ag, (3e)

iρ̇sea = −dseaρ
s
ea + Ωc(ρ

s
ee − ρsaa)− Ωpρ

s∗
ag, (3f)

where the overdots stand for the time derivative and we have defined dsag = δs,1δ1 + iγag

(δi,j = 1 for i = j; δi,j = 0 for i 6= j), dsea = −∆s + iγea, and dseg = δs,1δ1 − ∆s + iγeg,

with δ1 ≪ ∆s. Note that we are interested in the case where a semiclassical theory can be

applied, i.e. both control and probe laser fields contain a large number of photons and hence

can be treated as classical fields.
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The susceptibility of the probe field is defined by χp = p2eg(N1ρ
1
eg+N2ρ

2
eg)/(ǫ0~Ωp), where

Ns is the density of the s-th isotope and the coherence ρseg can be computed from the Bloch

equation (3). Using the smallness of the intensity of the probe field, i.e., |Ωp/Ωc| ≪ 1

(|Ωp/Ωc| ≈ 10−3/2, see the discussion below), we employ the expansions ρsjk =
∑∞

m=0 ρ
s
jk,m

(j, k = g, a, e), where ρsjk,m is of order of |Ωp/Ωc|
m. Substituting the expansions into the

Bloch equation (3) and neglecting the derivative with respect to time (we are interested

in stationary states), Eqs. (3) in the leading order are solved by ρ1gg,0 = ρ2aa,0 = 1 and

ρ2ea,0 = −Ωc/d
2
ea, with other leading elements of the density matrix being zero. In higher

orders, we obtain the recurrent equations:




dsag Ω∗
c

Ωc dseg









ρsag,m

ρseg,m



 = Ωp





ρs∗ea,m−1

ρsee,m−1 − ρsgg,m−1



 , (4a)















iΓeg iΓeg 0 0

iΓea iΓea Ω∗
c −Ωc

Ωc 2Ωc dsea 0

−Ω∗
c −2Ω∗

c 0 −ds∗ea





























ρsgg,m

ρsaa,m

ρsea,m

ρsae,m















= Mm−1, (4b)

with Mm = (Ωpρ
s∗
eg,m −Ω∗

pρ
s
eg,m, 0,−Ωpρ

s∗
ag,m,Ω

∗
pρ

s
ag,m)

T . When obtaining Eq. (4) the conser-

vation relation ρsee,m = δ0,m − ρsgg,m − ρsaa,m is used.

The expression of coherence ρseg up to the third order (|Ωp/Ωc|
3-order) was computed

in Refs. [11]. The result showed that the probe-field susceptibility has the form χp ≈

χp,1+ |Ωp/Ωc|
2χp,3, where the first- and third-order susceptibilities are respectively given by

χp,1 =
p2eg
ǫ0~

(N1D1 +N2D2), (5)

χp,3 ≈ −
p2eg
ǫ0~

{

N1

∆1
+N1

4|Ωc|
2 − 3δ21 + iδΓ

∆2
1δ

+
3N2

∆2
− iN2

Γ

∆2
2

}

, (6)

with D1 = δ1/[δ1(δ1 + ∆1 − iΓ) − |Ωc|
2] and D2 = 1/(∆2 + iΓ). Here we have assumed

that Γea ≈ Γeg = Γ within the required accuracy. In addition, we have used the scalings

∆s ∼ |Ωp/Ωc|
−1/2Γ and Ωc ∼ δ1 ∼ Γ for obtaining expression (6), which correspond to a

realistic choice of the system parameters given below.

The spatial distribution of the PT -symmetric probe-field susceptibility, χp(x) = χ∗
p(−x)

[and hence the PT -symmetric refractive index n(x) =
√

1 + χp(x) = n∗(−x)], is obtained

by applying a far-detuned laser field (i.e., the Stark field), ES(x) cos(ωSt) [11], which induces

energy shifts of levels |j, s〉, i.e. ∆Ej,S(x) = −αjE
2
S(x)/4 (here αj is the scalar polarizability).
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In addition, the control field is assumed to be x-dependent, i.e. Ωc = Ωc(x). For the selected

levels of rubidium atoms, αe −αg ≈ 2π~ · 0.1223 Hz(cm/V)2 and αg ≈ αa [39]. That means

the difference of the Stark shifts between the ground-state sublevels is negligible, i.e. the

two-photon detuning δ1 is not affected by the Stark field, while the one-photon detunings

become x-dependent, ∆s(x) = ∆s − (αe −αg)E
2
S(x)/(4~). Note that the characteristic scale

of the ∆s(x) modulation is comparable to the Stark-field wavelength λS.

In what follows, we focus on the values of detunings: ∆1 = 8Γ, ∆2 = 8.72 Γ, and

δ1 = 1.81 Γ. The electric dipole matrix element is peg = 2.5377×10−27 C·cm [39]. The atomic

densities of the first and second isotopes are N1 ≈ 2.23 × 1014 cm−3 and N2 ≈ 4.81 × 1014

cm−3, respectively.

The equation of motion for the probe-field Rabi frequency Ωp can be obtained by using

the Maxwell equation ∇2Ep − (1/c2)∂2Ep/∂t
2 = [1/(ε0c

2)]∂2P/∂t2, where the polarization

intensity of the probe field is given by P =
∑2

s=1Nspeg,sσeg,se
i(kpz−ωpt) + c.c.. Thus, under

paraxial and slowly-varying envelope approximations, Ωp satisfies

i
k2
p

k2
S

∂Ωp

∂ζ
+

1

2

∂2Ωp

∂ξ2
+

k2
p

2k2
S

χp(ξ)Ωp = 0. (7)

where ζ = kpz and ξ = kSx (kS = 2π/λS). The term 1
2
∂2Ωp

∂ξ2
describes the diffraction of the

probe beam in the x direction, however, the diffraction in the y direction is neglected. This

can be realized by choosing the incident probe field more focused in the x direction than

that in the y direction.

The first-order susceptibility can be expressed as χp,1(ξ) = χ̄p,1 + χ̃p,1(ξ), where χ̄p,1

and χ̃p,1(ξ) are, respectively, the constant and modulated parts of χp,1(ξ). With the given

parameters, the modulated part χ̃p,1(ξ) is two orders smaller than the homogeneous part

χ̄p,1, i.e. |χ̃p,1(ξ)/χ̄p,1| ∼ |Ωp/Ωc|
2. Using the transformation Ωp(ξ, ζ) = u(ξ)U0e

ibζ (b is

the propagation constant; U0 is the typical Rabi frequency) and preserving the terms up to

the third order (∼ |Ωp/Ωc|
3-order), the propagation equation (7) can be written into the

equation:
∂2u

∂ξ2
+ V (ξ)u+G(ξ)|u|2u = βu, (8)

where V (ξ) =
k2p
k2
S

χ̃p,1(ξ) represents the optical potential, G(ξ) =
k2pU

2

0

k2
S
|Ωc|2

χp,3(ξ) is the coeffi-

cient characterizing the magnitude of the nonlinearity, and the eigenvalue β =
k2p
k2
S

(2b− χ̄p,1).

The third-order probe-field susceptibility χp,3 is given by Eq. (6), which can also be

separated by a constant part and a space-modulated part. Although the space-modulated
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part generally violates the PT -symmetry, it is however much smaller than the constant

part. Consequently, under the required accuracy the space-modulated part can be safely

neglected. In addition, the imaginary part of χp,3 is much smaller than its real part and can

also be neglected.

For the parameters given above we obtain χp,3 ≈ −16.99, which results in G ≈ −1 after

taking U0 = 0.08Γ and kS = 0.13kp (i.e., λS ≈ 5 µm for λp ≈ 658 nm). Notice that the

wavelength of Stark field is inside the mid-infrared spectral range, which can be generated

by a quantum cascade laser working in room temperature and continuous wave operation

[40, 41]. Since the sign of G is negative, the system possesses a defocusing Kerr nonlinearity.

We should emphasize that very weak probe-field intensity is needed for obtaining such

nonlinearity in the present system (see the discussion below). This is because the third-

order susceptibility is largely enhanced due to the existence of two nearly resonant Raman

transitions. This is very different from any passive optical materials where intensive laser

fields are usually required for obtaining enough nonlinearity to balance the dispersion or

diffraction of the system.

III. WEAK-LIGHT SOLITONS IN 1D PT -SYMMETRIC POTENTIAL

Since for the present active system the physical parameters are tunable, we can obtain

various potentials V (ξ) with PT -symmetry [11]. For illustration purpose, we first consider

the possibility of weak-light solitons and study their stability for the 1D periodic PT -

symmetric potential

V (ξ) = V0 cos
2(ξ) + iW0 sin(2ξ). (9)

Generally, the band structure of a complex periodic potential is complex. For a PT -

symmetric periodic potential, however, the band diagram can be entirely real as long as

the system operates below the PT phase transition point. For the potential (9), purely real

bands are possible in the range of 0 ≤ W0/V0 < 1/2 [21].

In our system, the PT -symmetric potential (9) can be realized by choosing

χp,1(ξ) = 0.460− 10−3[V0 cos
2(ξ) + iW0 sin(2ξ)]. (10)

This gives the order of magnitude of the small parameter |Ωp/Ωc|
2 ∼ 10−3 and hence defines

the accuracy of the expansion. The susceptibility (10) can be created by using the following
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control and Stark fields shaped as

Ωc(ξ)/Γ ≈ 2.553− 0.002V0 sin
2(ξ)− 0.032W0 sin(2ξ), (11)

ES(ξ)/E0 ≈ 0.97 + 0.008V0 sin
2(ξ) + 0.021W0 sin(2ξ), (12)

with E0 = 104 V/cm−2 (more details are given in Appendix A). Note that in expressions

(11) and (12) we have preserved undetermined parameters V0 and W0, which allows the

possibility of tuning the potential in a continuous way.

The experimental realization of the control and Stark fields Eqs. (11) and (12) can be

realized in the following way. Assume the control field consists of a z-direction laser beam

with the form Ec0 = eyEc0e
ikcz−iωct, and two pairs of laser beams with the forms E±

cj =

ey(Ecj/2)e
ikc(±x sin θc+z cos θc)−iωct±iφj (j = 1, 2) ( θc is cross angle which is the same for all the

pairs), as shown in Fig. 1(b). Here Ecj and φj are, respectively, the amplitudes and phases

of the j-th pair of laser beams. If θc is very small, i.e. sin θc ≪ 1 and cos θc ≈ 1, the control

field can be written as Ec = eye
ikcz−iωct[Ec0+Ec1 cos(xkc sin θc+φ1)+Ec2 cos(xkc sin θc+φ2)],

which further leads to Ωc(x) = Ωc0 +Ωc1 cos(xkc sin θc +φ1) +Ωc2 cos(xkc sin θc +φ2), where

Ωc0 = |ey · pea|Ec0/(2~) and Ωcj = |ey · pea|Ecj/(2~). Thus, if taking

Ωc0 = (2.553− 0.001V0)Γ, Ωc1 = 0.001V0Γ, Ωc2 = 0.032W0Γ, (13)

with sin θc = 2kS/kc, φ1 = 0, and φ2 = π/2, we obtain the control field (11).

The Stark field (12) can also be realized by using the same method. We assume the Stark

field consists a z-direction laser beam, ES0 = eyES0e
−ikSz−iωSt, and two pairs of laser beams,

E±
Sj = ey(ESj/2)e

−ikS(∓x sin θS+z cos θS)−iωSt±iφj , as shown in Fig. 1(c). If the cross angle θS is

very small, the Stark field can be written as ES = eye
−ikSz−iωSt[ES0 + ES1 cos(xkS sin θS +

φ1) + EcS cos(xkS sin θS + φ2)]. Thus, when taking

ES0 = (0.97 + 0.004V0)E0, ES1 = 0.004V0E0, ES2 = 0.021W0E0, (14)

with θS = θc, φ1 = −π, φ2 = −π/2, we obtain the Stark field (12).

From Eq. (11) and Eq. (12) we can estimate the powers required for generating the control

and Stark fields. The control-field amplitude Ec ≈ 2.7 V cm−1 (Ωc ≈ 4.6×107 Hz), while the

amplitude of the Stark field ES ≈ 97 V cm−1. Being focused into a spot with radius ≈ 0.1

mm, this requires laser power ≈ 3.9 mW. Thus the laser power of the Stark field required
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here is much smaller than that required in Ref. [11]. This is because a cold atomic system

is used here.

In Fig. 2(a) we plot the real and imaginary parts of the refractive index n(ξ) as functions

of kSx/π for V0 = 3.0 and W0 = 0.75, which is below the PT phase transition point.

The control and Stark fields required for the PT -symmetric refractive index as functions of

kSx/π are plotted in Fig. 2(b). In order to estimate the accuracy of the refractive-index PT

symmetry, we define the error function ν(ξ) = n(ξ)− n∗(−ξ). Its real and imaginary parts

are of order of 10−7 and 10−6, respectively, i.e. a very high accuracy for the PT symmetry

is obtained.

We also show the associated band-gap structure for various values of the potential pa-

rameter W0, by taking W0 = 0.75 (below the PT phase transition point), 1.5 (on the PT

transition point), and 2.25 (above the PT phase transition point). The real part of the

“energy” band (i.e. Re(β)) as a function of lattice momentum q is plotted in Fig. 2(c). One

sees that as W0/V0 increases the band gap becomes narrower and two bands become merged

when crossing the critical transition value W0/V0 = 1/2. The imaginary part of the “energy”

band (i.e. Im(β)) as a function of q is plotted in Fig. 2(d) for V0 = 3.0 and W0 = 2.25. In

particular, Im(β) is zero for all q for W0 = 0.75 and 1.5.

With the band-gap structure obtained above, we seek the soliton solutions of Eq. (8) for

the given complex potential Eq. (9) and for the nonlinear coefficient G = −1. It is known

that self-defocusing nonlinearity combined with a real periodic potential can support stable

gap solitons of bright type [42]. Thus we anticipate that the conclusion is still valid for a

periodic potential with PT symmetry if it works below the PT -symmetric phase transition

point (i.e. without the PT -symmetry breaking).

We have obtained a family of nonlinear localized solutions numerically for W0 = 0.75.

Since W0/V0 = 0.25, i.e. below the PT transition point, the linear eigenvalue problem

has purely real spectrum (i.e. β is real) with eigenvalues located within the first band gap

−0.1 < β < 1.2 (gap soliton). The real and imaginary parts of gap-soliton amplitude (i.e.

Re(Ωp) and Im(Ωp) ) as a functions of ksx/π are shown in Fig. 3(a) for β = 0.5. The

evolution of the gap soliton, after adding random noises on both amplitude and phase to

initial condition, is given in Fig. 3(b), indicating that the soliton is fairly stable.

In comparison to the stable gap soliton described in Fig. 3(a) and Fig. 3(b), we have

also obtained nonlinear localized structures for β located outside the band gap. Shown in
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FIG. 2: (Color online) (a) Real (solid line) and imaginary (dashed line) parts of the refractive index

n(ξ)−1.208 as functions of kSx/π. (b) Control field Ωc(ξ)/Γ−2.55 (solid line) and Stark field ES(ξ)/E0−0.97

(dashed line) as functions of kSx/π, required for the refractive index (a). (c) Re(β) as a function of q for

V0 = 3.0 and W0 = 0.75 (solid lines), 1.5 (dotted lines), and 2.25 (dashed lines). (d) Im(β) as a function of

lattice momentum q for V0 = 3.0 and W0 = 2.25. Im(β) is zero for all q for W0 = 0.75 and 1.5.

Fig. 3(c) is the real and imaginary parts of such a solution for β = 1.3, which is within

the second “energy” band. Its evolution is given in Fig. 3(d), indicating that it is highly

unstable. This can be understood because in this case the potential cannot balance the

defocusing nonlinearity.

The threshold of the optical power Pth for generating the stable soliton described in

Fig. 3(a) and Fig. 3(b) can be estimated by using the Poynting’s vector. Taking the beam

radius ≈ 0.1 mm, we obtain

Pth ≈ 3.7 nW. (15)

Thus, very low input power is needed to generate such light solitons in the present system.

IV. CONTROL OF STABILITY OF THE WEAK-LIGHT SOLITONS

In the last section, based on a realistic atomic system we have constructed nonlinear phys-

ical model with a 1D periodic complex potential with PT symmetry and with a defocusing
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FIG. 3: (Color online) (a) Real part (Re(Ωp); solid line) and imaginary part (Im(Ωp); dashed line) of the

stable gap-soliton as functions of ksx/π for β = 0.5. (b) Stable propagation of the gap soliton in the x-z

plane. (c) Re(Ωp) (solid line) and Im(Ωp) (dashed line) for unstable soliton by taking β = 1.3 located within

the second “energy” band. (d) Evolution of the unstable solution. The gray curves in (a) and (c) are the

real part of the lattice.

Kerr nonlinearity. We have also shown that a weak-light bright soliton is indeed possible to

be produced in such system and such soliton is stable (unstable) if its propagation constant

β is located inside (outside) the first band gap. An interesting problem deserves to be ex-

plored is what will happen for the evolution of the soliton when the system passes through

the PT phase transition point. Because our system is an active one, we can manipulate

the system parameters to make the system work below and above the PT phase transition

point, so as to realize an active control of soliton stability.

The control upon the state of PT symmetry of our system can be realized in many

ways. One is to change the relative amplitude of the imaginary part of the PT potential by

continuously tuning W0 while keeping V0 fixed.

As an example, we focus on the case that V0 = 3.0 and W0 is a z-dependent function
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(0.8, 20, 22) (green dashed-dotted line), (0.8, 20, 21) (red dashed line), and (1.6, 20, 21) (purple dotted line),

respectively. The white (gray) domain is the one where the system works below (above) the PT phase

transition. The boundary between the white and gray regions (i.e. W0/V0 = 0.5) corresponds to the PT

phase transition point.

modeled by the combination of two hyperbolic tangent functions with the form

W0(ζ)/V0 = 0.25 +
W1

6
{tanh[10(ζ − Z1)]− tanh[10(ζ − Z2)]}, (16)

which can be experimentally achieved by choosing the control and Stark fields with Ωc0 =

2.55Γ, Ωc1 = 0.003Γ, ES0 = 0.982E0, ES1 = 0.012E0, and

Ωc2/Γ = 0.024 + 0.016W1{tanh[10(ζ − Z1)]− tanh[10(ζ − Z2)]}, (17)

ES2/E0 = 0.016 + 0.011W1{tanh[10(ζ − Z1)]− tanh[10(ζ − Z2)]}. (18)

From Eq. (16) we see that the value of W0/V0 changes from 0.25 to 0.25 +W1/3 at around

ζ = Z1, and changes back to 0.25 at around ζ = Z2. The system works below the PT phase

transition point in the range Z1 < ζ < Z2 if W1 < 0.75 (i.e. W0/V0 < 1/2), and works above

the PT phase transition point in the range Z1 < ζ < Z2 if W1 > 0.75 (i.e. W0/V0 > 1/2).

Fig. 4 shows W0/V0 as a function of kpz for (W1, Z1, Z2) = (0.7, 20, 22) (black solid

line), (0.8, 20, 22) (green dashed-dotted line), (0.8, 20, 21) (red dashed line), and (1.6, 20, 21)

(purple dotted line), respectively. The white (gray) domain is the one in which the system

works below (above) the PT phase transition. The boundary between the white and gray
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regions (i.e. W0/V0 = 0.5) corresponds to the PT phase transition point. We see that

for the case (W1, Z1, Z2) = (0.7, 20, 22) (black solid line), the system works below the PT

phase transition point for all values of z; for the cases (W1, Z1, Z2) = (0.8, 20, 22) (green

dashed-dotted line), (0.8, 20, 21) (red dashed line), and (1.6, 20, 21) (purple dotted line), the

system works above the PT phase transition point for Z1 < kpz < Z2 but below the PT

phase transition point otherwise.

The propagation of a weak-light soliton in the x-z plane below and above the PT phase

transition point is shown in Fig. 5. The initial condition is taken as the soliton solution

given in Fig. 3(a). Illustrated in Fig. 5(a) is the result for (W1, Z1, Z2) = (0.7, 20, 22), which

corresponds to the case of black solid line in Fig. 4 (i.e. the system works below the PT

phase transition point for all values of z). We see that in this case the soliton is fairly stable

during propagation.

Fig. 5(b) shows the evolution result for (W1, Z1, Z2) = (0.8, 20, 22) (i.e. the case of the

green dashed-dotted line in Fig. 4). This case is obtained by lifting the values of W0/V0 in

the region Z1 < kpz < Z2 from the case (W1, Z1, Z2) = (0.7, 20, 22) (i.e. the black solid line

in Fig. 4). We see that the soliton is stable in the region kpz < 20, but it becomes unstable

for kpz > 20. It seems that the loss of the stability of the soliton for kpz > 20 is due to

the existence of a region (i.e. 20 < kpz < 22) where the system works above the PT phase

transition point.

Interestingly, the instability of the soliton can be controlled and even be effectively sup-

pressed by reducing the size of the region Z1 < kpz < Z2. In Fig. 5(c) we show the soliton

evolution for (W1, Z1, Z2) = (0.8, 20, 21) (the case of the red dashed line in Fig. 4). We see

that the soliton is basically stable during propagation for nearly all z, although the system

works above the PT transition point in 20 < kpz < 21.

However, when fixing Z1 = 20 and Z2 = 21 but increasing W1 from 0.8 to 1.6 (i.e. in

Fig. 4 the red dashed line is changed into the purple dotted line), we find that the soliton

becomes unstable again, see Fig. 5(d). The instability of the soliton is induced by the deeper

PT -symmetry breaking.

From the results displayed in Fig. 5, we see that it is indeed possible to realize an active

control on a series of stability-instability transitions of the weak-light soliton in the present

PT - symmetric system through actively manipulating the system parameters V0, W0, W1,

Z1, and Z2. This property may be useful for designing a novel soliton switching in optics.
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FIG. 5: (Color online) Stability control of the weak-light soliton by changing system parameters W1, Z1,

and Z2. (a) The soliton is stable for (W1, Z1, Z2) = (0.7, 20, 22); (b) The soliton is unstable for (0.8, 20, 22);

(c) The soliton is stable for (0.8, 20, 21); (d) The soliton is unstable for (1.6, 20, 21).

V. WEAK-LIGHT SOLITONS IN 2D PT -SYMMETRIC POTENTIAL

Because Eqs. (7) can be easily extended into two-dimensional case by taking ξ → (ξ, η)

with η = kSy, i.e.

i
k2
p

k2
S

∂Ωp

∂ζ
+

1

2

(

∂2

∂ξ2
+

∂2

∂η2

)

Ωp +
k2
p

2k2
S

χp(ξ, η)Ωp = 0, (19)

where χp(ξ, η) has the same expression as before and its dependence on η can be obtained

by choosing Ωc = Ωc(ξ, η) and ES = ES(ξ, η). Then Eq. (8) is changed into
(

∂2

∂ξ2
+

∂2

∂η2

)

u+ V (ξ, η)u+G(ξ, η)|u|2u = βu, (20)

where the ξ- and η-dependence of G is very weak and hence can be neglected.

As a particular case, we consider the 2D periodic PT -symmetric potential with the form

V (ξ, η) = V0[cos
2(ξ) + cos2(η)] + iW0[sin(2ξ) + sin(2η)]. (21)

The corresponding first-order susceptibility of the probe field is

χp,1(ξ, η) = 0.460− 10−3{V0[cos
2(ξ) + cos2(η)] + iW0[sin(2ξ) + sin(2η)]}, (22)
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FIG. 6: (Color online) (a) Real part and (b) imaginary part of the 2D PT -symmetric refractive index

n − 1.208 as a function of ξ ≡ kSx/π and η ≡ kSy/π for V0 = 3.0 and W0 = 0.75. (c) The transverse

distribution of the control field, [Ωc(ξ) − 2.55]/Γ, required for the refractive index. (d) The transverse

distribution of the Stark field, [ES(ξ)− 0.97]/E0, required for the refractive index.

which can be realized by using the control and Stark fields shaped as

Ωc(ξ, η)/Γ ≈ 2.553− 0.002V0[sin
2(ξ) + sin2(η)]− 0.032W0[sin(2ξ) + sin(2η)], (23)

ES(ξ, η)/E0 ≈ 0.97 + 0.008V0[sin
2(ξ) + sin2(η)] + 0.021W0[sin(2ξ) + sin(2η)]. (24)

Fig. 6(a) (Fig. 6(b) ) shows the real (imaginary) part of the 2D PT -symmetric refractive

index n as a function of ξ ≡ kSx/π and η ≡ kSy/π for V0 = 3.0 and W0 = 0.75, which is

below the PT phase transition point. The real and imaginary parts of the error function

ν(ξ, η) = n(ξ, η) − n∗(−ξ,−η) are of order of 10−7 and 10−6, respectively. The transverse

distributions of the control (Stark) field required for the refractive index is plotted in Fig. 6(c)

(Fig. 6(d) ).

The associated band-gap structure of the 2D PT potential (21) as a function of lattice

momentum q is shown in Fig. 7 for V0 = 3.0. Panels (a), (b), and (c) give the results of

Re(β) for W0 = 0.75 (below the PT phase transition point), 1.5 (on the PT phase transition

point), and 2.25 (above the PT phase transition point), respectively. We see that as W0
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FIG. 7: (Color online) Band structure of the 2D PT potential (21) as a function of lattice momentum q

for V0 = 3.0. Shown in (a), (b), and (c) are Re(β) for W0 = 0.75 (a), 1.5 (b), and 2.25 (c), respectively.

Points M , N , and L are the corners of the first Brillouin zone, denote (qx, qy) = (−0.5,−0.5), (0.5,-0.5),

and (0.5,0.5), respectively. (d) Im(β) for V0 = 3.0 and W0 = 2.25, which is zero in the whole (qx, qy)-plane

for W0 = 0.75 and 1.5.

increases the band gap becomes narrower and closed completely when crossing the critical

transition value W0/V0 = 1/2. The imaginary part of the “energy” band (i.e Im(β) ) is

shown in panel (d) of the figure. One sees that Im(β)=0 for W0 = 0.75 and 1.5 in the whole

space, but it becomes nonzero for W0 = 2.25.

For obtaining soliton solutions in 2D, Eq. (20) is numerically solved for W0/V0 = 0.25

(below the PT phase transition point), for which the corresponding linear eigenvalue equa-

tion has a purely real spectrum (i.e. Im(β) = 0) located within the first band gap (i.e.

1.1 < β < 2.4). 2D solitons are found, with the result illustrated in Fig. 8. Shown in

Fig. 8(a) and Fig. 8(b) are respectively the real part (Re(u) ) and imaginary part (Im(u) )

of u of a 2D soliton for β = 2.0 as functions of kSx/π and kSy/π. Taking the beam radius

≈ 0.1 mm, the threshold power for generating the 2D soliton is estimated as Pth ≈ 6.9 nW.

To test the stability of the 2D soliton, the evolution of the 2D soliton is also studied by

adding some random noises on both the amplitude and phase to the initial condition of the

soliton. The result of numerical simulation is presented in Fig. 8(c) for propagation distance
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(c) Light-intensity distribution of the soliton after adding random noises at kpz = 40 on both amplitude and

phase to initial condition of the soliton.

up to z = 40/kp. We see that the soliton is fairly stable during propagation. Consequently,

stable 2D weak-light solitona are indeed possible in the proposed system.

VI. SUMMARY

In this work, we have proposed a new scheme to generate 1D and 2D weak-light solitons

in an atomic system with PT symmetry. The system we suggest is a cold three-level atomic

gas with two species and driven by a control and a probe laser fields. We have shown that

by the interference of two Raman resonances highly adjustable probe-field refractive-index

with PT symmetry in 1D and 2D can be realized. We have further shown that it is possible

to produce various light solitons when the weak nonlinearity of the probe field is taken into

account. Due to resonant character of the system, the light solitons obtained in 1D and 2D

have extremely low light power (at the level of nanowatt). In addition, we have demonstrated

that the stability of these light solitons can be actively controlled via PT phase transition of

the system. Notice that the scheme we proposed here can be used to realize other types of
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refractive indexes, such as the 1D and 2D complex PT -symmetric Scarff II potentials [21].

Our results may have potential applications in the field of optical information at low light

level.

Appendix A: Equations for solving Ωc(ξ) and ES(ξ)

From the real and imaginary parts of Eqs. (5) and (10), we get the following equations

p2eg
ǫ0~

(

N1δ1[δ
2
1 + δ1∆1(ξ)− |Ωc(ξ)|

2]

[δ21 + δ1∆1(x)− |Ωc(ξ)|2]2 + δ21Γ
2
+

N2∆2(ξ)

∆2(ξ)2 + Γ2

)

= 0.46− 10−3V0 cos
2(ξ),(A1a)

p2eg
ǫ0~

(

N1δ
2
1Γ

[δ21 + δ1∆1(x)− |Ωc(ξ)|2]2 + δ21Γ
2
−

N2Γ

∆2(ξ)2 + Γ2

)

= −10−3W0 sin(2ξ), (A1b)

with ∆s(ξ) = ∆s − (αe − αg)E
2
S(ξ)/(4~). Notice that at ξ = 0 the susceptibility must be

real, we obtain
N2

N1
=

δ21(∆
2
20 + Γ2)

(δ21 + δ1∆10 − |Ωc0|2)2 + δ21Γ
2
. (A2)

where ∆s0 and Ωc0 are denoted as values of ∆s(ξ) and Ωc(ξ) at ξ = 0, respectively. Eq. (A2)

imposes a relation between N1 and N2. The expressions of Ωc(ξ) and ES(ξ) can be solved

from Eqs. (A1a) and (A1b), directly.
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