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We propose a scheme which can realize an extended two-component Bose-Hubbard model using
polaritons confined in an array of optical cavities. In addition to the density-dependent interactions,
this model also contains nonlinear coupling terms between the two components of the polariton.
Using a mean-field calculation, we obtain the phase diagram which shows how these terms affect
the transition between the Mott insulator and the superfluid phase. In addition, we employ both
a perturbation approach and an exact diagonalization method to gain more insights into the phase
diagram.
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I. INTRODUCTION

Over the past decade, with the development of the
technique of the optical lattices, one could manipulate
cold atoms in the periodic potentials, which serve as
an ideal platform to explore various many-body models
in condensed matter physics [1–3]. As one of the im-
portant fundamental models in many-body physics, the
Bose-Hubbard model(BHM) has attracted lots of atten-
tion since it was first introduced in 1963 [4]. In the single
component BHM, there exists a quantum phase transi-
tion between the Mott insulator(MI) phase and the su-
perfluid (SF) phase [5, 6]. This transition has been ex-
plored in recent cold atom experiments [3]. When this is
extended to two components of bosonic modes, the phase
diagram becomes more complicated correspondingly [7–
9].

The standard single-component BHM only includes the
on-site repulsive interaction U and the tunnelling t be-
tween nearest neighbours. The interaction term favors
the MI phase in which each site hosts a definite number
of particles; whereas the tunnelling term favors the su-
perfluid phase where the particles are delocalized. The
competition between these two terms drives a quantum
phase transition between these two phases. For the two-
component BHM, besides the intra-species interaction Ui

and the tunnelling ti for each component (where i = 1, 2
labels the components), there is the additional inter-
species interaction between the two components [1]. In
recent years, a lot of attention has been paid to the ex-
tended single (two or more) component BHM, and one
kind of the extended BHM has additional tunnelling be-
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tween the next-nearest neighbours or long range interac-
tions [10, 11, 18–20], while another kind has additional
nonlinear coupling between different components [12–17].
Expectedly, these additional terms in the extended BHM
give rise to a more complicated phase diagram [11, 14–
17].

In a previous work [21], we investigated a system of
two-component polariton confined in a single optical mi-
crocavity. Polariton is a kind of bosonic quasiparticle in
the light-matter system, and Bose-Einstein condensation
(BEC) of microcavity polaritons have been realized in ex-
periment recently [22, 23]. In this model, in addition to
the density-density interaction (Kerr nonlinearity), there
also exist two types of nonlinear coupling between the
polariton components. In the current work, we extend
this model by consider a one dimensional array of such a
cavity polariton system, which realizes a two-component
BHM. We will calculate the phase diagram of the sys-
tem and focus on how the inter-species interactions and
the nonlinear coupling terms will affect the transition be-
tween the MI phase and the SF phase.

This paper is organized as follows. In Sec. II we present
the model Hamiltonian that describes an extended two-
component Bose-Hubbard model. In Sec. III, we provide
the ground state phase diagram obtained from the mean-
field decoupling approach. To gain futher insights and
examine the effects of different terms in the Hamiltonian,
we present a perturbative analysis in Sec. IV. In Sec. V,
we give a beyond-mean-field exact diagonalization calcu-
lation. In particular, we calculate the number fluctuation
per cavity, and establish connections between this result
with the mean-field result presented earlier. Finally, a
summary is presented in Sec. VI.
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FIG. 1: (Color online) (a) An illustration of a one-dimension
array of optical microcavities. Each cavity host a system of
two-component polaritons. (b) The atomic level structure and
coupling laser fields that give rise to the two-component po-
lariton system in each cavity. Here gij is the coupling between
the dipole transition (|i〉 ↔ |j〉) induced by the cavity mode,
Ωij and Ωνk are the Rabi frequencies of the driving laser fields
and driving microwave fields respectively. For details, please
see Ref. [21].

II. MODEL

Our underlying system is schematically shown in
Fig. 1(a). We consider a one-dimensional array of con-
nected optical cavities, with the connection provided by
the photon tunneling between neighboring cavities. In-
sider each cavity, we have an ensemble of bosonic atoms
whose level structure is sketched in Fig. 1(b). We la-
bel the atomic hyperfine states as |i〉 with i = 1, 2, ..., 7.
Three of these states (states |1〉, |2〉, and |3〉) belong to
the electronic ground manifold, and the other four (states
|4〉, |5〉, |6〉, and |7〉) belong to the electronic excited
manifold. The ground states |1〉, |2〉, and |3〉 are dipole
coupled to the excited states |4〉, |5〉, and |6〉, respec-
tively, by the cavity field, with corresponding coupling
strengths g14, g25 and g36. Additionally, states |2〉 and
|3〉 are coupled to |4〉 by external laser fields with coupling
strengths Ω24 and Ω34, respectively. Finally, within the
excited manifold, states |5〉 and |6〉 are coupled to |7〉 by
microwave fields with corresponding coupling strengths
Ων1 and Ων2. ǫ, δ, ∆, ∆5 and ∆6 are various detunings
between the driving field and the corresponding atomic
transitions, as labelled in Fig. 1(b).

In the limit of weak excitation where the atomic popu-
lation in the excited levels is negligible, we can construct
two polariton modes for each cavity. The corresponding
annihilaton operator for the two polariton modes in the

ith cavity is given by

P1i =
1

2

(

gi
ωi

+ 1

)

S2i +
1

2

(

gi
ωi

− 1

)

S3i −
Ω√
2ωi

ai,

P2i =
1

2

(

gi
ωi

− 1

)

S2i +
1

2

(

gi
ωi

+ 1

)

S3i −
Ω√
2ωi

ai,

where ai is the cavity photon annihilation operator for
the ith cavity, and

S2i =
1√
Nai

Na
∑

j=1

|1〉jj〈2|,

S3i =
1√
Nai

Na
∑

j=1

|1〉jj〈3|,

are the collective atomic operator, with Nai being the
total atom number, in the ith cavity. For simplicity, we
have taken Ω24 = Ω34 =

√
2Ω, gi =

√
Nai g14, and ωi =

√

g2i +Ω2. The total Hamiltonian of the system reads:

H =
∑

i

Hi +
∑

〈i,j〉

Ht
〈i,j〉, (1)

where

Hi =
V1
2
P †2
1i P

2
1i +

V2
2
P †2
2i P

2
2i + UP †

1iP1iP
†
2iP2i

+ T+[P †
1i(P

†
1iP1i + P †

2iP2i)P2i + P †
2i(P

†
1iP1i + P †

2iP2i)P1i]

+ T−[P †
1i(P

†
1iP1i − P †

2iP2i)P2i + P †
2i(P

†
1iP1i − P †

2iP2i)P1i],

(2)

represents the Hamiltonian of a two-component polariton
in the ith cavity, the derivation of which can be found in
our previous work [21], and

Ht
〈i,j〉 = −t{P †

1iP1j + P †
2iP2j} , (3)

describes the tunneling of polaritons between adjcent

cavities [24]. Here, P †
1(2)i and P1(2)i obey bosonic com-

mutation relation: [Pαi, Pβj ] = 0, [P †
αi, P

†
βj ] = 0, and

[Pαi, P
†
βj ] = δα,βδi,j . As shown in Ref. [21], the key

parameters in Eq. (2), V1, V2, U and T±, can be tuned
over a large extent by appropriately controlling the laser
intensities and frequencies. Here to avoid instability, we
only consider repulsive interactions such that V1,2 and U
are all positive. In addition, if we simultaneously change
the signs of T±, the physics remains unchanged as that
sign change can be absorbed by a redefinition of the po-
lariton modes. Hence we will only consider the case with
T+ > 0, T− < 0 for simplicity.
In comparison to the single-component BHM, for

which there are plenty of theoretical and experimental
investigations, our model contains three new key param-
eters: the inter-species on-site interaction characterized
by the interaction strength U , the two nonlinear coupling
terms characterized by the coupling strength T±. Our
work will focus on elucidating the effects of these terms.
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III. MEAN FIELD PHASE DIAGRAM

Based on the mean field decoupling theory [5], we
introduce the superfluid order parameters: φ1(2) =
〈P1(2),i〉. By the approximation

P †
1(2),iP1(2),j = φ1(2)P1(2),j + φ∗1(2)P

†
1(2),i − φ∗1(2)φ1(2) ,

the total Hamiltonian can be decoupled into the following
form:

H0 =− µ(P †
1P1 + P †

2P2) +
V1
2
P †2
1 P 2

1 +
V2
2
P †2
2 P 2

2

+ UP †
1P1P

†
2P2

+ T+[P †
1 (P

†
1P1 + P †

2P2)P2 + P †
2 (P

†
1P1 + P †

2P2)P1]

+ T−[P †
1 (P

†
1P1 − P †

2P2)P2 + P †
2 (P

†
1P1 − P †

2P2)P1]

+ zt(φ∗1φ1 + φ∗2φ2) ,

Ht =− zt(φ∗1P1 + φ∗2P2 + h.c.) ,

(4)

where µ is the chemical potential and z = 2 is the number
of nearest neighbors. For simplicity, here, the site index
is neglected. Since Hamiltonian H0 keeps local particle
number conserved, in principle, we can numerically di-
agonalize H0 in a subspace with fixed total number of
particles.
As a reference, let us first set the nonlinear coupling

strength T± = 0, and the tunneling rate t = 0. Un-
der this situation H0 describes a two-component Bose
gas with density-density interactions, and it preserves
the number of polaritons in each component. The eigen-
states therefore correspond to Fock states |n1, n2〉 with
definite integer values of n1 and n2, and with correspond-
ing ground state energy E(n1, n2), where nα (α = 1, 2)
represents the number of polaritons in component α in
each cavity. Note that due to the conservation of po-
lariton numbers in individual component, we need to in-
troduce two chemical potentials µ1 and µ2 for the two
polariton modes. The ground state is determined by
the relative size of V1, V2 and U . In Fig. 2 the ground
state phase diagram is shown for the case with equal
intra-species interaction strength, i.e., V1 = V2 = V . If
we focus on the situation with equal chemical potential
(µ1 = µ2 = µ), it is quite straightforward to show that
if the inter-species interaction is smaller than the intra-
species one (i.e., U < V , see Fig. 2(a)), then the we
have a single ground state with n1 = n2 for even total
particle number, and two degenerate ground states with
n1−n2 = ±1 for odd total particle number. By contrast,
if U > V (see Fig. 2(b)), no matter the particle number is
even or odd, we have two degenerate ground states with
n1 = 0 or n2 = 0.
The Fock state |n1, n2〉 discussed above corresponds

to the Mott regime with φ1 = φ2 = 0. As inter-cavity
tunneling is turned on, φα may take finite values and
the system enters the superfluid regime. At zero tem-
perature, the transition from the MI to the SF regimes
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FIG. 2: (Color online) The ground state of H0 with T± = 0
and t = 0. Here we have to modify the first term in H0 to be
−µ1P

†
1P1 −µ2P

†
2P2. The values in the bracket indicate those

of n1 and n2, respectively. We have used V1 = V2 = V , and
the value of U is taken as U = 0.5 in (a), and U = 1.5 in (b).
In all our figures, the quantities U , µ, and T± are expressed
in units of V .

represents a quantum phase transition. Our goal is to
map out a phase diagram by calculating the boundary
between these two quantum phases. As we want to focus
on the effects of the terms characterized by U and T±,
for most of our calculation we will choose V1 = V2 = V
as the units for energy, and consider the situation with
U < V and U > V respectively while |T±| ≪ V .
Figure 3 shows six examples of the phase diagram

obtained from the mean-field decoupling approach with
U < V in Fig.3(a∼c) and U > V in Fig.3(d∼f). We have
also checked that essentially the same phase diagram can
be obtained using the Gutzwiller method. The details of
the phase diagram will be described in the following.

A. Small Inter-species Interaction (U < V )

In Fig. 3(a), the nonlinear coupling term is turned off,
i.e., T± = 0. We again focus on the situation with equal
chemical potential (µ1 = µ2 = µ). Here, the MI regime
exhibits an “even-odd effect”, i.e., the MI region with odd
occupation (the number of polaritons per cavity ntot =
2n+ 1) is smaller than its nearest neighbors with ntot =
2n and 2(n + 1). A qualitative interpretation of this
effect can be provided by studying the excitation gap of
a MI [14]. For even occupation MI with ntot = 2n, the
excitation gap is given by

∆̃2n = E(n, n+ 1) + E(n− 1, n)− 2E(n, n) = V ,

while that for Ntot = 2n+ 1 is given by

∆̃2n+1 = E(n, n) + E(n+ 1, n+ 1)− 2E(n, n+ 1) = U .

Since V > U , MI regime with even occupation will
be more robust and hence exists in a larger parameter
space. The excitation gap will compete with the tun-

neling energy −t
∑

α=1,2〈P
†
α,iPα,i+1〉 which can be effec-

tively strengthened if there exists degeneracy. As the
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FIG. 3: (Color online) The mean-field phase diagram where
the line represents the boundary between the MI and the SF
regime. The region below the line is the MI regime, and the
number indicate the total number of polaritons per cavity,
ntot. The parameter used are (a) U = 0.5, T+ = T− = 0;
(b) U = 0.5, T+ = 0, T− = −0.05; (c) U = 0.5, T+ = 0.05,
T− = −0.05; (d) U = 1.5, T+ = T− = 0; (e) U = 1.5,
T+ = 0, T− = −0.05; (f) U = 1.5, T+ = 0.05, T− = −0.05.
All the quantities are in units of V1 = V2 = V .

filling number increases, the tunneling energy grows and
the MI regimes with large occupation number become
smaller and smaller. However, when the nonlinear cou-
pling terms are present, i.e., T± 6= 0, this “even-odd
effect” is weakened and may disappear completely as
shown in Fig. 3(c). An interpretation of T± effect is pro-
vided by perturbative analysis in Sec. IV. Furthermore,
the nonlinear coupling terms could change the degener-
acy of the ground state which will be discussed in detail
as follows.

As mentioned previously, if t and T± are all zero, the
ground states are doubly degenerate when ntot = n1+n2

is odd. If t is switched on, due to the super-exchange
interaction induced by the inter-cavity tunnelling, the
degeneracy would be lifted up and the ground state be-
comes the superposition state of n1 − n2 = ±1 with
equal weight [25]. This is indicated in Fig. 4, where
we have defined the average particle numbers per cav-
ity nα = 〈P †

αPα〉 (α = 1, 2) and the fluctuations ∆nα =

〈(P †
αPα)

2〉 − 〈P †
αPα〉2, ∆ntot = 〈(P †

1P1 + P †
2P2)

2〉 −
〈P †

1P1 + P †
2P2〉2. For Fig. 4(a) and (c), we take a rel-

atively small chemical potential with µ/V = 0.25, for
which the average particle numbers are n1 = n2 = 0.5.
In the absence of the tunneling, the ground state is dou-
bly degenerate and are represented by the Fock states
|1, 0〉 and |0, 1〉. For 0 < t < tc, where tc is the criti-
cal tunneling strength beyond which the system changes
from MI to SF and is indicated in the figure by the verti-

cal dashed line, the fluctuations of the total number per
cavity ∆ntot vanishes, while ∆n1 and ∆n2 are both finite,
as shown in Fig. 4(c). Therefore, we can conclude that
the ground state is an equal-weight superposition state
of |1, 0〉 and |0, 1〉. For the case depicted in Fig. 4(b) and
(d), we used a larger chemical potential µ/V = 1 and
the average particle number is ntot = 2. In this case,
the MI state is represented by the Fock state |1, 1〉 with
vanishing fluctuations in both ∆ntot and ∆n1,2.
If T− is turned on, the ground state for t < tc would

be a superposition state Fock states |n1, n2〉 with fixed
n1 + n2 = ntot. This state is non-degenerate if ntot is
even, and can be written as

|G〉 =
∑

n1,n2

fn1,n2
|n1, n2〉 , (5)

with fn1,n2
= (−1)

|n1−n2|
2 fn2,n1

. An example is repre-
sented in Fig. 5(a) and (c) with ntot = 2. For t < tc,
we note that the particle number difference remains zero
and n1,2 have finite fluctuations while ∆ntot vanishes, so
the ground state is a superposition of states |1, 1〉, |0, 2〉
and |2, 0〉. By contrast, when ntot is odd (see Fig. 5(b)
and (d)), T− separates the whole Hilbert space into two
degenerate subspaces with n1 > n2 and n1 < n2, re-
spectively, and the corresponding ground states have the
form

|G+〉 =
∑

n1>n2

c+n1,n2
|n1, n2〉 , (6)

and

|G−〉 =
∑

n1<n2

c−n1,n2
|n1, n2〉 , (7)

with c−n1,n2
= (−1)

n2−n1−1

2 c+n2,n1
. One can readily ver-

ify that the T− term has vanishing matrix element be-
tween |G+〉 and |G−〉. Thus the double degeneracy of the
ground state is preserved even if T− is turned on, and the
“even-odd effect” remains, as shown in Fig. 3(b).
However, if we turn on T+, the degeneracy will be

lifted, as the T+ term could couple the two degenerate
subspaces, i.e., it has non-vanishing matrix elements be-
tween |G+〉 and |G−〉. This explains the weakening of
the “‘even-odd effect” as shown in Fig. 3(c).

B. Large Inter-species Interaction (U > V )

In Fig. 2(b), we have known that the ground states,
i.e., |0, ntot〉 and |ntot, 0〉, are doubly degenerate for both
the even and the odd occupation when U > V , T± = 0
and µ1 = µ2 = µ at t = 0. In Fig. 6, we plot the
occupation numbers and their fluctuations as functions
of tunneling rate t. we can see that, in the MI region
(0 < t < tc), the population difference is n1−n2 = ±ntot

while the number fluctuations ∆ntot and ∆n1,2 are all
zero. It tells us that the ground state is either |0, ntot〉
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tunneling rate tc beyond which the system changes from MI
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or |ntot, 0〉, regardless whether ntot is even or odd. In
addition, the excitation gap is independent of ntot, i.e.,
∆̃ = V . As a result, there is no “even-odd effect” as can
be seen from Fig. 3(d).

However, when T− is turned on, the “even-odd effect”
emerges as can be seen in Fig. 3(e). This is because for
finite T−, the ground state in the Mott insulator region
is non-degenerate when ntot is even, and takes a similar
form as in Eq. (5). An example is shown in Fig. 7(a)
and (c). By contrast, for odd ntot, T

− can preserve the
ground state’s double degeneracy and the two degenerate
ground states take similar forms as in Eqs. (6) and (7),
but with c−n1,n2

= (−1)n1c+n2,n1
. It is easy to find that

the tunneling energy in this nondegenerate state is much
lower than that in |0, ntot〉 or |ntot, 0〉 while the excitation
gap decrease is very small. Thus the MI region with even
occupation is enlarged by T− and the “even-odd effect”
reappears.
Finally, Fig. 3(f) shows that the “even-odd effect” van-

ishes again if T+ is also turned on. The explanation for
this is quite similar to the case when U < V : the T+

term lifts the degeneracy for odd ntot as its matrix ele-
ment between |G+〉 and G−〉 is non-zero.
We comment in passing that, from Fig. 3(a)∼ (f), we

may notice that the MI region with ntot = 1 remains
unchanged for different values of T±. This is because
the T± terms’ matrix elements are all zero in this space.
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FIG. 6: (Color online) The average particle numbers and their
fluctuations obtained by the Gutzwiller method. For all the
subplots, we have V1 = V2 = V , U = 1.5, and T± = 0. The
chemical potential is taken as µ = 0.5 for (a) and (c); µ = 1.5
for (b) and (d). The vertical dashed lines indicate the critical
tunneling rate tc beyond which the system changes from MI
to SF.

It is not difficult to notice from Fig.7(a) and (c) that
there is a discontinuous jump in both the particle num-
bers and their fluctuations at the critical tunneling rate
tc. The jump in ∆ntot, in particular, indicates that the
phase transition from MI to SF may be of first order for
even ntot when U > V and T− 6= 0. To verify this, we
fix U/V = 1.5, T+ = 0, T−/V = −0.05, µ/V = 1.5,
and plot the ground state energy E(φ1, φ2) with differ-
ent t in Fig. 8. When t is very small, φ1 = φ2 = 0 (MI)
is the global minimum point (see Fig. 8(a)). As t in-
creases, additional local minimum points with finite φ1,2
(metastable SF) arise, as shown in Fig. 8(b). If we con-
tinue to increase t, Fig. 8(c) displays that the MI state
with φ1,2 = 0 becomes a local minimum point (i.e., a
metastable MI). Finally, the local minimum point be-
comes a local maximum point if t is sufficiently large as
shown in Fig. 8(d). In conclusion, metastable SF and
metastable MI states exist near the boundary of the MI
lobes in Fig. 3(e) (between the dashed and solid line)
while ntot is even. This existence of such metastable
states is a tell-tale signature that the MI-SF phase tran-
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FIG. 7: (Color online) The average particle numbers and their
fluctuations obtained by the Gutzwiller method. For all the
subplots, we have V1 = V2 = V , U = 1.5, T+ = 0, and
T− = −0.05. The chemical potential is taken as µ = 1.5 for
(a) and (c); µ = 2.5 for (b) and (d). The vertical dashed
lines indicate the critical tunneling rate tc beyond which the
system changes from MI to SF.

sition in this case is of first-order. A similar situation can
be found in spin-1 bosons which can also host the first-
order phase transition [12, 13], but they are induced by
different effects. In Fig. 8, another feature is also worth
our attention. Only one of the two species is dominant
in the SF state, i.e. |φ1| ≫ |φ2| or |φ2| ≫ |φ1| and they
are degenerate. This is consistent with Fig. 7(c) and
(d) which indicate that only one component’s fluctua-
tion is prominent while the other one’s is close to zero.
In comparison, both components have significant occupa-
tion fluctuations in the SF state when U < V , as shown
in Fig. 4(c) and (d), and Fig. 5(c) and (d).
Furthermore, if T− = 0 but T+ 6= 0, not only the

even occupation’s but also the odd occupation’s MI-SF
phase transition will be of first-order, as shown in Fig. 9.
Because all the MI ground states’ degeneracy is lifted in
the presence of T+ regardless whether ntot is even or odd.

IV. PERTURBATIVE ANALYSIS

To gain more physical insights into the phase dia-
gram, we consider the inter-component interaction (the
U -term) and the nonlinear coupling (the T±-terms) as
perturbations and examine how they affect the phase di-
agram. Furthermore, in order to distinguish the contri-
bution from each of them, we have shown how each of
these nonlinear perturbations affect the mean-field phase
diagrams in Fig. 10.
In Fig. 10(a), we show the “unperturbed” phase di-

agram by taking U = 0 and T± = 0. Here we sim-
ply have two uncoupled single-component Bose-Hubbard
model. Since we have chosen the intra-component inter-
action strength V1 = V2 = V , the two individual phase
diagrams completely overlap with each other. In partic-

FIG. 8: (Color online) The energy contours obtained by di-
agonalizing Eq. (4) for U = 1.5, µ = 1.5, T+ = 0, and
T− = −0.05 (all in units of V1 = V2 = V ). The tunneling rate
is given by (a) t/V = 0.05; (b) t/V = 0.6; (c) t/V = 0.08;
(d) t/V = 0.1. Though the order parameters, φ1,2, could
also be complex numbers, their relative phase must be 0 or
π in the ground state of Eq. (4). Hence we can perform the
calculations assuming φ1,2 are real, without loss of generality.
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FIG. 9: (Color online) The average particle numbers and their
fluctuations obtained by the Gutzwiller method. For all the
subplots, we have V1 = V2 = V , U = 1.5, T+ = 0.05, and
T− = 0. The chemical potential is taken as µ = 1.5 for (a)
and (c); µ = 2.5 for (b) and (d).

ular, each MI region is characterized by equal number of
the two polariton modes, and hence only even Ntot MI
regions are present. Along the horizontal axis (t = 0),
the MI region with Ntot = 2n occupies a region between
(n− 1)V < µ < nV . At the boundary µ = nV , the four
Mott states |n, n〉, |n, n+1〉, |n+1, n〉 and |n+1, n+1〉
are energetically degenerate with energy −n(n+ 1)V .

In Fig. 10(b), we show the phase diagram in the pres-
ence of a small inter-component intereaction U ≪ V . As
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FIG. 10: (Color online) The mean field phase diagrams for
different nonlinear pertuibative terms. Here, V1 = V2 = V .
(a) phase diagram with U = 0 and T± = 0; (b) phase diagram
with U = V/30 and T± = 0; (c) phase diagram with T+ =
V/60 and U = T− = 0.

one can see, the U -term induces MI regions with odd
ntot = 2n+1, which for small U , occurs near the bound-
aries between two even MI regions at µ = nV . At t = 0,
these odd MI regions are represented by two degenerate
Fock states |n, n + 1〉 and |n + 1, n〉, and occupy a re-
gion with µ ∈ (µ<, µ>). The values of µ< and µ> can
be readily obtained from E(n, n, µ<) = E(n, n + 1, µ<)
and E(n, n + 1, µ>) = E(n + 1, n + 1, µ>), from which
we obtain the width of the odd MI region in the µ-axis
as µ> − µ< = U , which is exactly the excitation gap
∆̃2n+1 of the MI state. The above analysis provides a
more quantitative argument for the even-odd effect men-
tioned earlier. Furthermore, since the tunneling energy is
roughly proportional to

√

n(n+ 1), the MI regimes with
occupation number 2n + 1 become smaller as n grows.
Our mean-field numerical results, as shown in the inset
of Fig. 10(b), are in complete agreement with this anal-
ysis.

In Fig. 10(c), we show the phase diagram in the pres-
ence of the nonlinear coupling T+-term, while keeping
U = 0 and T− = 0. In this case, in the absence of tunnel-
ing, the conservation of the number of polaritons in each
component is broken, while the total polariton number
ntot for each cavity remains conserved for Hamiltonian

H0. We also observe the appearance of odd MI regions
except for ntot = 1. Furthermore, the odd MI regions
grow in size as ntot increases, which is in stark contrast
with the previous case. These properties can be intu-
itively understood as follows. Consider an odd MI region
with ntot = 2n + 1 at t = 0, which is characterized by
two degenerate Fock states |n, n + 1〉 and |n + 1, n〉 in
the absence of T+. When a small T+ is turned on, a
direct coupling between these two states is induced with
the corresponding matrix element given by 2n(n+1)T+.
To first order in T+, the ground state energy is shifted
down by this amount. The presence of T+-term will also
lower the energies of even MI states, but the energy shift
is quadractic in T+ as the unperturbed even MI states
are nondegenerate. This explains the appearance of odd
MI regions with ntot = 2n+ 1 for n > 0. There is no MI
region for Ntot = 1, because transition matrix element
between Fock states |0, 1〉 and |1, 0〉 vanishes. In addi-
tion, it is not difficult to show that the width of the odd
MI region on the µ-axis is O(4n(n+1)T+), which grows
when n increases, in good agreement with the numerical
results.

Actually, no matter U is zero or not, we can always
use the above picture, i.e., first order energy shift to the
state with degeneracy and second order energy shift to
the state without degeneracy, to understand the effect
of T+. And it also applies to the situation even U >
V . As mentioned previously, the ground states with odd
occupations are doubly degenerate when U > V , T− 6=
0 at t = 0, and T+ has nonvanishing matrix elements
between them which can induce a first order energy shift.
At the same time, the energy shift is second order in the
even occupation case. On the other hand, the tunneling
energy grows as T+ increases. Therefore, the “even-odd
effect” disappears in Fig. 3(f).

Finally, let us consider the effect of the T−-term. In
the case U = 0 and T+ = 0, the T−-term alone would
not induce odd MI regions. This is due to the fact that,
unlike the T+-term, this term does not induce a direct
coupling between |n, n+1〉 and |n+1, n〉 states, i.e., the
corresponding matrix element vanishes. Hence a small
T− does not have any noticeable effects on the phase di-
agram. However, the T−-term can be regarded as a non-
linear coupling between the two components of the po-
lariton, whose effective sign depends on the population
difference. As a result, in the superfluid region, when
the relative population n1 − n2 changes sign, the rela-
tive phase between the two order parameters φ1 and φ2
will change from 0 to π. As this effect is already present
in the single-cavity system which we investigated in de-
tail in Ref. [21], we do not provide a detailed discussion
here. Instead, we just present the phase diagram for the
superfluid region in Fig. 11, in which 0SF and πSF are
superfluid phases with relative phase between φ1 and φ2
being 0 and π, respectively. The transition between 0SF
and πSF is of first order.

The perturbation calculation presented above allows us
to better understand the phase diagram shown in Fig. 3.
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FIG. 11: (Color online) The phase diagram for the first order

phase transition shown in the 3D parameter space ( T+

V2−U
,

T−

V2−U
, V1−U

V2−U
). The blue surface is the phase boundary, while

the 0SF and πSF is below and above it respectively.

In particular, we can now explain why the inter-species
interaction give rise to the even-odd effect, and how the
nonlinear coupling term T+ weakens the even-odd effect.

V. EXACT DIAGONALIZATION

So far we have investigated a homogeneous system of
inter-connected cavity in 1D using a mean-field approach.
In this part, the exact diagonalization method is used to
study this model. To make the calculation manageable,
we consider a finite number, Nc, cavities with Np to-
tal particles. The whole Hilbert space are spanned by
the Fock state basis |ψi〉 = |n1

1, n
1
2, · · · , nNc

1 , nNc

2 〉 where
nk
α denotes the number of polaritons in component-α

in kth cavity, and they are constrained as nk
α > 0 and

∑Nc

k=1(n
k
1+n

k
2) = Np. The dimension of the Hilbert space

is thereforeDm = C
Np

Np+2Nc−1. We write the Hamiltonian

into a matrix form under this Fock state basis using the
periodic boundary condition, and obtain the ground state
(|G〉) of this large sparse matrix through exact diagonal-
ization. In Fig. 12, we plot the total number fluctuation
per cavity which is defined as

∆n = 〈G|(nk)2|G〉 − 〈G|nk|G〉2

where nk = nk
1 + nk

2 is the total number operator for
kth cavity. Under the periodic boundary condition, this
quantity is indepedent of the cavity index k. We vary Np

andNc to some extent while restricting their ratio Np/Nc

(i.e., the number of polaritons per cavity) to be 1, 2, or 3.
As can be seen, the behavior of the number fluctuation is
sensitive to Np/Nc. The parameters of Fig. 12(a) are the
same as those used in Fig. 10(c). Here one can see that
in the limit t → 0, the number fluctuation for systems
with Np/Nc = 1 remains finite, which indicates the lack
of MI region for Ntot = 1. By contrast, in the same limit,
the number fluctuations for Np/Nc = 2 and 3 vanish and

more specifically ∆n for Np/Nc = 3 tends to zero with
a much steeper slope. We thus expect to see a large MI
region for Ntot = 2 and a small MI region for Ntot = 3.
All these are fully consistent with the mean-field phase
diagram shown in Fig. 10(c). The parameters used for
Fig. 12(b) are the same as those used for Fig. 10(b). Here
∆n for all three ratios orNp/Nc vanish in the limit t→ 0.
The slopes of ∆n near this limit indicate that two small
MI regions for Ntot = 1 and 3, and a large MI region
for Ntot = 2 in the mean-field limit is expected, which is
again consistent with the results obtained earlier.

0 0.05 0.1 0.15 0.2
0

0.1

0.2

0.3

0.4

0.5

0.6

t/V

 

 

0 0.05 0.1 0.15 0.2
0

0.1

0.2

0.3

0.4

0.5

0.6

t/V

 

 

Nc=4 Np=4

Nc=7 Np=7

Nc=3 Np=6

Nc=5 Np=10

Nc=3 Np=9

Nc=4 Np=12

Nc=4 Np=4

Nc=7 Np=7

Nc=3 Np=6

Nc=5 Np=10

Nc=3 Np=9

Nc=4 Np=12

(a) (b)

Np/Nc=2

Np/Nc=3Np/Nc=3

Np/Nc=1

Np/Nc=2

Np/Nc=1

FIG. 12: (Color online) The fluctuation of the total occu-
pation per cavity ∆n, obtained from the exact diagonaliza-
tion method. Here V1 = V2 = V and in (a) U = T− = 0,
T+ = V/60; in (b) U = V/30, T+ = T− = 0. The parameters
used in (a) and (b) are the same as those used in Fig. 10(c)
and (b), respectively.

VI. SUMMARY

In summary, we have presented a scheme to realize
a two-component BHM with nonlinear inter-component
coupling in a system of cavity polaritons. We mapped
out the phase diagram showing the boundaries between
the MI phase and the SF phase. Using several differ-
ent approaches — the mean-field decoupling method,
the Gutzwiller method, the perturbation calculation and
the exact diagonalization, we show how the inter-species
interaction and the nonlinear coupling terms affect the
phase diagram, and particularly how they induce the
first-order MI-SF phase transition and give rise to or
weaken the “even-odd effect”. Additionally, the competi-
tion between the nonlinear coupling strengths T+ and T−

can drive a first order quantum phase transition within
the SF regime that changes the relative condensate phase
of the two polariton components. Through our study,
we have obtained a clear understanding about this two-
component BHM. In the future, we could also realize
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an two-component BHM that breaks the time reversal
symmetry [16, 17] by manipulating the external fields’
relative phase. This model may host more exotic p-wave
superfluid phases [15].
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