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We study the physics of interacting spin-1 bosons in an optical lattice using a variational
Gutzwiller technique. We compute the mean-field ground state wave-function and discuss the evo-
lution of the condensate, spin, nematic, and singlet order parameters across the superfluid-Mott
transition. We then extend the Gutzwiller method to derive the equations governing the dynamics
of low energy excitations in the lattice. Linearizing these equations, we compute the excitation
spectra in the superfluid and Mott phases for both ferromagnetic and antiferromagnetic spin-spin
interactions. In the superfluid phase, we recover the known excitation spectrum obtained from Bo-
goliubov theory. In the nematic Mott phase, we obtain gapped, quadratically dispersing particle
and hole-like collective modes, whereas in the singlet Mott phase, we obtain a non-dispersive gapped
mode, corresponding to the breaking of a singlet pair. For the ferromagnetic Mott insulator, the
Gutzwiller mean-field theory only yields particle-hole like modes but no Goldstone mode associated
with long range spin order. To overcome this limitation, we supplement the Gutzwiller theory with
a Schwinger boson mean-field theory which captures super-exchange driven fluctuations. In addition
to the gapped particle-hole-like modes, we obtain a gapless quadratically dispersing ferromagnetic
spin-wave Goldstone mode. We discuss the evolution of the singlet gap, particle-hole gap, and the
effective mass of the ferromagnetic Goldstone mode as the superfluid-Mott phase boundary is ap-
proached from the insulating side. We discuss the relevance and validity of Gutzwiller mean-field
theories to spinful systems, and potential extensions of this framework to include more exotic physics
which appears in the presence of spin-orbit coupling or artificial gauge fields.

I. INTRODUCTION

Recent progress in ultra-cold atoms has made it possi-
ble to study strongly correlated phenomena in a number
of different contexts, which have no natural analog in con-
densed matter physics. One such example is spinless and
spinful many-body bosonic systems, whose rich physics
has been experimentally explored in the continuum and
in optical lattices [1–6]. Large spin systems offer inter-
esting possibilities to study the interplay between com-
peting/complimentary orders at zero and finite temper-
atures such as single-particle and pair superfluidity, spin
and liquid crystallinity, all of which can be probed using a
variety of experimental tools [7–10]. Recently, attention
has turned to the physics of bosonic and fermionic sys-
tems in the presence of spin-orbit coupling or artificial
gauge fields [11–18]. Spin-orbit coupling and artificial
gauge fields introduce degeneracies in the single-particle
spectrum, which tends to frustrate the usual Bose con-
densation, setting the stage for the appearance of ex-
otic ordered phases even at the mean-field level, such
as striped Bose condensates which spontaneously break
translational symmetry [19–22] or magnetized spin stripe
phases which spontaneously break time-reversal symme-
try [23]. Furthermore, single particle degeneracies can
amplify the role of quantum fluctuations leading to chiral
superfluids [24] or bosonic phases with topological order,
which resemble the integer and fractional quantum Hall
effect [25] of electrons in a magnetic field.
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With these exciting experimental advances, it has be-
come increasingly important to develop theoretical meth-
ods which are sophisticated enough to describe the mul-
titude of order parameters and broken symmetry phases
that can potentially occur in these interesting interact-
ing systems, even at the mean-field level. In addition, it
is essential to first gain significant insight into the var-
ious forms of order such systems can develop before in-
troducing the next level of complexity through artificial
gauge fields or spin orbit coupling. With this in mind,
we perform a variational Gutzwiller study of the mean-
field physics of a spin-1 Bose gas in an optical lattice,
in the absence of spin-orbit coupling. We highlight the
key virtues and limitations of this method in describing
spinful bosonic systems, by giving a comprehensive ac-
count of the static and dynamic properties of the spin-1
Bose gas in an optical lattice. We then supplement this
method by a Schwinger boson mean-field theory to cap-
ture the gapless Goldstone mode in the ferromagnetic
Mott phase. We discuss extensions of this approach to
the spin-orbit coupled, large spin problem.

The bosonic Gutzwiller mean-field technique, intro-
duced by Rokhsar and Kotliar [26], describes the mean-
field physics of the Bose Hubbard model [27], which is re-
alized by trapping bosons in a deep optical lattice [3, 4].
Known to be exact in infinite dimensions, the technique
captures local physics by decomposing the full Bose Hub-
bard Hamiltonian into a sum of on-site Hamiltonians cou-
pled by mean-fields. The transition from the superfluid to
the Mott insulator is then obtained by self-consistently
solving for where the mean-field order parameter van-
ishes. Within the Mott lobes, the Gutzwiller Hamilto-
nian is therefore purely local (i.e., identical to the zero
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hopping limit), and hence does not a priori capture any
correlations. In the spinless case, where exact Quan-
tum Monte Carlo (QMC) simulations are possible [28],
the Gutzwiller method is known to correctly capture the
qualitative features of the phase diagram. We will apply
the Gutzwiller technique to spin-1 bosons in the current
work.

The equilibrium physics of this model for spinless
bosons is well known, and recently it has been extended
to include spinor systems, such as the one we study here
[29–34]. For spinless bosons, this technique has recently
also been extended to finite clusters, where the physics
within an m×n plaquette is solved exactly, and the pla-
quettes are coupled by mean-fields. Systematic studies
using this cluster Gutzwiller method have shown that for
relatively small cluster sizes, quantitative agreement is
obtained for the location of the phase boundaries with
numerically exact Quantum Monte Carlo studies [35].
Importantly, such cluster methods offer a comparatively
numerically efficient way to systematically incorporate
correlation effects and perform non-equilibrium dynam-
ics, which is highly relevant to ongoing experiments on
strongly correlated bosons [36–39].

In this paper we provide a systematic study of the
physics of the spin-1 Bose Hubbard model. We dis-
cuss the equilibrium theory and highlight the advan-
tages and disadvantages of the Gutzwiller approach in
correctly capturing the spin physics in an interacting
bosonic system. Although the equilibrium phase bound-
aries for this model have been established by several au-
thors [29, 30, 32], a systematic study of the various order
parameters present in the spin-1 Bose Hubbard model
has been lacking. As this is essential in forming a com-
prehensive understanding of each phase, a new feature of
our work is a focus on the evolution of the various order
parameters, such as the spin, nematic and singlet order.
As these order parameters can be directly measured in
experiments, such a study is a necessity in the interpre-
tation of the experiment and the understanding of the
spinful Bose-Hubbard quantum phase diagram.

Recently, several authors [40–42] have extended the
Gutzwiller technique to capture dynamics, by lineariz-
ing the mean-field equations of motion about the su-
perfluid and Mott insulating ground states. Indeed the
linearized theory correctly captures the well-known Bo-
goliubov modes in the superfluid, the gapped particle-
hole like modes in the Mott insulator, and correctly de-
scribes qualitative aspects of how these modes evolve
across the superfluid-Mott phase boundary. Here we
extend the time-dependent Gutzwiller framework devel-
oped by Krutitsky and Navez [41] to spin-1 Bose Hub-
bard model, and compute the low energy spectrum across
the entire superfluid-Mott phase diagram for ferromag-
netic and anti-ferromagnetic spin-dependent interactions
[43, 44]. In particular, we show that the Gutzwiller ap-
proach by itself, fails to fully capture the spin physics
in the Mott insulator, and therefore we supplement this
theory with a Schwinger boson mean-field theory, which

captures inter-site magnetic fluctuations. Our combined
Gutzwiller + Schwinger boson approach thus more or less
fully captures the low energy mean-field properties of the
spin-1 Bose Hubbard model, and sets the stage for stud-
ies of more complicated correlated bosonic Hamiltoni-
ans, which include spin-orbit coupling or artificial gauge
fields, which we leave for future study.

The rest of this paper is organized as follows: in
Sec. II, we present the Gutzwiller mean-field equations,
and define the various order-parameters which we use to
compute the ground state properties and the superfluid-
insulator phase boundaries. In Sec. III, we present the
Gutzwiller phase diagrams for ferromagnetic and anti-
ferromagnetic interactions focussing on the evolution of
the spin, nematic and singlet order parameters across
the entire phase diagram, which are absent in the spin-
less case. In Sec. IV, we linearize around the Gutzwiller
ground state to produce the equations for the low energy
collective modes. In Sec. V, we present the excitation
spectra for ferromagnetic and anti-ferromagnetic inter-
actions in the superfluid and Mott phases. In Sec. VI,
we discuss the relevance of our results to experiments and
in Sec. VII, we provide a summary of our results and dis-
cuss directions for future work. Readers uninterested in
the detailed theoretical derivations of the equations may
skip Sections II and IV, which are technical in nature.

II. GUTZWILLER MEAN-FIELD THEORY:

STATICS

In this section we outline the Gutzwiller mean-field
theory which we use to compute the ground state energy,
wave-function and order parameters in the following sec-
tions. We remark that the Gutzwiller mean-field equa-
tions have been obtained previously by several authors
[29, 30, 32] and are only reproduced here for complete-
ness (and for providing a background, as well as a context
for the new results obtained by us for the spin-1 bosons).
Our starting point is the generalized Hamiltonian of the
spin-1 Bose gas in an optical lattice [10]

H − µN̂ = −t
∑

〈i,j〉,α

(

a†iαajα +H.c
)

+
U0

2

∑

i

n̂i(n̂i − 1)

+
U2

2

∑

i

(

S
2 − 2n̂i

)

− µ
∑

i

n̂i (1)

where 〈i, j〉 denotes nearest neighbor sites, a chemi-

cal potential µ, and we have defined n̂i =
∑

α a
†
iαaiα,

S =
∑

α,β a
†
iαTαβaiβ , where the T are a vector of spin-1

matrices. While the mean field equations are generic for
any dimensionality and lattice geometry, in the following
we focus on a three dimensional cubic lattice.

To the derive the Gutzwiller equations, we proceed by
writing the tight binding model at the mean field level
by treating each neighbor of site i using the mean field
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level truncation

a†iαajα → 〈a†iα〉ajα + a†iα〈ajα〉. (2)

Following the standard Gutzwiller mean-field theory, we
write the ground state wave function in the Fock basis as
a direct product over single site wave functions as

|ΨGS〉 = ⊗Nsite

i=1 |φi〉 (3)

|φi〉 =
∑

m−1,m0,m1

Am−1m0m1
|m−1,m0,m1〉 (4)

where m−1,m0,m1 denote Fock states in the mz =
−1, 0, 1 state respectively, and we have assumed the
Am−1m0m1

to be site independent. We will now evaluate

the Hamiltonian (Eq. 1) with respect to the mean-field
ansatz (Eq. 3). The terms diagonal in particle number
yield

〈φi|
U0

2
n̂i(n̂i − 1)− µn̂i|φi〉 =

∑

m−1,m0,m1

|Am−1m0m1
|2

×
(

U0

2
(m−1 +m0 +m1)(m−1 +m0 +m1 − 1)

−µ(m−1 +m0 +m1)

)

.

The spin operator S
2 yields off diagonal terms in Fock

space. In particular we obtain

〈φi|
U2

2
(S2

i − 2n̂i)|φi〉 = U2

∑

m−1,m0,m1

[

|Am−1m0m1
|2
(1

2
[(m1 −m−1)

2 −m1 −m−1] +m1m0 +m−1m0

)

(5)

+ A∗
m−1m0m1

A(m−1−1)(m0+2)(m1−1)

√

m1(m0 + 1)(m0 + 2)m−1

+ A∗
m−1m0m1

A(m−1+1)(m0−2)(m1+1)

√

(m1 + 1)m0(m0 − 1)(m−1 + 1)

]

.

Now that we have all of the two particle terms we can
move on to calculating the expectation value of hopping
(i.e. t) dependent terms. For the creation operator this
yields

〈φi| − t
∑

α

a†iα|φi〉 = −2zt
∑

m−1,m0,m1

A∗
m−1m0m1

(6)

[

Am−1m0(m1−1)

√
m1 +Am−1(m0−1)m1

√
m0

+A(m−1−1)m0m1

√
m−1

]

,

where z denotes the number of nearest neighbors, and for
the destruction operator this yields

〈φi| − t
∑

α

aiα|φi〉 = −2zt
∑

m−1,m0,m1

A∗
m−1m0m1

(7)

[

A(m−1+1)m0m1

√

m−1 + 1 +Am−1(m0+1)m1

√
m0 + 1

+Am−1m0(m1+1)

√
m1 + 1

]

.

We self consistently determine the values of 〈ajβ〉,
by viewing the ground state expectation value of the
Hamiltonian as A.H.A, where A is a vector of all
the Am−1m0m1

, and we just have to diagonalize H =
〈n1, n0, n−1|H |m−1,m0,m1〉 iteratively. This is equiva-
lent to determining the Am−1m0m1

coefficients variation-

ally through solving

δ

δA∗
m−1m0m1

〈ΨGS|H − µN |ΨGS〉 = 0, (8)

and similarly for Am−1m0m1
. At each step of the numer-

ical iteration, we self-consistently determine the mean-
field 〈aiα〉, which is identical on every site in the homo-
geneous system we study. In what follows, we therefore
occasionally drop the site index when unnecessary.

We note that the mean-field theory described here can
be readily generalized to capture translational symmetry
breaking phases by allowing the mean-field to vary on
every site. However, absent spin-orbit coupling or artifi-
cial gauge fields, we do not expect translational symme-
try breaking phases to occur, and therefore restrict our
study to spatially homogeneous mean fields.

A. Order parameters

The spin-1 system generally possesses four order pa-
rameters namely, the condensate fraction, the spin,
the nematic director, and the singlet order parame-
ter, which we determine using the ground state wave-
function computed above. The condensate fraction in
the three hyperfine spin states can be expressed as 〈a〉 =
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FIG. 1: (Color Online) Density plot showing the evolution
of the superfluid order parameter in the ferromagnetic (U2 =
−0.1U0) spin-1 Bose gas. The superfluid order parameter
goes to zero at the superfluid-Mott phase boundary as shown
in the inset. The total spin S/n = 1 throughout the phase
diagram. The numbers label the density in the Mott lobes.
All transitions here are second order.

{〈a−1〉, 〈a0〉, 〈a1〉} and is given simply by

〈a〉 =
∑

m−1m0,m1

(

Am−1m1m0

{

A∗
(m−1−1)m0m1

√
m−1,

A∗
m−1(m0−1)m1

√
m0, A

∗
m−1m0(m1−1)

√
m1

}

)

. (9)

The spin is a single-particle vector order parameter
given by 〈S〉 in the mean-field ground state. The ne-
matic director is a two-particle tensor order parameter
which is given by the matrix Nαβ = 1

2 〈SαSβ + SβSα〉,
where α, β ∈ {x, y, z} correspond to the spin-operators
representing the x, y, and z, components of the spin.
Diagonalizing the nematic tensor yields three eigenval-
ues, the largest of which (denoted by λN ) corresponds to
the degree of nematicity. The singlet order parameter is
also a two-particle order parameter which measures the
number of singlets on a given site. It is a scalar object

obtained by computing the number of singlets 〈Θ†
iΘi〉, in

the mean-field ground state, where Θ†
i = 2a†1ia

†
−1i−a†0ia†0i

(see Refs. 45, 46) is the singlet creation operator on site
i. Once the ground state wave-function is obtained, each
of these order parameters can be readily computed nu-
merically.

III. PHASE DIAGRAM

In this section we present the phase diagram of the
spin-1 Bose Hubbard model and highlight the key virtues
and shortcomings of the Gutzwiller approach with re-
spect to other approaches, namely the weak coupling

Bogoliubov theory of the spin-1 Bose gas [5, 6] and the
strong coupling expansion [10, 47]. We stress here that
while our results for the phase boundaries are not new,
and have been discussed by several authors [29–33], we
focus on the evolution of the spin, nematic, and singlet
order parameters across the superfluid-Mott transition,
which has not yet been discussed in the literature and
is essential to understand and characterize the nature of
each phase as manifested in experiments. Importantly,
these order parameters distinguish the spin-1 gas from
its well studied spinless counterpart and are generically
present in higher spin systems, such as spin-3 Chromium
atoms [7]. Understanding how these evolve in the spin-1
Bose Hubbard model is therefore crucial to developing
theories of larger spin systems, which are currently being
explored experimentally [48–50].

A. Ferromagnetic interactions

We start by discussing the conceptually simple fer-
romagnetic case for U2 < 0, which occurs for 87Rb,
where the system has only two order parameters, the
superfluid order parameter and the total spin S =
√

〈Sx〉2 + 〈Sy〉2 + 〈Sz〉2.
In Fig. 1, we plot the theoretically calculated evolution

of the superfluid order parameter, which clearly shows
the superfluid-Mott phase boundary, where the super-
fluid order parameter vanishes. The second order na-
ture of the phase transition [29, 30, 32] is clear from the
smooth manner in which the order parameter goes to
zero. This is to be expected, as on the ferromagnetic
side, the total spin simply locks to the density, and the
system resembles a spinless gas, which is known to have
a second order superfluid-Mott insulator transition. The
total spin S/n normalized by the total density is equal
to unity throughout the phase diagram.
A curious feature of this mean-field theory is that the

dependence on U2 completely drops out for the n = 1
Mott lobe, as is evident from Eq. 5. This is because, ab-
sent the mean-field term, number fluctuations are com-
pletely frozen out and the n = 1 Mott lobe is obtained
by setting either m1, m0 or m−1 = 1, while the others
are zero. The physics of the n = 1 Mott insulator thus
has to be inferred by continuity from the superfluid side.
For U2 < 0, where the superfluid is ferromagnetic, the
Mott insulator is also ferromagnetic, whereas for U2 > 0,
where the superfluid is polar, the Mott insulator is ne-
matic. A better treatment of the ferromagnetic Mott
insulator, which captures spin fluctuations can be done
using a Schwinger boson mean-field theory, described in
detail in Sec. VB.1.

B. Anti-ferromagnetic interactions

We now turn to the more interesting case of anti-
ferromagnetic interactions, which are present in 23Na.
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(a) (b)

FIG. 2: (Color Online) Density plot showing the evolution of the nematic (left) and singlet (right) order parameters in the
anti-ferromagnetic (U2 = 0.1U0) spin-1 Bose gas. The nematic order parameter is computed by taking the maximum eigenvalue
of the nematic tensor. In the singlet phases, labelled I , nematic order vanishes, and the superfluid-Mott transition is first order,
as indicated by the finite jump in the nematic order, as shown in the inset. In contrast, the transition into the lobe labelled II
is a continuous second order quantum phase transition. On the right, the singlet number takes on an integer value equal to 1(2)
in the n = 2(4) Mott lobes, corresponding to the number of local singlets per site. The inset shows the singlet order parameter
for two different cuts across the phase diagram: the cuts traverse the n = 2 (dashed) and n = 1 (solid) Mott-superfluid phase
boundaries. At the n = 2 Mott-superfluid phase boundary, the singlet order parameter displays a finite jump, which is evidence
of the first order nature of the transition.

Here the system is described by three order parameters,
the complex superfluid order parameter, the tensor ne-
matic order parameter N/n2, and the scalar singlet or-
der parameter, which measures the number of singlets
created on a given site.

In Fig. 2, we present the phase diagram for anti-
ferromagnetic spin-dependent interactions U2 > 0 in
terms of the nematic and the singlet order parameters.
To display the nematic order parameter, we compute the
largest eigenvalue λN of the nematic tensor N/n2 for
every value of t/U0 and µ/U0 throughout the phase dia-
gram. The inset shows a cut of the nematic order param-
eter at fixed µ through the n = 2 Mott lobe. The labels I
and II indicate the nature of the superfluid-Mott insula-
tor transition as being first and second order respectively.

In the superfluid phase, we recover the well known con-
tinuum result, namely that the largest eigenvalue of the
nematic tensor is λN → 0.5. In the superfluid, the spin,
density and nematic orders compete [8], which enforces
a constraint on the nematic tensor such that the sum of
the eigenvalues equals 1. In the even integer Mott lobes,
the system enters the singlet phase, which is character-
ized by zero total spin 〈S〉 = 0, and zero nematicity. In
other words, all three eigenvalues of the nematic tensor
are zero in this phase. Unlike the ferromagnetic gas, sev-
eral authors have argued that the transition from the
singlet Mott insulator to the nematic superfluid is first

order [29, 30, 32], and this has been confirmed numeri-
cally in 1 and 2D through exact Quantum Monte Carlo
simulations [31, 33].

The first order nature of the transition should also be

evident in the evolution of the nematic, condensate and
singlet order parameter across the phase boundary. In
the inset on the left panel, we plot a cut through the
nematic order parameter across the n = 2 Mott lobe,
which clearly shows a discrete jump at the superfluid-
singlet Mott transition. As the nematic order can be
probed experimentally using optical birefringence tech-
niques [53], this is an example of a first order quantum
phase transition that can be readily studied in the labo-
ratory. Additionally, the superfluid order parameter also
shows a discrete jump at this transition to zero, unlike
for a second order transition. Near the odd integer Mott
lobes, the transition is once again second order.

Unlike the nematic order parameter, which is identi-
cally zero in the singlet Mott insulator, the singlet order
parameter 〈Θ†Θ〉 takes on an integer value equal to half
the total particle number in the even Mott lobes. The in-
set on the right panel shows two horizontal cuts through
the phase diagram across the superfluid - n Mott tran-
sition where n = 1 (solid) and n = 2 (dashed). The
singlet order parameter is zero in the n = 1 Mott lobe,
as expected, and precisely 1 in the n = 2 Mott lobe. Fur-
thermore, the singlet order parameter shows a small but
finite jump at the Mott-superfluid transition, once again
revealing the first order nature of the transition.

A first order superfluid-Mott transition usually implies
a small but finite coexistence region where a metastable
superfluid phase can occur in addition to a Mott insu-
lator with local singlets. Such a coexistence region has
been discussed within the mean-field context [32] and val-
idated through exact Quantum Monte Carlo simulations
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in 1D [31]. Nonetheless, the first order transition can
be readily probed by studying the evolution of the su-
perfluid, nematic or singlet order parameters. Precisely
figuring out whether this transition is indeed first order or
an artifact of the mean-field approximation will demand
more sophisticated numerical simulations (e.q. QMC) in
two and three dimensions, which our work should moti-
vate.
For very small U2/U0, Imambekov et al. [10] find an

additional first order phase transition within the Mott
lobe, which corresponds to a transition from a nematic
Mott phase to a singlet phase. This transition is not
captured by the Gutzwiller mean-field theory, because it
does not include any spin fluctuations in the Mott insu-
lator. Nonetheless, the Gutzwiller theory gets the cor-
rect local spin physics at zero hopping, and extrapolates
this wave-function throughout the entire Mott lobe. Note
that within this mean field theory, the singlet Mott lobes
are larger than the nematic lobes. This is because the
tendency to form local singlets which is favored by the
repulsive spin-dependent interactions tends to destroy su-
perfluid order more easily, thus enhancing the Mott re-
gion of the phase diagram.
It has been argued that for U2 = 0, the Hamilto-

nian of the system has SU(2S + 1) symmetry, and the
ground state is an SU(3) ferromagnet [51, 52]. Within
the Gutzwiller theory, in the superfluid phase, we find
that the ground state has ferromagnetic order, but 〈S〉
is no longer pinned to the total density. As the Mott
transition is approached however, 〈S〉 → n.

IV. GUTZWILLER MEAN-FIELD THEORY:

DYNAMICS

Having formed a more comprehensive understanding of
the static ground state quantum phase diagram using the
Gutzwiller technique, we now turn our attention to the
low lying excitation spectrum in the spin-1 gas. Some of
the results derived here for U2 > 0 were recently obtained
in Ref. 43 and Ref. [44]. Here we present some more
details on the excitation spectrum for U2 > 0, and also
describe the excitations on the ferromagnetic side U2 <
0. We start by presenting a complete derivation of the
equations of motion, which describe the full mean-field
dynamics about the Gutzwiller ground state, generalizing
the earlier work in Ref. [41] for the spinless Bose Hubbard
model.
To begin, we generalize the Gutzwiller wave-function

to include dynamics

|φi〉 =
∑

m−1,m0,m1

Am−1m0m1
(i, t)|m−1,m0,m1〉 (10)

and the coefficients explicitly depend on the site index i
and the time t. We now wish to variationally minimize
the time dependent Schrödinger equation with respect to
Am−1m0m1

, we have

δ

δA∗
m−1m0m1

〈ΨGS |i∂t −H + µN |ΨGS〉 = 0. (11)

Taking the variational derivative, we arrive at

i∂tAm = DmAm + S+−
m A(m−1−1)(m0+2)(m1−1) (12)

+ S−+
m A(m−1+1)(m0−2)(m1+1) − t

[√
m−1A(m−1−1)m0m1

+
√
m0Am−1(m0−1)m1

+
√
m1Am−1m0(m1−1)

]

− t
[

√

m−1 + 1A(m−1+1)m0m1
+
√
m0 + 1Am−1(m0+1)m1

+
√
m1 + 1Am−1m0(m1+1)

]

,

where we have introduced the shorthand notation m =
(m−1,m0,m1), and the dependence of Am on space and
time (i, t) is implicit. We have also defined the following
m dependent terms to simplify the writing

Dm =
U0

2
(m−1 +m0 +m1)(m−1 +m0 +m1 − 1)

+ U2

(1

2
[(m1 −m−1)

2 −m1 −m−1] +m1m0

+ m−1m0

)

− µ(m−1 +m0 +m1) (13)

S+−
m

= U2

√

m1(m0 + 1)(m0 + 2)m−1,

S−+
m

= U2

√

(m1 + 1)m0(m0 − 1)(m−1 + 1).

To obtain the low energy spectrum, we follow Ref. 32,
and expand the wave-function coefficients about the
mean-field solution

Am(i, t) ≈ e−E0t(A(0)
m

+A(1)
m

(i, t)), (14)

whereE0 is the ground state energy, A
(0)
m is the mean field

solution and A
(1)
m are the fluctuations. We then expand

the space and time dependence of A
(1)
m into plane wave

states to obtain

A(1)
m (i, t) = uk,me

i(k·ri−iωkt) + v∗k,me
−i(k·ri−iωkt), (15)

where ωk is the low energy dispersion we are trying to
calculate. Inserting this ansatz into Eq. 12, and keeping
only terms linear in uk and vk, we obtain
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ωkuk,m = (Dm − E0)uk,m + S+−
m

uk,(m−1−1)(m0+2)(m1−1) + S−+
m

uk,(m−1+1)(m0−2)(m1+1) (16)

− t
(√

m−1ψ
(0)
m−1

uk,(m−1−1)m0m1
+
√
m0ψ

(0)
m0
uk,m−1(m0−1)m1

+
√
m1ψ

(0)
m1
uk,m−1m0(m1−1)

)

− t
(

√

m−1 + 1ψ(0)∗
m−1

uk,(m−1+1)m0m1
+
√
m0 + 1ψ(0)∗

m0
uk,m−1(m0+1)m1

+
√
m1 + 1ψ(0)∗

m1
uk,m−1m0(m1+1)

)

− tγk

(√
m−1U

+
m−1

A
(0)
(m−1−1)m0m1

+
√
m0U

+
m0
A

(0)
m−1(m0−1)m1

+
√
m1U

+
m1
A

(0)
m−1m0(m1−1)

)

− tγk

(

√

m−1 + 1U−
m−1

A
(0)
(m−1+1)m0m1

+
√
m0 + 1U−

m0
A

(0)
m−1(m0+1)m1

+
√
m1 + 1U−

m1
A

(0)
m−1m0(m1+1)

)

.

where we have introduced ψ
(0)
α = 2z〈aα〉, ψ(0)∗

α = 2z〈a†α〉
[the (0) here denotes an evaluation with respect to the

mean field ground state A
(0)
m ],

γk = 2 (cos(kx) + cos(ky) + cos(kz)) (17)

and

U+
mα

=
∑

m′

√

m′
α + 1 (18)

×
(

A
∗(0)
m′ uk,(m′

α+1)m′

γm
′

δ
+A

(0)
(m′

α+1)m′

γm
′

δ

vk,m′

)

U−
mα

=
∑

m′

√

m′
α (19)

×
(

A
∗(0)
m′ uk,(m′

α−1)m′

γm
′

δ
+A

(0)
(m′

α−1)m′

γm
′

δ
vk,m′

)

where α 6= γ 6= δ ∈ {−1, 0, 1}. For example for α = 0
this would yield

U+
m0

=
∑

m′

√

m′
0 + 1

×
(

A
∗(0)
m′ uk,m′

−1
(m′

0
+1)m′

1
+A

(0)
m′

−1
(m′

0
+1)m′

1

vk,m′

)

.

Similarly, for the vs, we obtain

−ωkv
∗
k,m = (Dm − E0)v

∗
k,m + S+−

m v∗
k,(m−1−1)(m0+2)(m1−1) + S−+

m v∗
k,(m−1+1)(m0−2)(m1+1) (20)

− t
(√

m−1ψ
(0)
m−1

v∗
k,(m−1−1)m0m1

+
√
m0ψ

(0)
m0
v∗
k,m−1(m0−1)m1

+
√
m1ψ

(0)
m1
v∗
k,m−1m0(m1−1)

)

− t
(

√

m−1 + 1ψ(0)∗
m−1

v∗
k,(m−1+1)m0m1

+
√
m0 + 1ψ(0)∗

m0
v∗
k,m−1(m0+1)m1

+
√
m1 + 1ψ(0)∗

m1
v∗
k,m−1m0(m1+1)

)

− tγk

(√
m−1V

+
m−1

A
(0)
(m−1−1)m0m1

+
√
m0V

+
m0
A

(0)
m−1(m0−1)m1

+
√
m1V

+
m1
A

(0)
m−1m0(m1−1)

)

− tγk

(

√

m−1 + 1V −
m−1

A
(0)
(m−1+1)m0m1

+
√
m0 + 1V −

m0
A

(0)
m−1(m0+1)m1

+
√
m1 + 1V −

m1
A

(0)
m−1m0(m1+1)

)

.

where

V +
mα

=
∑

m′

√

m′
α + 1 (21)

×
(

A
∗(0)
m′ v

∗
k,(m′

α+1)m′

γm
′

δ
+A

(0)
(m′

α+1)m′

γm
′

δ

u∗
k,m′

)

,

V −
mα

=
∑

m′

√

m′
α ×

×
(

A
∗(0)
m′ v

∗
k,(m′

α−1)m′

γm
′

δ
+A

(0)
(m′

α−1)m′

γm
′

δ
u∗k,m′

)

.

Because of the mean field terms, the equations of mo-
tion for the uk are coupled to those of the vk. These
equations can be readily solved numerically and have the

property that for every eigenvalue ωk, −ωk is also an al-
lowed eigenvalue. In the following section, we discuss in
detail the lowest collective modes ωk for repulsive and
attractive U2 across the entire superfluid-Mott insulator
phase diagram.

V. EXCITATIONS

A. Anti-ferromagnetic interactions

We begin by discussing the case of anti-ferromagnetic
interactions U2 > 0. In Fig. 3 we plot the evolution of
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FIG. 3: Evolution of the excitation spectrum from the nematic (polar) superfluid into the singlet phase. Throughout we fix
U2 = 0.1U0 and vary t and µ such that we access the deep superfluid (left), superfluid-Mott phase boundary (center) and the
deep Mott phase (right). The polar superfluid has two linearly dispersing modes corresponding to density and spin modes,
originally derived in Refs. 5, 6. As the superfluid-Mott phase boundary is approached, the sound speeds associated with the
density and spin modes become identical. Additionally, there is a quadratically dispersing gapped, particle-hole mode and a
non-dispersive mode. This non-dispersive mode corresponds to the breaking of a local singlet pair and has no analog in the
spinless case. This is therefore a new feature of the spin-1 Bose gas. Deep in the Mott insulator, the singlet pair breaking mode
has the lowest energy and the particle-hole mode is pushed to higher energies.

the low lying excitation spectrum across the superfluid-
singlet Mott phase diagram. Throughout, we fix U2 =
0.1U0 and vary t/U0 and µ/U0 with a density of n ≈ 2,
in order to access different regimes of the singlet Mott
insulator-superfluid phase diagram.

In the superfluid phase, we recover the three linearly
dispersing modes; one density mode, and two degener-
ate spin modes, as originally described by the authors
of Refs. 5, 6 for the continuum spin-1 Bose gas. The
sound speeds associated with the density cd and spin
modes cs are proportional to

√
U0 and

√
U2 respectively,

and are typically vastly different in atoms such as 23Na
(Ref. 5). As the Mott transition is approached however,
density fluctuations are suppressed and consequently cd
approaches cs monotonically. The sound speed associ-
ated with the spin mode remains relatively unaffected,
as it is not directly related to the compressibility. As
discussed in Sec. IIIA, the transition from the superfluid
to the singlet-Mott insulator is first order, and is charac-
terized by an abrupt jump in the superfluid order param-
eter. Thus at the Mott transition, the sound velocity also
shows a discontinuous jump to zero (not shown). This is
in contrast to the spinless case (or the ferromagnetic spin-
1 gas or the nematic Mott-superfluid transition), where
the sound speed either remains finite (at the Mott tip
[41]) or goes to zero continuously, following the super-
fluid order parameter.

Near the Mott transition, but still in the superfluid
phase, we additionally find two gapped modes: a quadrat-
ically dispersing particle-hole mode and a non-dispersive
mode which corresponds to the breaking of a singlet pair.
The latter mode is absent in odd integer Mott lobes, and
is a new feature of the spin-1 gas, with no analog in the
spinless case.

In Fig. 4, we plot the particle-hole gap ∆ph and the sin-
glet gap ∆s across the superfluid-Mott phase boundary.
The particle-hole gap evolves non-monotonically as the
superfluid-insulator transition is crossed, going to zero
at the phase boundary, signaling a quantum phase tran-
sition. For a second order quantum phase transition, the

FIG. 4: Evolution of the singlet gap (solid) and the particle-
hole gap (points) across the superfluid n = 2 singlet
Mott insulator boundary for anti-ferromagnetic interactions.
(U2/U0 = 0.1). The singlet gap is completely independent of
the hopping in the Mott insulator and and can be obtained
by diagonalizing the on-site Hamiltonian. The particle-hole
gap discontinuously goes to zero as the Mott-superfluid phase
boundary is approached from the superfluid side, indicative
of a first order transition. It approaches 0.5U0 deep in the
Mott insulator phase.

closing of the gap obeys the same power laws on either
size of the transition scaling as ∆ ∼ |t− tc|ν where tc is
the critical point, and ν is the correlation length critical
exponent. This is no longer true for a first order transi-
tion; as shown in Fig. 4, the gap closes discontinuously
when the transition is approached from the superfluid
side, but continuously if approached from the Mott side.

Deep in the n = 2 Mott insulator, the gap approaches
∆ph → U0/2 as t→ 0. By contrast, within the Gutzwiller
approximation, the singlet gap is independent of the hop-
ping in the Mott insulator, and can be readily estimated
by diagonalizating the onsite part of the Hamiltonian in
Eq. 1. Within the Gutzwiller theory, the singlet and
particle-hole modes do not couple to one another, and
there is no hybridization gap as the particle-hole mode
crosses the singlet mode. In reality, quantum fluctua-
tions will couple the singlet and particle-hole modes and
the singlet gap will depend on t. This goes beyond the
Gutzwiller approach and has been studied by Imambekov
et al. [10] and Snoek and Zhou [47], and is not reproduced
here. Their main result is that the singlet gap indeed
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FIG. 5: Evolution of the excitation spectrum from the ferromagnetic superfluid into the Mott insulating phase. Throughout
we fix U2 = −0.1U0 and vary t and µ such that we access the deep superfluid (left), superfluid-Mott phase boundary (center)
and the deep Mott phase (right). The ferromagnetic superfluid has one linearly dispersing mode corresponding to density
fluctuations and a quadratically dispersing gapless and a gapped spin mode, corresponding to fluctuations of the spin in the
direction parallel and perpendicular to the easy axis. As the superfluid-Mott phase boundary is approached, the spin gap
associated with the spin mode goes to zero. Additionally, there is a gapped, quadratically dispersing particle-hole like mode.
The sound speed associated with the density mode vanishes at the transition and deep in the Mott insulator, there are two non-
degenerate gapped modes corresponding to particle and hole-like excitations. The gapped spin mode is effectively non-dispersive
in the Mott insulator as its effective mass is proportional to t which is exponentially small.

0 0.01 0.02
0

0.1

0.2

0.3

0.4

t�U0

D
ph
�U

0

FIG. 6: Evolution of the particle-hole gap across the
superfluid- n = 2 ferromagnetic Mott insulator boundary for
U2 = −0.1U0.

varies with hopping and jumps to zero at the singlet-
nematic Mott transition, which is not captured within
our theory. In general, the strong coupling theory of
the even n Mott lobes can be described by a constrained
quantum rotor model [47].
In the nematic (odd n) Mott lobes, and the ferromag-

netic Mott lobe for small |U2|/U0, the low energy de-
scription corresponds to a ferromagnetic, spin-1 bilinear-
biquadratic J −K spin Hamiltonian (see Eq. 22 below),
originally derived by Imambekov et al. [10] and Snoek
and Zhou [47]. In the nematic Mott insulator, the low
energy excitations are linearly dispersing nematic waves,
whose spectrum was studied in detail by Imambekov et

al. [10], and is not reproduced here. This theory is be-
yond the naive Gutzwiller approach we develop above, as
the Gutzwiller theory does not contain any spin fluctua-
tions in the Mott lobes. Below we study this biquadratic
spin model on the ferromagnetic side, and compute the
spin wave spectrum and discuss its evolution as a func-
tion of t.

B. Ferromagnetic interactions

We now turn to the case of ferromagnetic interactions
U2 < 0 which is shown in Fig. 5. Deep in the superfluid

phase, we once again recover the excitation spectrum de-
rived for the spin-1 Bose gas in Refs. 5, 6. The low lying
spectrum displays a single linearly dispersing mode cor-
responding to density excitations and two quadratically
dispersing modes corresponding to the spin excitations
about the ferromagnetic ground state. One of the modes
has a free-particle spectrum which corresponds to spin
waves while the other mode is gapped, and corresponds
to “quadrupolar” spin fluctuations [5].

Deep in the Mott insulator, there are two non-
degenerate low lying excitations which correspond to par-
ticle and hole like modes respectively. These modes are
also present in the spinless case. At the Mott transition
one of the gaps vanishes, signaling the phase transition
into a superfluid and the other gap remains finite across
the phase boundary as shown in Fig. 6. Near the phase
boundary but on the superfluid side, the effective mass
of the spin mode decreases, as in a lattice, the effective
mass is proportional to the hopping, which scales expo-
nentially with the lattice depth. Furthermore, the spin
gap associated with the quadrupolar spin mode vanishes
at the transition. At the ferromagnetic transition the su-
perfluid density vanishes, leading to a vanishing phonon
velocity.

Note that unlike the spinless gas however, the ferro-
magnetic Mott insulator has long range spin order, and
thus according to Goldstone’s theorem, has a gapless
mode corresponding to spin excitations. However this
mode is not captured within the naive Gutzwiller ap-
proach as spin fluctuations in this theory are tied to the
condensate order parameter, and therefore vanish at the
Mott transition. To capture spin fluctuations in the insu-
lating phase therefore, we augment the Gutzwiller theory
with a Schwinger boson mean-field theory for the spin,
which is described next.
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1. Schwinger boson mean-field theory

In the following subsection we determine the low lying
excitations in the ferromagnetic Mott phase using the
Schwinger boson mean field theory [54] (SBMFT). We
will focus on the n = 1 Mott lobe for simplicity, but
our results are also relevant to any value of n with a
change of the spin model parameters. Working in the
limit U0 ≫ |U2| ≫ t, we can apply standard perturbation
theory in t/(U0+ gU2) (where g is a small integer) which
yields the spin-1 biquadratic model [10, 47]

HJK =
∑

〈i,j〉

(

−JSi · Sj −
1

2
K(Si · Sj)

2

)

. (22)

The parameters J > 0 and K/2 > 0 are related to
t, U0, U2 via Eq. 22 of Ref. 10. Focusing on the ferro-
magnetic ground state we can assume that the K term is
not sufficient to destroy the long range ferromagnetic or-
der. Thus, we can treat the biquadratic term at the mean
field level, which yields (Si · Sj)

2 → −Φ2
ij + 2ΦijSi · Sj ,

where Φij = 〈Si ·Sj〉, and therefore this decoupling essen-
tially just renormalized the nearest neighbor ferromag-
netic interaction to J + KΦij . We generalize the spin
symmetry from SU(2) to SU(N) and introduce Schwinger

bosons through Si = b†imsmnbin, where smn are the gen-
erators of SU(N) and m,n = 1, . . . , N . The b opera-

tors must satisfy the constraint
∑

n b
†
inbin = NS, and

the SBMFT is exact in the limit N → ∞. We stress
that the bosonic spinon operators bin are not the bosonic
operators in the Bose-Hubbard model in Eq. 1. Follow-
ing standard SBMFT techniques we decouple the spin-
spin interaction in the ferromagnetic channel through

Si · Sj =: F†
ijFij : /N − S2, where Fij =

∑

n b
†
inbjn,

and : · · · : denotes normal ordering. Solving the SBMFT
equations with N = 2 and S = 1 at zero temperature
yields a ferromagnetic ground state [54] with a bosonic
excitation spectrum given by

ωk = z(J +K)− (J +K)γk (23)

≈
k→0

(J +K)|k|2. (24)

We recover the expected quadratically dispersing fer-
romagnetic spin waves with an effective mass m∗ =
1/(2[J + K]) ∼ U0/t

2 (in units of ~ = 1). There-
fore, we conclude that the correct excitation spectrum
in the ferromagnetic Mott lobes have gapless Goldstone
modes which disperse quadratically and cannot be cap-
tured within the Gutzwiller approach. We emphasize
that Eq. 22 is only valid deep in the Mott insulator and
not near the transition where the truncation of basis
states needed to arrive at this equation is no longer valid
due to the vanishing of the particle-hole gap.
An alternative approach to obtaining the low energy

spectrum in the magnetic Mott insulating regions is to
use a 1/z expansion, where z is the lattice coordination
number [55, 56]. To lowest order, this expansion recov-
ers the Gutzwiller theory, but provides a systematic way

to include normal and anomalous correlations from un-
condensed bosons. This method also serves as a start-
ing point for Bosonic Dynamical mean-field theory. It
will be extremely interesting to explore extensions of this
method to magnetic phases in spin-orbit coupled bosonic
systems.

VI. EXPERIMENTAL IMPLICATIONS

The continuum physics of the spin-1 Bose gas has been
well studied experimentally, and the phase diagram is
well established [1, 2, 57–60]. By contrast, the phase di-
agram of the lattice spin-1 gas has received relatively
little attention from the experimental community, de-
spite the plethora of interesting phases and phase transi-
tions present in this model. As we have shown here, the
strongly correlated spin-1 superfluid and Mott regimes
have many distinct features that are absent in the well
studied spinless Bose Hubbard model [3]. Indeed it will
be extremely interesting to study the evolution of the
nematic and singlet order parameters in a strongly cor-
related spin-1 gas with anti-ferromagnetic interactions,
as in 23Na. Importantly, the evolution of these order
parameters reveals a first order quantum phase transi-
tion near the superfluid-singlet Mott insulator, which has
been confirmed numerically in 1D. It will be very exciting
if the predicted first order nature of the quantum phase
transition can be explored experimentally.
The excitations in the spin-1 gas are also strikingly

different from their spin-0 counterparts. For example,
unlike the spinless Mott insulator, which is truly feature-
less, the ferromagnetic Mott insulator has quadratically
dispersing spin waves, corresponding to long range spin
order. The excitations in the weakly interacting super-
fluid limit of the spin-1 ferromagnetic gas were recently
explored by Marti et al. [61], where a spin wave was ex-
ternally imprinted on to the cloud and its coherent evolu-
tion was subsequently imaged. This method can also be
applied in the Mott insulating regime to explore the spin
wave spectrum in the ferromagnetic Mott lobe. Particle-
hole like excitations couple to density fluctuations which
are readily generated using modulation spectroscopy [62]
or Bragg spectroscopy [63]. For anti-ferromagnetic in-
teractions, the low energy excitations are nematic waves,
which are linearly dispersing in the superfluid and ne-
matic Mott insulator. As is known from the theory of
liquid crystals, the nematic tensor couples to the polar-
ization of the incoming light beams, leading to optical
birefringence, which can be used to probe nematic order
and nematic waves [53].

VII. CONCLUSIONS AND OUTLOOK

To conclude, in this paper we have presented a compre-
hensive mean-field description of the static and dynamic
properties of the superfluid-Mott insulator transition in a
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spin-1 Bose gas. A key distinction in our work from pre-
vious works on this subject is our focus on the evolution
of the important order parameters for the ferromagnetic
and anti-ferromagnetic interactions, namely the spin in
the ferromagnetic case, and the singlet and nematic order
parameter in the anti-ferromagnetic case.
Additionally, we have described the low lying excita-

tion spectrum of the spin-1 gas across the entire phase di-
agram for positive and negative U2. For U2 > 0, we have
discussed the evolution of the singlet and the particle-
hole gap, which can be probed using modulation spec-
troscopy [62]. The singlet gap is a new feature of the
spin-1 gas, and has no analog in the spinless case. We
have discussed the limitations of the Gutzwiller approach
in that it neglects the quantum fluctuations which cou-
ple the singlet and particle-hole modes. This would make
the singlet gap vary as a function of tunneling, eventually
going to zero at the singlet-superfluid transition.
On the ferromagnetic side, we have discussed the evo-

lution of the quadrupolar spin gap and the particle-hole
like excitations across the phase diagram. Furthermore,
we have pointed out a shortcoming of the Gutzwiller ap-
proach in describing spin fluctuations in the Mott in-
sulator. Unlike the spinless Mott insulator, the ferro-
magnetic Mott insulator is not featureless but rather is
characterized by long range spin order. However, within
this theory, spin fluctuations are tied to the condensate
order parameter. Therefore, this theory accurately cap-
tures the spin modes in the condensate and reproduces
the Bogoliubov spectrum at weak coupling. However, in
the Mott insulator, where the condensate order param-
eter vanishes, spin fluctuations are frozen out, and as a
result, the ferromagnetic Mott insulator does not have
any spin fluctuations, in violation of Goldstone’s theo-
rem. To overcome this limitation, we have presented a
Schwinger boson mean-field theory, which retains spin
fluctuations in the Mott insulator and yields an addi-
tional free-particle like mode with an effective mass m∗

which varies like U0/t
2 within the Mott insulating phase.

This mode is a new feature of the spin-1 gas, and can be
probed using magnon interferometry [61].

Theoretically, the Gutzwiller approach developed here
serves as a natural starting point for exploring more com-
plicated Hamiltonians where the single particle physics
involves a coupling between spin and kinetic degrees of
freedom, such as the spin-orbit coupled Bose Hubbard
model. The interplay between large spin and spin-orbit
coupling can lead to simultaneous nematic, ferromagnetic
orders with broken translational symmetry [64] or exotic
spin models with novel ground states even at the classi-
cal level [65, 66]. In the presence of single particle degen-
eracies such as those introduced by spin-orbit coupling,
or artificial gauge fields, the absence of a bosonic Pauli
principle severely limits exact numerical approaches, and
only small system sizes can be accurately simulated nu-
merically. Extending the Gutzwiller method to study
the mean-field physics of these large spin, spin-orbit cou-
pled models is therefore imperative [67, 68], and serves
as a useful starting point for exploring the role of quan-
tum fluctuations, the breakdown of mean-field theory and
other strongly correlated effects, such as the fermioniza-
tion of bosons in flat bands [69]. Importantly, this mean-
field theory can be systematically generalized to incor-
porate fluctuation effects by solving the system exactly
for small clusters, coupled by mean fields or by supple-
menting the Gutzwiller method with Schwinger bosons as
done here to correctly capture low energy spin physics.
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I. Bloch, Nature, 415 39 (2002).
[4] D. Jaksch, C. Bruder, J. I. Cirac, C. W. Gardiner and P.

Zoller, Phys. Rev. Lett. 81 3108, (1998).
[5] T.-L. Ho, Phys. Rev. Lett. 81 742 (1998).
[6] T. Ohmi and K. Machida, J. Phys. Soc. Jpn. 67 1822

(1998).
[7] R. B. Diener and T.-L. Ho, Phys. Rev. Lett. 96 190405

(2006).
[8] E. J. Mueller, Phys. Rev. A 69 033606 (2004).
[9] S. S. Natu and E. J. Mueller, Phys. Rev. A 84 053625

(2011).
[10] A. Imambekov, M. Lukin and E. Demler, Phys. Rev. A

68 063602 (2003).
[11] Y. K Lin, K. Jimenez-Garcia and I. B. Spielman, Nature,

471 83 (2011).
[12] S.-C. Ji, et al. Nature Physics 10 314 (2014).
[13] Y.-J. Lin, R. L. Compton, A. R. Perry, W. D. Phillips,

J. V. Porto, and I. B. Spielman, Phys. Rev. Lett. 102
130401 (2009).

[14] P. Wang, Z-Q. Yu, Z. Fu, J. Miao, L. Huang, S. Chai, H.
Zhai and J. Zhang Phys. Rev. Lett. 109 095301 (2012).

[15] L. W. Cheuk, A. T. Sommer, Z. Hadzibabic, T. Yefsah,
W. S. Bakr and M. W. Zwierlein Phys. Rev. Lett. 109
095302 (2012).

[16] H. Miyake, G. A. Siviloglou, C. J. Kennedy, W. C. Burton
and W. Ketterle, Phys. Rev. Lett. 111 185302 (2013).

[17] M. Aidelsburger, M. Atala, M. Lohse, J. T. Barreiro,
B. Paredes and I. Bloch, Phys. Rev. Lett. 111 185301
(2013).

[18] J.-Y. Zhang et al., Phys. Rev. Lett. 109 115301 (2012).
[19] C. Wang, C. Gao, C.-M. Jian and H. Zhai, Phys. Rev.

Lett. 105 160403 (2010).



12

[20] T. D. Stanescu, B. Anderson and V. Galitski, Phys. Rev.
A 78 023616 (2008).

[21] T-L. Ho, S. Zhang, Phys. Rev. Lett. 107 150403 (2011).
[22] Y. Li, L. P. Pitaevskii and S. Stringari, Phys. Rev. Lett.

108 225301 (2012).
[23] C. Wu, I. Mondragon-Shem and X.-F. Zhou, Chin. Phys.

Lett. 28 097102 (2011).
[24] X. Li, S. S. Natu, A. Paramekanti and S. Das Sarma Nat

Comm. 5 5174 (2014).
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