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We study the collisionless spin dynamics of a harmonically trapped Fermi gas in a magnetic field
gradient. In the absence of interactions, the system evolution is periodic: the magnetization develops
twists, which evolve into a longitudinal polarization. Recurrences follow. For weak interaction, the
exchange interactions lead to beats in these oscillations. We present an array of analytic and
numerical techniques for studying this physics.
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I. INTRODUCTION

The spins in Fermi gases display a rich range of behaviors: Both collisionless and collision dominated spin waves
have been studied in a number of recent experiments [1–7]. Here we present a simple model of the collisionless regime,
and study the dynamics.

Collisionless spin waves were first explored in 3He film, then in spin polarized hydrogen [8–10]. However, some of
these early works are hard to observe in these atomic systems. Unlike these early studies, cold atom experiments
allow one to directly image the spin waves [11, 12]. Such images complement the spectroscopic and transport probes
used to understand 3He and hydrogen.

While our focus is the weakly interacting regime, much recent work has explored the collision dominated strongly
interacting limit. One of the problems is to understand the spin diffusive behavior in this regime. For example, it
is conjectured that quantum mechanics forbids the spin diffusion constant from exceeding ∼ ~/m, where ~ is the
reduced Planck’s constant and m is the atomic mass. This bound appears to be consistent with the recent theoretical
and experiment results[1–6, 13–17].

Our model is largely inspired by the experiments of Bardon et al. in Toronto [5]. There a two-component Fermi
gas is placed in a cigar shape trap. The gas is prepared with a uniform magnetization in the x̂ direction. A magnetic
field is applied in the ẑ direction. The strength of this field varies linearly with z. The experimentalists let the system
evolve for some time then interrogate it, typically with a spin-echo protocol [18, 19]. For simplicity, we do not model
the spin-echo, but simply study how the magnetization evolves. Since all dynamics are one-dimensional (1D), and
the Hamiltonian can be integrated out in the other two dimensions, we will focus on the 1D model instead.

This paper is organized as follows. First we consider the non-interacting case, where we can analytically describe
the dynamics. We show that the transverse magnetization oscillates, and explain this behavior in terms of transverse
and longitudinal spin rotations. Then we study weak interaction. We find beats which can be attributed to the
exchange interaction. In the end, we discuss the transition from collisionless to collisional limit and give our summary.

II. NON-INTERACTING CASE

We consider a 1D pseudo-spin 1/2 Fermi gases in a magnetic field gradient along x axis. In the absence of
interactions, we can consider the dimensionless single particle Hamiltonian

H0 = −∂
2
x

2
+
x2

2
+ σλx, (1)

where σ = ± for the up and down spin states, with respect to the ẑ axis. Here x = x̃/
√

~/(mω), where x̃ is the position

of the particle and
√

~/(mω) is the characteristic length of the harmonic oscillator, with ω the trap frequency. The

magnetic field gradient is represented by dimensionless λ. The actual magnetic gradient is λ̃ = λω
√
~mω/µ, where
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µ is the magnetic moment. The dimensionless time t = ωt̃, where t̃ is the real time. Hereafter we will use these
dimensionless quantities. The many-body state will consist of a Slater determinant of single particle states ψnσ(x, t),
each of which evolve via the time-dependent Schrodinger equation, i∂tψn = Hψn. The index n runs from 1 to N ,
where N is the number of particles.

We envision preparing the system so that at time t = 0 the n’th state of the Slater determinant has spin components
ψn↑ = φn(x)/

√
2 and ψn↓ = φn(x)/

√
2, where φn(x) is the n’th eigenstate of the simple harmonic oscillator. Such an

initial condition is prepared by first polarizing the system in the ↑ state, and cooling it to the ground state. One then
applies a π/2 pulse, rotating the spin from the ẑ direction to the x̂ direction.

To find the subsequent dynamics, we make the following ansatz:

ψnσ (x, t) = φn (x− σx0 (t)) eiσxv(t)eiΦn(t). (2)

This ansatz describes the exact dynamics in the absence of interactions. Substituting this ansatz into the Schrodinger
equation yields a set of ordinary differential equations for x0, v and Φn,

x′′0(t) + x0(t) + λ = 0, (3)

x2
0(t)/2− v2(t)/2− Φ′n(t)− En = 0. (4)

These equations are readily integrated to yield

x0 (t) = λ (cos t− 1) , v (t) = −λ sin t, (5)

Φn (t) =
λ2 sin 2t

4
− λ2 sin t−

(
n+

1

2
− λ2

2

)
t. (6)

The local magnetization in the x, y plane can be expressed as a complex number m(x, t) = mx + imy. This complex
magnetization can be written as m(x, t) =

∑
nmn(x, t) with

mn (x, t) = ψ∗n↓ (x, t)ψn↑ (x, t)

= φn (x− x0 (t))φn (x+ x0 (t)) e2ixv(t). (7)

We give the physical picture leading to magnetization dynamics in this non-interacting case in Fig. 1. As illustrated
in Fig. 1(a), the center of the up-spin and down-spin clouds become separated by a distance 2x0(t). This reduces the
overlap between the clouds, and the magnitude of the local transverse magnetization. As is evident in Eq. (7), the
clouds also develop a relative phase profile exp(2ixv). As shown in Fig. 1(b), this phase factor can be interpreted
as a spin precession term. While it does not change the magnitude of the local polarization, it makes the direction
depend on position. Thus it does reduce the total transverse magnetization M(t) =

∫
m(x, t) dx. By symmetry M(t)

is always real, implying the net transverse polarization is always in the x̂ direction. By construction M(t) ≤ N is
dimensionless.

FIG. 1: Illustration of the processes which lead to magnetization dynamics of a Fermi gas in a magnetic field gradient. (a)
Longitudinal spin dynamics: The up-spin and down-spin atoms move relative to each-other, changing their overlap, and hence
the transverse magnetization. (b) Transverse spin dynamics: The spins precess in the transverse plane, at speeds which depend
on the location of the atoms. This leads to an inhomogeneous texture, whose average magnetization is reduced. The single
arrow labels the spin direction, while the double one represents the movement of the spin.

Figure 2 shows the evolution of the transverse magnetization for N = 21 particles, taking λ = 0.1. As expected
from Eq. (7), we see clear undamped oscillations. We also show the contribution from the n = 0 and n = 1 states.
The lower energy states dominate the dynamics, as the maximum displacement |x0(t = π)| = 2λ is a greater fraction
of their width.



3

0 10 20 30 40
t

0.2

0.4

0.6

0.8

1.0
M(t)

FIG. 2: Time evolution of average transverse magnetization per particle M(t)/N (solid) for N = 21 particles. Here t = ωt̃ is
the reduced time, where t̃ is the real time and ω is the trap frequency. Also shown is the average magnetization of the particles
for the two lowest states: n = 0 (dotted) and n = 1 (dashed).

III. WEAK INTERACTION

In this section, we consider the influence of weak interaction on the system. We make a time-dependent Hartree-
Fock Ansatz, assuming that at all times the system is described by a Slater determinant of N single particle states.
The equations of motion can be derived by minimizing the action

S =

∫
Ψ∗(i∂t −H)Ψ dt dNx (8)

where Ψ(x1, x2, · · · , xN , t) represents the many-body wavefunction. The action can be decomposed as a sum of a
non-interacting and an interacting part S = S0 + SI . Within the Hartree-Fock ansatz,

S0 =
∑
n,σ

∫
ψ∗n,σ

(
i∂t +

∂2
x

2
− x2

2
− σλx

)
ψn,σdxdt,

SI =
∑
m,n

∫
g
(
|ψm,↑|2|ψn,↓|2 − ψ∗m,↑ψm,↓ψ∗n,↓ψn,↑

)
dxdt

with g = g̃/(~ω
√

~/(mω)) represents the reduced interaction strength with g̃ the physical one. Minimizing the action
with respect to the wavefunctions ψ∗n,σ(x) yields equations of motion

i∂tψn,σ = H0ψn,σ + g
∑
m

(
|ψm,σ̄|2ψn,σ

− ψ∗m,σψm,σ̄ψn,σ̄
)
. (9)

As argued by [20], in the limit of slow spatial and temporal dynamics, these coupled equations are equivalent to the
collisionless Boltzmann equation. For moderate N , we can numerically integrate these equations. The exchange inter-
action acts like a spatially inhomogeneous transverse magnetic field, and scrambles the spins. The simple oscillations
seen in Fig. 2 develop more structure, exhibiting quantum beats as seen in Fig. 4.

These beats can be qualitatively understood by considering a single wavefunction ψn,σ(x) in the Slater Determinant,
and treating the other wavefunctions as a static homogeneous background. Within this approximation, Eq. (9) becomes
a similar Jaynes-Cummings model,

i∂t

(
ψn,↑
ψn,↓

)
= H̄

(
ψn,↑
ψn,↓

)
, (10)

where

H̄ = −∂
2
x

2
+
x2

2
+ λxσz + geσx, (11)
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FIG. 3: Level structure of the simplified model in Eq. (15), used to describe the time evolution of a single wavefunction ψn,σ(x)
in the Slater determinant. Dashed lines show the eigen-energies when the field gradient λ and effective exchange field ge are
both zero. The exchange field splits the degeneracy between → and ← states, yielding the solid lines. En = n + 1/2. The
gradient λ couples levels as shown by the arrows. At time t = 0, ψn,→(x) = φn(x) and ψn,←(x) = 0, corresponding to the state
marked with a circle.

with ge the effective exchange interaction strength. The subsequent mathematics is simpler if we rotate spin space by
90◦. This is done by introduce a transformation matrix

R =
1√
2

(
1 1
1 −1

)
(12)

and defining (
ψn,→
ψn←

)
= R

(
ψn,↑
ψn↓

)
, (13)

H̄ ′ = RH̄R. (14)

Equation (10) then becomes

i∂t

(
ψn,→
ψn,←

)
= H̄ ′

(
ψn,→
ψn,←

)
, (15)

where

H̄ ′ =

(
(n+ 1

2 ) + ge
λ√
2
(a† + a)

λ√
2
(a† + a) (n+ 1

2 )− ge

)
, (16)

with a = (x + ∂x)/
√

2, a† = (x − ∂x)/
√

2. In this rotated vector space our initial state is ψn,→(t = 0) = φn(x),
ψn←(t = 0) = 0.

This Hamiltonian can be understood from the level diagram in Fig. 3. For zero interaction and magnetic field
gradient, the system is a simply harmonic oscillator and has energy levels at En = n+1/2, which is the dashed lines in
Fig. 3. The exchange coupling ge shifts the eigenstate energy of → and ← spins, shown as the solid lines and energy
En±ge. The magnetic field gradient flips the spins and at the same time changes the vibrational level by one. For small
λ, one can truncate the time dynamics to a three level system: the initial state, labeled by a circle, and the two states
which are coupled to it. This yields two oscillation frequencies ν± = 1±2ge, and to second order in λ the contribution to

the magnetization from the n’th term in the Slater determinant is mn = 1+ (n+1)λ2

(1−2ge)2 cos(1−2ge)t+
nλ2

(1+2ge)2 cos(1+2ge)t.

The beats in Fig. 4 are qualitatively consistent with this scenario, but this simplified model is not able to quantitatively
describe the evolution of the magnetization. A more sophisticated, and quantitatively accurate, ansatz involves taking
the n’th wavefunction in the Slater determinant will be of the form

ψn,σ(x, t) = An(t)φn(x)

+ σBn(t)φn+1(x) + σCn(t)φn−1(x). (17)
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FIG. 4: (color online) Time evolution of average transverse magnetization for reduced interaction strength g =

g̃/(~ω
√

~/(mω)) = 0.1. The particle number and magnetic gradient is the same as the non-interacting case and t = ωt̃ is
the reduced time with t̃ the real time and ω the trap frequency. Solid black line: Simplified variational approximation. Dashed
orange line: Full Hartree-Fock calculation.

Minimizing the action with this ansatz yields equations of motion for An, Bn, and Cn, i∂t − En −λXn −λXn−1

−λXn i∂t − En+1

−λXn−1 i∂t − En−1


+4g

∑
m

Λmn

] An
Bn
Cn

 = 0,

where Xn =
∫
dxφn(x)φn+1(x). The nonlinear term is

Λmn =

 |Bm|2αm+1
n + |Cm|2αm−1

n + 2Re(B∗mCm)βnm −Am(B∗mγ
m
n + C∗mγ

m−1
n ) −Am(B∗mγ

m
n−1 + C∗mγ

m−1
n−1 )

−A∗m(Bmγ
m
n + Cmγ

m−1
n ) |Am|2αmn+1 |Am|2βmn

−A∗m(Bmγ
m
n−1 + Cmγ

m−1
n−1 ) |Am|2βmn |Am|2αmn−1


(18)

where

αmn =

∫
dxφ2

m(x)φ2
n(x),

βmn =

∫
dxφ2

m(x)φn+1(x)φn−1(x),

γmn =

∫
dxφm(x)φm+1(x)φn(x)φn+1(x).

The above equations can be solved iteratively and we get the net magnetization

M(t) =
∑
n

(
|An(t)|2 − |Bn(t)|2 − |Cn(t)|2

)
. (19)

We plot the magnetization for system N = 21 and λ = 0.1 in Fig. 4. The reduced interaction is chosen as
g = 0.1. We can see the weak interaction develops beats in the magnetization, which is expected from our previous
approximation. These differential equations are much easier to integrate than the Hartree-Fock equations, and as
seen in Fig. 4, this simple ansatz captures most of the relevant physics.

Finally, we give the condition when the actual three-dimensional (3D) experiment goes from collisionless to colli-
sional limit. As argued by [21], this transition is determined by Γ/ω, where Γ = nσv is the two-body elastic scattering
rate per particle with n the mean density of the system, σ the scattering cross section and v the relative velocity. If
the scattering event seldom happens at several oscillation periods, i.e., Γ� ω, the dynamics is mainly dominated by
collisionless process. The system shows spin wave dynamics in this regime. Increasing the scattering rate Γ, it contin-
uously goes from collisionless limit to collisional limit. In our system n ≈ (2mEF )3/2/(6π2~3) ≈ 43.8(mω/~)3/2/π2
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for EF = 20.5~ω, and v ∼ λ
√

~ω/m. Our 1D reduced interaction strength is connected to the 3D scattering length

as g̃ = g~ω
√
~/(mω) ≈ 2~2a3D/(ml

2) [22]. Here l =
√

~/(mω⊥) is the transverse width and for a isotropic harmonic

potential we have a3D = g
√

~/(mω)/2. Thus we have Γ = 4πna2
3Dv ∼ 43.8g2λω/π. So for a strongly interacting

collisional limit, one has to fulfill g �
√
π/(43.8λ) ≈ 0.8 for reduced magnetic gradient λ = 0.1. Beyond this point,

the system is dominated by collisional process and the physics of spin diffusion begin to take part.

IV. SUMMARY

In summary, we give an analysis of the collisionless spin dynamics of a weakly interacting Fermi gas in a magnetic
field gradient. In the absence of interactions the net transverse magnetization oscillates with the trap frequency. Weak
interactions lead to beats. We present simple models which explain these dynamics.

For a related experiment, the magnetization dynamics can be directed observed using the techniques in Ref. [5], and
the beats behavior clearly tells the low energy spin wave dynamics of the system. Here even though our calculation
is purely 1D, we believe the beats behavior is also preserved in 3D system. This can also be seen from our mean-filed
argument, where the other dimensions will only change the eigenenergy of the harmonic oscillator. However the other
two dimension do contribute to the system. It will influence the local interaction strength and then shift the beats.
Also in the experiment one needs to take into account the effect of temperature. For a non-zero temperature, the
atoms will spread to higher single particle states and the spin dynamics will be enhanced.

Acknowledgments

This research is supported by the National Key Basic Research Program of China (Grant No. 2013CB922002),
the National Natural Science Foundation of China (Grant No. 11074021), and the ARO-MURI Non-equilibrium
Many-body Dynamics grant (W911NF-14-1-0003). J.X. is also supported by China Scholarship Council.

[1] A. Sommer, M. Ku, G. Roati, and M. W. Zwierlein, Nature 472, 201 (2011).
[2] A. Sommer, M. Ku, and M. W. Zwierlein, New J. Phys. 13, 055009 (2011).
[3] D. Wulin, H. Guo, C. C. Chien, and K. Levin, Phys. Rev. A 83, 061601 (2011).
[4] M. Koschorreck, D. Pertot, E. Vogt, and M. Köhl, Nat. Phys. 9, 405 (2013).
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[8] C. Lhuillier et F. Laloë, J. Phys. France 43, 197 (1982).
[9] N. P. Bigelow, J. H. Freed, and D. M. Lee, Phys. Rev. Lett. 63, 1609 (1989).
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