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We propose a detailed experimental procedure for preparing relativistic vortices, governed by the
nonlinear Dirac equation, in a two-dimensional Bose-Einstein condensate (BEC) in a honeycomb
optical lattice. Our setup contains Dirac points, in direct analogy to graphene. We determine a
range of practical values for all relevant physical parameters needed to realize relativistic vortices in
a BEC of 87Rb atoms. Seven distinct vortex types, including Anderson-Toulouse and Mermin-Ho
skyrmion textures and half-quantum vortices, are obtained, and their discrete spectra and stability
properties are calculated in a weak harmonic trap. We predict that most vortices are stable with a
lifetime between 1 and 10 seconds.
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I. INTRODUCTION

Multi-component Bose-Einstein condensates (BECs)
present an ideal setting for studying complex vor-
tex structures [1]. Such vortices allow for topologi-
cally intriguing configurations ranging from skyrmions
to knots [2–4]. The usual method for adding a spinor
structure to a BEC relies on hyperfine degrees of free-
dom or different atomic species. Instead, we use the band
structure and linear dispersion relation around the Dirac
points at the Brillouin zone edge of a honeycomb optical
lattice to realize a four-component Dirac spinor, in direct
analogy to graphene [5]. This gives us both pseudospin
as well as a relativistic structure. To accomplish this, we
propose starting with a BEC of weakly interacting alkali
metal atoms in the lowest Bloch state of a quasi-two-
dimensional (quasi-2D) honeycomb optical lattice, then
using Bragg scattering to populate Bloch states at the
two inequivalent Dirac points, followed by the applica-
tion of a Laguerre-Gaussian laser beam to deliver a net
angular momentum to the BEC which excites a plethora
of vortex structures. The vortices we obtain are solutions
of the nonlinear Dirac equation (NLDE), whose stability
is determined by the relativistic linear stability equations
(RLSE) [6, 7]. Our work on the NLDE+RLSE system
opens up the field of relativistic simulations in BECs at
velocities ten orders of magnitude slower than the speed
of light.
In this article we combine the study of Dirac points

with superfluid vortices, an environment reminiscent of
particle physics models where relativistic vortices are
commonplace [8, 9]. Stability of a BEC at the Dirac
points presents a challenge, since Bloch states there have
finite crystal momentum and nonzero energy. We handle
this problem by introducing an intermediate asymmetry
between the A and B sublattice potential depths which
opens up a mass gap. Using a gap enables us to con-
struct initial and final Bloch states, ψA,0 and ψA,K (with
Dirac point momentum K), as superpositions of the two

degenerate states at the Dirac point with velocities cl
and −cl, respectively. This produces a state with group
velocity equal to zero, relative to the lattice. Stationar-
ity of the BEC with respect to the lattice and the lab
frame is significant experimentally, since the BEC can
remain confined in an external trapping potential indef-
initely and does not suffer from dynamical instabilities
associated with relative motion between the BEC and
lattice. The end result is a metastable state in which
thermal losses can be managed by maintaining the sys-
tem at very low temperatures. For realistic experimental
parameters our relativistic vortices are stable for up to
10 seconds, as long or longer than the lifetime of typical
BECs.

Our physical setting begins with a BEC tightly con-
fined in one direction and loosely confined in the other
two directions. More precisely stated, magnetic trap-
ping along the z-direction is such that excitations along
this direction have much higher energy, by at least an
order of magnitude, compared to the lowest excitations
in the x and y-directions. Thus, an important step is
to calculate the precise renormalization of all relevant
physical parameters when transitioning from the stan-
dard 3D BEC to a quasi-2D system. In addition to this
step we also account for a renormalization due to the
presence of the optical lattice potential which introduces
an additional length scale from the lattice constant. We
point out that microscopically the BEC obeys the three-
dimensional nonlinear Schrödinger equation and we con-
sider temperatures well below the BKT transition en-
ergy associated with two-dimensional systems. Neverthe-
less, throughout our work we often use “2D” for brevity,
keeping in mind the quasi-2D picture. Condensation at
Dirac points of the honeycomb lattice requires additional
techniques beyond ordinary condensation, which we de-
tail in this article. In addition to the fields needed to
construct the lattice one requires both walking and sta-
tionary standing wave optical potentials to respectively
Bragg scatter atoms form the ground state (zero crystal
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momentum) to the Dirac point and also between inequiv-
alent Bragg points.
This article is organized as follows. In Sec. II, we dis-

cuss physical parameters, constraints, and regimes. In
Sec. III, we present methods for constructing the hon-
eycomb optical lattice. In Sec. IV, we propose steps
for preparing a BEC at a Dirac point that has ampli-
tude on only one of the sublattices. Section V describes
a process to coherently transfer atoms between sublat-
tices. In Sec. VI, we explain a procedure for coherently
transferring the BEC between inequivalent Dirac points,
the final step needed to control the amplitude of all four
components of the Dirac spinor. Section VII presents
vortex solutions of the NLDE including stability analy-
sis. In Sec. VIII, we explain how to excite NLDE vor-
tices by modifying the procedure described in Sec. V to
include co-propagating Gaussian and Laguerre-Gaussian
laser beams which transfer angular momentum to the
BEC. In Sec. IX, we conclude.

II. PHYSICAL PARAMETERS AND

CONSTRAINTS

Relativistic vortices are realized in the emergent non-
linear Dirac background, in the long wavelength limit of
a quasi-2D honeycomb lattice obtained by tightly con-
straining the system in one spatial dimension (the z-
direction). Thus, microscopically, the BEC obeys the
three-dimensional nonlinear Schrödinger equation, but
vibrational excitations in the z-direction are avoided.
The usual 3D BEC parameters are renormalized, once
for the dimensional reduction [10], and again after in-
tegrating over the lattice Wannier functions and go-
ing to long wavelengths. Consequently, NLDE physics
is only experimentally realizable in practice when sev-
eral energy and length constraints are satisfied. We list
these constraints in Table I along with their mathemat-
ical definitions. For our calculations, we use the semi-
classical estimate [11] of the hopping parameter th ≡
1.861 (V0/ER)

3/4
ER exp

(

−1.582
√

V0/ER

)

. It is help-

ful to consolidate the constraint inequalities to arrive at
expressions relating the temperature T and length scales
of the system, as, a, d, Lz, and R⊥:

1 .

(

8πas
d3

)3/2

L3
z <

25
√
2 π1/2(d3as)

1/2

3
√
3 a2

[

1 + πa/(4
√
2R⊥)

] , (1)

T < ~
2/kBML2

z , (2)

where d is the average inter-particle distance defined in
terms of the particle density d = n̄−1/3. All other quanti-
ties are defined in Table I. The temperature T in Eq. (2)
depends indirectly on the ratio V0/ER through n̄. We
can get an idea of how the particle density affects T by
evaluating the inequalities for different values of n̄ while
fixing V0/ER = 16. For example, n̄ = 1016m−3 gives
26.259µm . Lz < 86.934µm and T < 8.17 × 10−3 nK,

whereas for n̄ = 1020m−3 we find 0.187µm . Lz <
0.263µm and T < 162 nK. From this we see that a prac-
tical value for T requires that densities be considerably
larger than 1016m−3, a consequence of the additional
constraints in Eqs. (1)-(2). We next address the required
constraints in detail and explore the conditions under
which each is satisfied.

In order to obtain an effectively 2D system, the ver-
tical oscillator length must be much smaller than the
trap size along the direction of the plane of the conden-
sate. Hence, for an effectively 2D system the required
length constraint implies the condition Lz ≪ R⊥. Tak-
ing R⊥ ≈ 100 a (a typical condensate size), and using a
realistic value for the vertical oscillator length (Table I),
we obtain Lz = 5.36 a, which satisfies the constraint.
Moreover, we require a healing length close to or less
than the transverse oscillator length. With ξ = 1.10µm
and Lz = 1.50µm, we find that this condition holds. An-
other necessary condition for realizing the NLDE in the
laboratory is that the healing length (defined in the effec-
tive Dirac theory) must be much larger than the lattice
constant. The long-wavelength limit is thus defined by
ξDirac/a≫ 1, for which we find that ξDirac/a = 13.57.

The Landau criterion for the effective velocities in the
BEC is required in order to avoid the instabilities asso-
ciated with propagation faster than the sound speed in
the condensate. This condition demands that the effec-
tive speed of light is less than the 2D renormalized speed
of sound. Stated mathematically, the Landau criterion
requires that cl/cs,2D < 1. Using the definitions for the
effective speed of light and the sound speed consistent
with Table I, we compute cl/cs,2D = 0.90, which satisfies
the inequality.

The NLDE and RLSE are derived for a weakly in-
teracting Bose gas. This ensures both the stability of
the condensate as well as the effective nonlinear Dirac
mean field description. We then require the interaction
energy to be significantly less than the total energy of
the system. The energy constraints may be stated as
µ, kBT ≪ ~ωz. We can solve the NLDE for the lowest
excitation to obtain an expression for the chemical poten-
tial µ = ~clk + U |Ψ|2 [7]. Next, we evaluate this expres-
sion using the lowest excitation in a planar condensate
of radius R ≈ 100a, which has wavenumber k ≈ π/2R =
2.86 × 104m−1. The interaction U is computed using
the quasi-2D renormalized interaction in Table I for the
binary interaction g and massM pertaining to a conden-
sate of 87Rb atoms. Finally, for a uniform condensate we
take |Ψ|2 = 1 and the constraint on the chemical poten-
tial becomes µ = 2.36 nK < 22.17 nK, which is satisfied.
For the temperature, we require T ≪ ~ωz/kB. Using the
data in Table I for the vertical oscillator frequency, we ob-
tain the upper bound for the temperature T ≪ 22.17 nK.
This is a reasonable requirement given that BEC occurs
for T in tens or hundreds of nanoKelvins or as low as
picoKelvins.

For a condensate in the regime where the NLDE de-
scription is valid, we require that the linear approx-
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Parameter Symbol/Definition Constraint Value Range

(a) Temperature T ≪ ~ωz 2.5 nK ∼ 100 pK < T . 80 nK

(b) Chemical potential µ ≪ ~ωz 2.36 nK < 4.10 nK

(c) Transverse oscillator length Lz = (~/Mωz)
1/2 ≪ R⊥ 1.50µm < 3.0µm

(d) Healing length ξ = 1/
√
8πn̄as . Lz 1.10µm . 1.50µm

(e) Effective speed of light cl = tha
√
3/2~ < cs,2D 5.31 × 10−2 cm/s < 5.40 × 10−2 cm/s

(f) Dirac nonlinearity U = Lz g n̄
2 3

√
3 a2/8 ≪ th, µ 1.07 nK < 2.36 nK

(g) Quasi-particle momentum k = p/~ ≪
√
8/a 6.27 × 102 cm−1 6.27 × 102 cm−1 . k ≪ 5.66 × 104 cm−1

(h) Dirac healing length ξDirac = tha
√
3/2U ≫ a, ≪ R⊥ 3.80µm 0.50 µm ≪ ξDirac ≪ 50.0µm

(i) Lattice depth V0 ≫ ER 10.1µK 0.79 µK < V0 < 10.1µK

TABLE I: Physical parameters and constraints for the NLDE typical for a BEC of 87Rb atoms. (a,b) Relative energies for the
3D to quasi-2D dimensional reduction, with the vertical trap oscillator energy ~ωz. (c,d,h) Relative lengths for the 3D to quasi-
2D dimensional reduction. (e) Landau criterion imposed to avoid dynamical instabilities, where the quasi-2D speed of sound in

the continuum cs,2D ≡
√

3gn̄/2M = 5.90 × 10−2 cm/s. Note that the factor of
√

3/2 comes from integrating over the vertical
dimension. (f) The weakly interacting and superfluid (not Mott insulating) regime. (g) The linear Dirac cone approximation
which requires that quasi-particle momenta ~k remain small compared to the Dirac point momentum ~K. (h) Long-wavelength
limit, which sets the scale for the quasi-2D Dirac healing length. (i) The lowest-band and tight-binding approximation. For the
values in the table, we use the ratio of lattice depth to recoil energy V0/ER = 16, lattice constant a = 2λL/3 = 0.28µm, and
planar trap radius R⊥ = 100 a, average particle density n̄ = 5.86 × 1018 m−3, hopping energy th = 16.8 nK, and atomic mass
of 87Rb.

imation to the exact dispersion remain valid. As in
the case of graphene, large deviations from the Dirac
point induce second order curvature corrections to the
dispersion. Thus, we must quantify the parameter re-
strictions which allow for a quasi-relativistic interpre-
tation. To quantify this, we expand the exact dis-
persion near the Dirac point to obtain µ(k) = U ±
th

(

a
√
3k/2 + a2k2/8− a3

√
3k3/48 + ...

)

, where k is the
small momentum parameter which measures the devia-
tion away from the Dirac point. Notice that the first or-
der term gives the linear dispersion of the Dirac equation
while higher order corrections describe the bending of the
band structure as we move away from the Dirac point.
The second order term tells us that the NLDE description
is valid as long as ak/

√
8 ≪ 1, which determines a lower

bound on the wavelength for fluctuations of the conden-
sate away from the Dirac point: λmin ≫ (2π/

√
8)a. The

requirement of maintaining the linear dispersion then
places an additional constraint on the chemical poten-
tial, namely that |µ| ≪ U + 6th ≃ 101.9 nK. Using the
value for the chemical potential found earlier, we see that
µ = 2.36 nK ≪ 101.9 nK. Finally, since we are treating
the case of weak short range interactions at very low tem-
peratures, the lowest band approximation is sufficient to
describe the physics of the NLDE.

III. LATTICE CONSTRUCTION

The honeycomb optical lattice potential is straightfor-
ward to implement experimentally [12, 13] using light
tuned either to the blue or to the red of an atomic res-
onance. In both cases, the lattice is formed from three
linearly polarized laser beams with co-planar wavevectors

separated by an angle of 120◦, shown in Fig. 1(a). For
a honeycomb lattice formed with blue-detuned light, all
three beams have parallel polarizations orthogonal to the
plane of propagation. Conversely, the red-detuned lattice
has all three laser fields polarized parallel to the plane of
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FIG. 1: (color online) The honeycomb optical lattice. (a) A
honeycomb lattice potential can be produced by three co-
planar laser beams detuned to the red (blue) of an atomic
resonance with polarizations in the plane (orthogonal to the
plane). (b) The honeycomb lattice can be described by a
hexagonal Bravais lattice with a two-point basis yielding the
A and B sublattices. (c) The reciprocal lattice is shown. The
single-particle dispersion is linear in the vicinity of two non-
equivalent Dirac points at crystal momentum K and K′.



4

propagation. In the latter case, the polarizations make
an angle of 120◦ with respect to one another and the po-
larization of the net field is spatially dependent. Due to
this polarization gradient, the red-detuned optical lattice
potential is spin-dependent as described below.

Optical fields produce an ac Stark shift according

to V = − 1
2 E

(+)
i E

(−)
i αij where E(±) denote the posi-

tive/negative frequency components of the optical field
and αij is the dynamic polarizability tensor (which
is dependent on the optical frequency). For alkali
atoms, the potential can be written as the sum of
scalar and vector components V = − 1

2 αscE
(−) · E(+) −

1
2 αveci

(

E(−) ×E(+)
)

· F, where F is the total angular
momentum operator [14]. Here we assume that the de-
tuning of the laser beams from resonance is large in com-
parison to the hyperfine splitting in the excited state
manifolds and neglect a third (tensor) contribution that
only becomes significant near resonance. While the scalar
light shift is independent of the atom’s spin, the vec-
tor light shift produces a spin-dependent potential that
acts as a spatially dependent effective magnetic field, i.e.,
V (r) = Vsc(r) + mF gF µB Beff(r). Assuming that each
of the beams shown in Fig. 1 have equal amplitudes E0,
the potential they produce is given by

V (r) = −2Vsc {3 + 2 n̂1 · n̂2 cos[(k1 − k2) · r]
+2 n̂2 · n̂3 cos[(k2 − k3) · r]

+2 n̂1 · n̂3 cos[(k1 − k3) · r]}
−4Vvec {n̂1 × n̂2 sin[(k1 − k2) · r]

+n̂1 × n̂3 sin[(k1 − k3) · r]
+n̂2 × n̂3 sin[(k2 − k3) · r]} · F , (3)

where n̂i are unit vectors denoting the polarization of
each beam, Vsc = αscE

2
0/8, and Vvec = αvecE

2
0/8. In

Eq. (3) we have neglected to include relative phase differ-
ences between the beams which only act to translate the
lattice in two-dimensions without changing its topology.
Note that if the relative phases between the beams vary
slowly, the atoms will adiabatically follow the optical lat-
tice potential. The detuning from resonance controls the
strength of the vector light shift relative to that of the
scalar light shift.

The honeycomb lattice produced by the scalar light-
shift is described by a hexagonal Bravais lattice with a
two-point basis as shown in Fig. 1(b). In a red-detuned
spin-dependent lattice, the depths of the A and B sublat-
tices can be asymmetric, e.g., |F,mF 〉 = |2, 1〉 or |1, 1〉,
or symmetric, e.g., |F,mF 〉 = |1, 0〉, depending on the in-
ternal state of the atom. An A/B sublattice asymmetry
produces a mass gap at the Dirac points. For a red-
detuned lattice with polarizations in the plane, the mass
gap 2|ms| ≈ 7mFVvec separates the s-bands of the A and
B sublattices at the Dirac point. Figure 2 shows the opti-
cal potential produced for 87Rb atoms in different hyper-
fine states when the lattice is formed from λL = 422 nm
light red detuned from the 5S − 6P transition [13].

j1; 0i

j1; 1i

j2; 1i

FIG. 2: (color online) Spin-dependent honeycomb lattice

potential. Honeycomb potential for 87Rb atoms in state
|F,mF 〉 = |2, 1〉 for the case when the wavelength of the lat-
tice light λL = 422 nm.

IV. PREPARING A BEC AT A DIRAC POINT

Study of the NLDE will require that the BEC be pre-
pared at a Dirac point, i.e., K or K′ in Fig. 1(c). Several
experimental methods can potentially accomplish this:
first, loading a BEC into the lowest-energy Bloch state
and subsequently applying a constant acceleration for
a fixed duration; second, loading an initially stationary
BEC directly into a Bloch state at a Dirac point K by
adiabatically applying a moving lattice potential which
maintains a constant velocity ~K/M ; and third, load-
ing a BEC into the lowest-energy Bloch state and sub-
sequently populating a Dirac point by Bragg scattering
using auxiliary fields. The first two methods have po-
tential deficiencies. With regard to the first method, a
dynamical instability may exist for intermediate values
of the crystal momenta as it linearly increases from 0 to
K [15]. For the second method, the timescale required for
adiabaticity is divergent since there is no gap for crystal
momenta along the Brillouin zone boundary in the ab-
sence of a lattice potential. Hence, we consider here the
method of populating a Dirac point by inducing Bragg
scattering between crystal momenta 0 and K using aux-
iliary laser fields.

It is straightforward to populate the lowest-energy
Bloch state of a honeycomb lattice by adiabatically in-
creasing the lattice depth as demonstrated in Ref. [13]
where both the BEC and the lattice are stationary in the
lab frame. Here we will assume that the BEC is in a
hyperfine state with mF 6= 0 and a spin-dependent po-
tential is used. This is so that only the sublattice with
the lowest energy, assumed here to be the A sublattice,
becomes occupied [13]. Starting from this initial condi-
tion, Bragg scattering to a Bloch state at a Dirac point
can be accomplished by applying two laser fields with
wavevectors kb1 and kb2, which satisfy kb1 − kb2 = K

and have frequencies ωb1 and ωb2 with the condition that
ωb1 − ωb2 = ∆ω = [EA(K) − EA(0)]/~. In this expres-
sion, the function EA gives the dispersion relation for
the lower band of a honeycomb lattice with A/B sub-
lattice asymmetry, which corresponds approximately to
full occupation of the A sublattice. Hence, throughout
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FIG. 3: (color online) Bragg scattering in a spin-dependent

honeycomb lattice. Rabi frequencies for transitions between
ψA,0 and ψA,K when 87Rb atoms are in the mF = ±2 (solid
blue) and ±1 (dashed red) states. Here, we assume that
Vvec/Vsc = 0.13.

our analysis we will designate the lower band using the
subscript A. These fields produce a Stark shift potential

VBragg(r) =
1

2
VB [cos(K · r−∆ω t) + 1] , (4)

where VB sets the strength of the potential. This
potential couples the Bloch wavefunctions ψA,K(r) =
eiK·r uA,K(r) and ψA,0(r) = uA,0(r) where uA,K(r) and
uA,0(r) have the same periodicity as the lattice. Thus,
both functions can be written in the form

uA,K(r) =
∑

Q

CA,K
Q eiQ·r, (5)

where the sum over Q includes all vectors in the recipro-

cal lattice space. The coefficients CA,K
Q can be calculated

for a honeycomb lattice of arbitrary scalar and vector po-
tential depths, Vsc and Vvec respectively, by numerically
computing the band structure for the potential given in
Eq. (3) [11].
Application of the Bragg scattering potential then re-

sults in Rabi oscillation between ψA,0 and ψA,K with a
Rabi frequency ΩB given by

ΩB =
VB
2 ~

∑

Q

(CA,K
Q )∗ CA,0

Q . (6)

Figure 3 shows numerical calculations for |~ΩB| as a
function of the depth of the honeycomb lattice Vsc in
units of the depth of the Bragg scattering lattice VB . For
these calculations, we assume that Vvec/Vsc = 0.13 which
can be achieved with 87Rb using 422 nm light which is
red-detuned from the 5S - 6P transition. The entire pop-
ulation of atoms in state ψA,0 can be transferred to ψA,K

by applying the Bragg scattering potential for a time
τπ = π/ΩB provided that VB is chosen such that ~/τπ
is significantly smaller than the energy splitting between
bands.

A particularly useful feature of using a honeycomb lat-
tice potential with A/B sublattice asymmetry for prepa-
ration is that both the initial and final Bloch states (ψA,0

and ψA,K) have a group velocity relative to the lattice
equal to zero. If the lattice is stationary with respect
to the lab frame, the condensate will then also be sta-
tionary both before and after transfer to the Dirac point.
Note that the condensate would not remain stationary if
it were transferred to the Dirac point by Bragg scatter-
ing in a lattice with A/B sublattice symmetry (i.e. no
mass gap). In this case, the lower and upper s-bands are
degenerate at the Dirac point and the eigenstates can be
chosen from a two-dimensional subspace of degenerate
states spanned by two Bloch wavefunctions. Application
of the VBragg potential breaks this degeneracy and excites
the eigenstate which moves in the same direction as that
of the walking standing wave potential VBragg. This par-
ticular eigenstate has a group velocity magnitude equal
to cl in the frame of the lattice. The orthogonal eigen-
state has a group velocity with the same magnitude but
in the opposite direction and is not coupled by VBragg to
the Bloch state with zero crystal momentum.

Once the condensate has been prepared at a Dirac
point in a lattice with A/B sublattice asymmetry by
Bragg scattering, the atoms can be transferred to a hy-
perfine state that does not experience the vector light
shift and therefore no mass gap, e.g., |F,mF 〉 = |1, 1〉 →
|1, 0〉, using a radio-frequency (rf) or microwave (mw)
field. For a spatially homogeneous rf/mw field, the tran-
sition matrix element is proportional to the spatial over-
lap of the initial and final spatial wavefunctions which
are not orthogonal since they experience different lattice
potentials. A spatially homogeneous rf/mw field cannot
change the crystal momentum which is therefore con-
served in the transition.

In the absence of a vector light shift, the A and
B sublattices are symmetric and there is no mass
gap, yielding two degenerate Bloch states at the Dirac
point K. Two orthogonal basis states that span the
degenerate subspace of eigenstates can be chosen to
be states which have probability current density j ≡
−i ~

2M (Ψ∗∇Ψ −Ψ∇Ψ∗) = 0 but are respectively local-
ized on either the A or B sublattice sites. A state pre-
pared at the Dirac point of a lattice with a mass gap will
have significant spatial overlap with one of these basis
states and vanishing overlap with the orthogonal state.
For example, for parameters identical to those realized
in [13], i.e., Vsc = 4ER and Vvec/Vsc = 0.065, the mag-
nitude of the inner product between the initial and final
states for wavefunctions localized on the same sublat-
tice is |〈A,K,mF = 1| A,K,mF = 0〉| = 0.995 whereas
|〈A,K,mF = 1| B,K,mF = 0〉| = 0. Thus, by driving a
transition between internal states with a rf/mw field, a
condensate which remains stationary can be prepared at
the Dirac point of a honeycomb lattice with no mass gap.
The state produced will only have amplitude in sites of
the A sublattice. In the next section we discuss how the
condensate can be coherently transferred between A and
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B sublattices by modulating the lattice potential.

V. COHERENT TRANSFER BETWEEN

SUBLATTICES

As previously discussed, when mF 6= 0 the lattice has
an A/B sublattice asymmetry which produces a mass
gap 2 |ms| separating the s-bands of the A and B sub-
lattices at the Dirac point. Note that in the fully co-
variant NLDE, the mass gap will appear as a factor of
mscl multiplying the spinor wavefunction, where cl is the
effective speed of light. In such cases when mF 6= 0,
transitions between Bloch states ψA,K and ψB,K can be
driven by applying a periodic perturbation Hm(r) cosωst

where ~ωs = 2 |ms|, and Hm(r) is chosen to exclu-
sively couple pairs of Wannier states wA and wB local-
ized on adjacent A and B sites of a given unit cell, e.g.,

〈wA(r− rA)|Hm |wB(r− r′A − δ1)〉 = ~Ωm δrA,r′A
where

δ1 is the displacement between an A site and one of its
three neighboring B sites. A perturbation which only
couples pairs of Wannier states separated by one of the
nearest neighbor displacement vectors, e.g., δ1, conserves
the crystal momentum so that 〈ψA,K+q|Hm |ψB,K+q′〉 =
ei(K+q)·δ1 Ωm δq,q′ . A suitable perturbation Hm can
be experimentally realized by modulating the ampli-
tude of one of the lattice laser fields, which provides an
anisotropic modulation of the tunneling matrix elements
that discriminates tunneling in one direction, while si-
multaneously frequency modulating the other two fields,
which periodically shakes the lattice along the same di-
rection. Amplitude modulation of the field E1 and fre-
quency modulation of E2 and E3 in Fig. 1, for example,
yields a periodic perturbation with a spatial dependence
given by

Hm(r) = Vm

[

cos(k1 − k2) · r+ cos(k1 − k3) · r+
√
3
Vvec
Vsc

mF {sin(k1 − k2) · r+ sin(k1 − k3) · r} − κ δ̂1 · r
]

, (7)

where κ depends on the relative amplitudes of the pertur-
bations. The last term in the square brackets describes
shaking of the lattice along the δ1 direction while the
other terms act to anisotropically modulate the tunnel-
ing matrix elements between nearest neighbors with tun-
neling in the δ1 direction distinguished from the other
two.

The perturbations resulting from amplitude and fre-
quency modulation both anisotropically couple a Wan-
nier state wA to Wannier states wB localized on the three
neighboring sites, but discriminate tunneling in the δ1

direction with different relative strengths. By adjusting
the relative amplitude of the two perturbations, near-
est neighbors in the δ1 direction can be strongly coupled
with negligible coupling to neighboring sites in the other
two directions.

To coherently transfer a condensate between sublat-
tices when the condensate is initially in an internal state
with mF = 0, which does not experience an A/B sub-
lattice asymmetry, an rf/mw transition can be applied
to couple to an intermediate internal state with mF 6=
0 that does experience an A/B sublattice asymmetry.
Modulation of the lattice potential with the perturbation
Hm(r) cosωmt can then be applied to drive transitions
between the A and B sublattices as described above pro-
vided that ~ωm equals the mass gap for the condensate
with mF 6= 0. The atoms can be subsequently trans-
ferred back to the original internal state via an ensuing
rf/mw transition. A suitable transition sequence for 87Rb
atoms in a spin-dependent lattice is depicted in Fig. 4.
Assuming that the rf/mw field is homogeneous over the

j2; 1i
BA

j1; 0i

mw
1 mw

2

Hm

j i i j f i

j I
1
i

jI
2
i

FIG. 4: (color online) Coherent transfer between sublattices A

and B. Three step process of exciting atoms from the A sub-
lattice with hyperfine state |1, 0〉 (no sublattice asymmetry)
to the hyperfine state |2, 1〉 via the rf/mw transition mw1,
then from the A sublattice to the B sublattice via the pertur-
bation Hm, and finally back to the |1, 0〉 hyperfine state via
the mw2 transition (mw = microwave).

size of the sample, the crystal momentum is conserved in
this process though the sublattice index is changed.

VI. COHERENT TRANSFER BETWEEN

DIRAC POINTS BY BRAGG SCATTERING

Once a BEC has been prepared at a Dirac point K,
coherent transfer to the non-equivalent Dirac point K′

can be accomplished by Bragg scattering from a lattice
formed using auxiliary laser fields [16]. In this case, the
two additional laser fields have wavevectors kb1 and kb2

where kb1 − kb2 = K′ −K = −kL ŷ in the frame of the
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lattice. The lattice produced by these fields couples a
BEC at crystal momentum K = kL

(√
3 x̂/2 + ŷ/2

)

to a

BEC with crystal momentum K′ = kL
(√

3 x̂/2− ŷ/2
)

by Bragg scattering. Since the energies of the two cou-
pled Dirac points are identical, resonance occurs when
the optical frequencies of the auxiliary fields are equal
and the standing wave they form is stationary in the
frame of the honeycomb lattice.
In the frame of the lattice, the applied potential

VBragg(r) = (1/2)VB [cos(K−K′) · r+ 1]. This poten-
tial couples the degenerate Bloch wavefunctions ψK(r)
and ψK′(r). The matrix element coupling ψK and ψK′ is
then given by

Ωα,β
B =

VB
2 ~

∑

Q

(

Cα,K′

Q

)∗

Cβ,K
Q , (8)

where the coefficients Cα,K
Q are identical to those defined

in Sect. IV where the index α designates the sublattice on
which the condensate is localized. These coefficients can
be found by numerically computing the band structure
for the potential given in Eq. (3) [11]. In this case of a
condensate in an internal state with mF = 0 which does
not have a gap at the Dirac points, there are four degen-
erate Bloch wavefunctions corresponding to the two pos-
sible inequivalent Dirac points (K and K′) and the two
possible sublattices (A and B). In the tight-binding limit,
i.e. Vsc ≫ ER, the Bragg scattering lattice only couples
Bloch states at the non-equivalent Dirac points that are
localized on the same sublattice. In this limit, appli-
cation of the Bragg scattering lattice will induce Rabi
oscillations with frequency Ωα,α

B between condensates lo-
calized on the same sublattice but at the non-equivalent
Dirac points. For shallower depths of the honeycomb
lattice, all four degenerate Bloch states will be coupled
and the dynamics will be more complicated. However,
even for a moderate lattice depth Vsc = 4ER, the cou-
pling between different sublattices is small enough that
the dynamics are nearly identical to those of two coupled
Bloch states. Starting from a BEC initially prepared at
a single Dirac point K, application of the Bragg scatter-
ing potential will cause the amplitude to Rabi oscillate
between ψK and ψK′ with a Rabi oscillation frequency
ΩBragg = 2 |〈K′ |VBragg|K〉|. The pulse duration of the
auxiliary fields can be controlled to produce an arbitrary
superposition of BECs at K and K′ – with a π/2-pulse
τπ/2 = (π/2)/ΩBragg producing an equal superposition.
This process is depicted in Fig. 5, where we have plotted
the Rabi frequency versus the depth of the scalar part of
the optical lattice potential.

VII. VORTEX SOLUTIONS AND LINEAR

STABILITY ANALYSIS

We analytically and numerically obtain seven physi-
cally distinct NLDE vortex types as follows. (i) The
vortex/soliton is a bright soliton or density peak in the
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FIG. 5: (color online) Bragg scattering between Dirac points.

Rabi frequency for transitions between non-equivalent Dirac
points for cases where the sub-lattice index remains the same
(solid blue) or changes (dashed red) as functions of the depth
of the scalar part Vsc of the optical lattice potential. (Inset)
Time dependence of the sublattice populations at the Dirac
points K and K′ for an optical lattice depth of Vsc = 4ER.

center in the first component with a vortex of phase
winding 2π around the outside in the second. (ii) The
ring-vortex/soliton is also a bright soliton in the first
component, but the vortex component is a ring peaked
near the healing length r = ξDirac. (iii) The Anderson-
Toulouse skyrmion has the same core structure as the
vortex/soliton, but the spinor components are contin-
uously interchanged as the distance from the core in-
creases, while staying within the bounds |ψA|, |ψB| ∈
(0, 1) and conserving total density |ψA|2 + |ψB|2 = 1.
(iv) The Mermin-Ho skyrmion again has similar behavior
near the core but the soliton (vortex) amplitude decreases
(increases) monotonically away from the core within the
bounds cos(π/4) < ψA < 1 and 0 < ψB < cos(π/4). (v)
The half-quantum vortex or semion is characterized by a
phase discontinuity such that far from the core the ampli-
tudes have the form ψA ∝ cos(θ/2) and ψB ∝ sin(θ/2);
the additional π phase is accounted for by a rotation be-
tween the Dirac spinor components. So far, all of these
solutions have one unit of angular momentum, ℓ = 1, ei-
ther a phase winding of 2π in one component or a winding
of π in each component. Additionally, for arbitrary phase
winding (ℓ > 1 with ℓ ∈ N) (vi) ring-vortices and (vii)
topological vortices exist with ℓ − 1 (ℓ) units of wind-
ing in the first (second) spinor component, but differ in
their asymptotic form. Component amplitudes for the
ring-vortex peak at around one healing length from the
core and quickly decay for large r. On the other hand,
topological vortices retain non-zero density far from the
core. Several representative vortices are plotted in Fig. 6.
In addition, Table II details the functional form of each
vortex type. We note the similarities to realizations of
skyrmions in a spin-2 BEC [17]. All of the vortices here
can be created using straightforward variations of the
transition sequence depicted in Fig. 4, as we discuss in
detail in Sec. VIII.
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Vortex type Winding Analytic form of Ψ(r) Topology

Vortex/soliton ℓ = 1

[

i 1√
1+ (r/r0)2

, eiθ (r/r0)√
1+ (r/r0)2

]T

|ψA(∞)| = 1

Ring-vortex/soliton ℓ = 1

[

i 1√
1+ (r/r0)4

, eiθ (r/r0)√
1+ (r/r0)4

]T

non-topological

Anderson-Toulouse skyrmion ℓ = 1
[

i cosϕ(r/r0), e
iθsinϕ(r/r0)

]T
ϕ(∞) = 0

Mermin-Ho skyrmion ℓ = 1
[

i cosϕ(r/r0), e
iθsinϕ(r/r0)

]T
ϕ(∞) = π/4

Half-quantum vortex ℓ = 1 [icos θ/2, sin θ/2]T |Ψ(∞)| = 1

Ring-vortex ℓ = 2, 3, 4, ...

[

iei(ℓ−1)θ (r/r0)
ℓ−1√

1+ (r/r0)
8(ℓ−1/2)

, eiℓθ (r/r0)
3ℓ−2√

1+ (r/r0)
8(ℓ−1/2)

]T

non-topological

General topological vortex ℓ = 2, 3, 4, ... Numerical shooting method |ψA(∞)| = 1

TABLE II: Vortex solutions of the NLDE. Solutions are described by their phase winding, closed-form expression, and topological
properties. Solutions which retain non-zero density far from the core have an associated conserved topological charge, and we
state their asymptotic form. Note that r0 is the length scale associated with the chemical potential or the interaction strength
depending on the particular solution.

x/ξDiracx/ξDirac

y
/
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ir
a
c

y
/
ξ D

ir
a
c

|Ψ|2 arg(Ψ)/π(a) (b)
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y
/
ξ D

ir
a
c

y
/
ξ D

ir
a
c

|ψB |2 arg(ψB)/π

(c) (d)

(g) (h)

(e) (f)

FIG. 6: (color online) Plots of relativistic vortices. Total den-
sity and phase of (a,b) ℓ = 2 ring-vortex, (c,d) B sublat-
tice of Mermin-Ho skyrmion, (e,f) ring-vortex/soliton, (g,h)
half-quantum vortex, or semion. All these vortices and more
can be made by variations on the experimental techniques of
Figs. 3-4.

We elaborate here on the methods used to obtain vor-
tex solutions of the NLDE. The NLDE treats the en-
tire Dirac four-spinor. In its simplest realization with-
out mass gaps and in tight binding the upper two com-
ponents, called a Weyl spinor, are decoupled from the
lower two, and can be written Ψ = (ψA, ψB)

T . We ob-
tain vortex solutions by expressing the spinor compo-
nents in the form: ψA(r, θ, t) = ±i fA(r)ei(ℓ−1)θ e−iµt/~,
ψB(r, θ, t) = fB(r)e

iℓθ e−iµt/~, and writing the NLDE in
plane-polar coordinates:

−~cl

(

∂r +
ℓ

r

)

fB(r) + U |fA(r)|2fA(r) = µfA(r) (9)

~cl

(

∂r +
1−ℓ
r

)

fA(r) + U |fB(r)|2fB(r) = µfB(r), (10)

where ℓ is the integer phase winding and the other pa-
rameters are defined in Table I. For the case µ = 0,
Eqs. (9)-(10) give closed form expressions for the radial
amplitudes fA and fB. These are the ring-vortex/soliton
(ℓ = 1) and general ring-vortex (ℓ > 1) solutions. For the
case µ 6= 0, closed form solutions exist in some cases while
others are obtained using a numerical shooting method
(see Table II).
Numerical solutions for general values of the chemi-

cal potential µ and arbitrary winding ℓ were obtained
by the method of numerical shooting [18]. We express
Eqs. (9)-(10) in terms of the dimensionless radial vari-
able χ ≡ r/ξDirac, where ξDirac = ~cl/U is the quasi-two-
dimensional renormalized healing length discussed in Ta-
ble I. The functions fA(χ) and fB(χ) are then expanded
in a power series around χ = 0

fA(χ) =

∞
∑

j=0

ajχ
j , fB(χ) =

∞
∑

j=0

bjχ
j , (11)

where the aj and bj are the expansion coefficients. Since
we are solving two coupled first order equations, we re-
quire the initial conditions fA(0) and fB(0). Substituting
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into Eqs. (9)-(10) gives us the core behavior:

fA(0) ∼ χℓ−1 , fB(0) ∼ χℓ . (12)

These core values indicate that the first nonzero coeffi-
cients for a given choice of ℓ are aℓ−1 and bℓ, where aℓ−1

is sufficient to determine all other coefficients for both
expansions in Eq. (11). Equations (9)-(10) are then dis-
cretized using either a finite difference or fourth-order
Runge-Kutta method for the derivatives. For a given ℓ
value, a vortex is found by tuning aℓ−1 towards a critical
value avortexℓ−1 . For instance, for the three lowest rotational
values (nonzero rotation in both spinor components), we
found

avortex1 = 0.571718... , ℓ = 2 , (13)

avortex2 = 0.145291... , ℓ = 3 , (14)

avortex3 = 0.0240267... , ℓ = 4 . (15)

Figure 7 displays the shooting process for radial profiles
in the case ℓ = 2. We have used the same shooting
method to obtain the ring-vortex solutions (µ = 0 with
asymptotically vanishing tails), in addition to the exact
algebraic closed forms in Table II.

!" # $"
!$

"

$

%

(b) r/ξDirac

Ψ

!" # $"
!$

"

$

%

(a) r/ξDirac

Ψ

(a) (b)

ψB

ψA

ψA

ψB

r/ξDiracr/ξDirac

FIG. 7: (color online) Vortex radial profiles. Numerical shoot-
ing for ℓ = 2 vortex. (a) For a1 > avortex1 , the solution over-
shoots to an excited state of the vortex. (b) For a1 < avortex1 ,
the solution undershoots and converges to the linear solution
Bessel functions. Note that the solid oscillating and dashed
oscillating plots are the A and B sublattice radial wavefunc-
tions, respectively. The solid flat and dashed flat plots are
the exact solutions for the A and B sublattice radial wave-
functions, respectively.

To compute vortex lifetimes requires a framework anal-
ogous to the Bogoliubov-de Gennes system but tailored
to the particular structure of the NLDE. The RLSE
provide this framework forming a relativistic generaliza-
tion of the Bogoliubov-de Gennes equations analogous
to the relationship between the NLDE and nonlinear
Schrödinger equation. Thus, in the RLSE the quasi-
particle amplitudes u and v are each vector in form, to
match the four-spinor (two-spinor at one Dirac point)
they perturb from. The RLSE can be expressed in 2× 2
matrix-vector form:

D̃uk − UΨ̃vk = Ẽkuk, (16)

D̃
∗vk − UΨ̃uk = −Ẽkvk , (17)

where D̃ and Ψ̃ are 2 × 2 matrices which contain the
first-order derivatives (∂x + i∂y) and the background

BEC components ψA, ψB, and Ẽk is the 2 × 2 eigen-
value matrix. Note that U is the particle interaction.
When broken down, Eqs. (16)-(17) form a 4 × 4 eigen-
value problem in the quasi-particle amplitudes uk,A(B)

and vk,A(B) (with momentum k) associated with particle
and hole excitations of the A(B)-sublattices at a Dirac
point. Vortices possess cylindrical symmetry so we ex-
press Eqs. (16)-(17) in plane-polar coordinates, factor the
quasi-particle amplitudes into radial and angular parts,
then substitute in the particular solution for ψA(B). We
then obtain a set of first-order coupled ODE’s in the ra-
dial coordinate to be solved consistently for the functions
uA(B)(r), vA(B)(r) and the associated eigenvalues. We
discretize the derivatives and functions using a forward-
backward average finite-difference scheme, then solve the
resulting discrete matrix eigenvalue problem using a stan-
dard numerical diagonalization method.

To compute vortex lifetimes, we solve the RLSE to
obtain the quasi-particle spatial functions and eigenval-
ues. In general, for vortex solutions of the NLDE certain
eigenvalues and eigenmodes key to understanding the
physical motion correspond to Nambu-Goldstone modes,
i.e., anomalous with a small imaginary component [19].
When thermal losses are small, it is the imaginary part
of the linear eigenvalues which depletes the BEC. We
define the vortex lifetime by computing the time for de-
pletion to reach a significant fraction of the total fixed
number of atoms in the system, and consider only de-
pletion coming from the mode with the largest imagi-
nary term in its eigenvalue. The lifetime is then given
by τ = [~/Im(E)] ln (R⊥/I), expressed in terms of the
largest linear eigenvalue E and the planar radius of the
BEC R⊥, in units of the lattice constant a (see Ta-
ble I). Note also that the spatial integral I here is specific
to each vortex type and involves overlaps of the quasi-
particle and condensate spatial functions. For the exper-
imental parameters of Table I, we find the longest lived
solutions to be the vortex/soliton and Anderson-Toulouse
vortex with τ = 11.51 s, compared to the typical lifetime
of a 87Rb condensate in an optical lattice of less than a
second [20].

For most of vortex types (i)-(vii), we find lifetimes
τ to be long compared to the lifetime of the BEC it-
self. In particular, we obtain the following values for τ :
9.13 s, 10.43 s, 11.51 s, 1.57×10−7 s, 1.57×10−7 s, 1.25 s,
1.29×10−5 s; for the vortex/soliton, ring-vortex/soliton,
Anderson-Toulouse, Mermin-Ho, half-quantum, ℓ = 2
ring-vortex, and ℓ = 2 topological vortex, respectively.

In order to have a clear comparative prediction for
energies involved in creating our vortices, we solve the
NLDE using a numerical shooting method in the presence
of a weak harmonic trap of frequency ω⊥ = 2π×0.0387Hz
along the direction of the lattice. This is the frequency
associated with a planar BEC radius equal to 100 times
the lattice constant. In this case vortices come in ra-
dially quantized states. For simplicity, we focus mainly
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on the lowest radial excitation. Using a generalization
of the method in [18], we have obtained the dimension-
less (renormalized) chemical potential µ̃ ≡ µ/~ω⊥ as a

function of the normalization N =
√
3 ~ω⊥NU/3t

2
h for

each vortex type, as shown in Fig. 8. Here, N is the
number of atoms in the system with the other quantities
defined in Table I. Note that ring-vortices are minimally
affected by the presence of a weak trap, since they are
highly localized objects and lie very near the center of
the trap.
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FIG. 8: (color online) Spectra for relativistic vortices con-

fined in a harmonic potential.(a) Vortex/soliton, Anderson-
Toulouse skyrmion, Mermin-Ho skyrmion, and half-quantum
vortex (ordered from bottom to top). (b) Topological vor-
tices for ℓ = 2, 3, 4 (ordered from bottom to top). (c) Radial
ground state and first two excited states of the vortex with-
out skyrmion symmetry (ordered from bottom to top). In
each figure, the renormalized chemical potential is plotted as
a function of the normalization. There are two regimes char-
acterized by power laws: µ̃ ∝ Nα. The weakly interacting
free-particle regime occurs for small N , whereas the strongly
interacting vortex regime is in the region of large N . Note
that the vertical and horizontal axes labels are dimensionless.

VIII. EXPERIMENTAL REALIZATION OF

VORTICES

In this section, we discuss how relativistic vortex so-
lutions of the NLDE can be excited by modifying the
technique for coherent sublattice transfer described in
Sec. V. Starting from a condensate at the Dirac point
with mF = 0, and non-zero amplitude in sublattice A
only, a vortex excitation can be created by replacing the
second microwave transition shown in Fig. 4 with a two-
photon Raman transition with one of the photons car-
rying a single unit of orbital angular momentum. The
two-photon Raman transition drives Rabi oscillations be-
tween two hyperfine states in the electronic ground state
of an atom by coupling through intermediate states which
are optically excited electronic states. The transition ma-
trix element between hyperfine states is proportional to
the product of the two field amplitudes which drive the
two-photon transition. To excite a vortex, the two opti-
cal fields are provided by co-propagating Gaussian and
Laguerre-Gaussian laser beams which have a frequency
difference corresponding to the energy splitting between
the initial and final states but are both far-detuned from

the intermediate states to reduce spontaneous emission.
The Laguerre-Gaussian beam carries a single unit of
orbital angular momentum which is transferred to the
atoms in the stimulated Raman transition [21]. The elec-
tric field amplitude of a Laguerre-Gaussian laser beam
with radial mode index p = 0 and charge index ℓ = 1 is
proportional to

Ep=0,ℓ=1
LG (r, θ) ∝ r exp

(

− r2

w2
0

)

exp(iθ) , (18)

where r and θ are respectively the radial and azimuthal
coordinates relative to the optical axis and w0 is the beam
waist. The field of the Gaussian laser beam EG(r, θ) ∝
exp

(

−r2/w2
0

)

. Thus, the effective Rabi frequency for the

two photon transition Ω2γ ∝ 〈f |EG(r)E
p=0,ℓ=1
LG (r) |I2〉

where |I2〉 and |f〉 are respectively the intermediate and
final state spatial wavefunctions of the condensate de-
picted in Fig. 4. Due to the azimuthal phase winding

exp(iθ) of the LG field Ep=0,ℓ=1
LG , the Raman fields pro-

vide the appropriate spatial dependence to drive a transi-
tion to a final state |f〉 which has a single unit of angular
momentum starting from the intermediate state |I2〉 with
no orbital angular momentum.
Starting from a condensate at the Dirac point K with

amplitude only in the A sublattice sites, i.e., the Bloch
state ψA,K, the procedure described above would couple
to a vortex/soliton solution of the NLDE which has a vor-
tex in the B sublattice and a soliton, with no angular mo-
mentum, in the A sublattice. This solution of the NLDE
in the continuum limit can be written as a Weyl spinor
of the form Ψf = (ψA, ψB) = [ifA(r), fB(r) exp(iθ)] (see
Ref. [7]). The initial wavefunction of the condensate at
the Dirac point ψA,K is described by the Weyl spinor
Ψi = (ψA, ψB) = (1, 0). In the transition sequence de-
picted in Fig. 4, the condensate initially in the state
|i〉 = ψmF=0

A,K is transferred via a mw field to an intermedi-
ate state with mF = 1 at the Dirac point of the A sublat-
tice (i.e. |I1〉 = ψmF=1

A,K ), subsequently transferred to the

B sublattice (i.e. |I2〉 = ψmF=1
B,K ) by modulation of the

lattice potential through application of Hm cosωmt, and
ultimately transferred by the two-photon Raman tran-
sition to the final state |f〉 which is the vortex/soliton
state in the internal state with mF = 0. If we assume
that w0, ξ ≫ a and take the tight binding and continuum
limits, the effective Rabi Raman frequency

Ω2γ ∝ 〈I2|EG(r)E
p=0,ℓ=1
LG (r) |f〉 (19)

∝ EG,0 ELG,0

∫

fB(r) r
2 e−2r2/w2

0 dr.

The radial dependence of the vortex in the B sublat-
tice fB(r) was calculated in our previous work [22]. The
radial integral is positive definite and for w0 ∼ ξ will
give a non-zero Rabi frequency with an absolute value
determined by the amplitudes of the fields driving the
two-photon Raman transition and the dipole transition
matrix elements for the 5S-5P electronic transitions in
87Rb.
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In order to apply our discussion to specific vortex
types, we first consider the excitation of a relativistic vor-
tex starting with all the atoms in the A sublattice at the
Dirac point. We then apply the co-propagating Gaus-
sian and Laguerre-Gaussian laser beams, as explained.
The spatial variation of the beam results in mainly the B
sublattice being populated (the vortex) throughout most
of the 2D lattice, except within a small disk which be-
comes the core of the vortex. On the other hand, the
A sublattice is left depleted everywhere except near the
core of the vortex (the soliton). This describes excitation
of the vortex/soliton or Anderson-Toulouse skyrmion [7].
The Mermin-Ho vortex can be obtained by the same pro-
cess, but by only partially transferring atoms to the B
sublattice. The sublattice amplitudes far from the vor-
tex core are tuned to satisfy |ψB|2 = |ψA|2 < 1, where
|ψA(B)|2 is the density of the BEC in the first (sec-
ond) four-spinor component in the NLDE, and vA(B) =
(~/M)∇φA(B) is the associated relativistic fluid velocity,
with φA(B) = Arg(ψA(B)) the phase. The half-quantum
vortex or semion can be excited by using a fractional
optical vortex beam in order to provide the required an-
gular phase jump [23, 24]. General topological vortices
have phase winding ℓ > 1, non-zero chemical potential
µ, and satisfy |ψA|, |ψB| 6= 0 far from the center of the
trap. General topological vortex excitations may be in-
duced by subsequent applications of a two-photon tran-
sition with co-propagating Laguerre-Gaussian/Gaussian
beams which transfer the condensate between m = 0
states (i.e. from F = 1, m = 0 to F = 2, m = 0 or vice
versa). Each two-photon transition changes the orbital
angular momentum of both the A and B sublattices by
the orbital angular momentum carried by the Laguerre-
Gaussian beams, while maintaining the desired winding

differential between the A and B sublattices. Finally,
ring-vortices, characterized by µ = 0 and |ψA|, |ψB| = 0
far from the center of the trap, can be obtained from the
other vortices by inducing depletion of the BEC from the
outer edge of the trap towards the core. More details re-
garding solutions of the NLDE may be found in Ref. [7].

IX. CONCLUSION

In conclusion, we have described in detail a method
for constructing a stable BEC at the Dirac points of a
honeycomb optical lattice. Our system allows for rela-
tivistic vortex excitations in a macroscopic Dirac spinor
wavefunction, providing a means of studying high energy
field theoretic vortices in a condensed matter setting. We
have completely specified the required physical parame-
ters, lifetimes, and spectra for harmonically bound vor-
tices as a prescription guide for the experimentalist. Vari-
ations on the NLDE have tremendous potential for a host
of relativistic simulations in BECs. Interesting examples
include Soler models [25] and the extended Gross-Neveu
model [26]. Our work puts such efforts on a solid exper-
imental footing.
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FIG. 9: (color online) Convergence of ℓ = 2 topological vortex

radial profiles. (a)-(c) The explicit radial profiles for U =
1, µ = 4, 7, 10 and grid size N = 106. The monotonically
increasing curve is the harmonic potential. The scale for the
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Eq. (20). Note that the curves are a guide to the eye with
data points representing actual data.

Vaziri, K. Helmerson, and W. D. Phillips, Phys. Rev.
Lett. 97, 170406 (2006).

[22] L. H. Haddad, K. M. O’Hara, and L. D. Carr,
arXiv:1210.2114 (2012).

[23] J. Leach, E. Yao, and M. J. Padgett, New J. Phys. 6, 71
(2004).

[24] I. V. Basistiy, V. A. Pasko, V. V. Slyusar, M. S. Soskin,
and M. V. Vasnetsov, J. Opt. A: Pure Appl. Opt. 6, S166
(2004).
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APPENDIX A: Convergence of solutions used to

compute spectra for radially confined vortices

To show convergence of the radial ground state of the
ℓ = 2 vortex in a harmonic trap, we focus on three of the
solutions which make up the black curve in Fig. 8(b). The
radial profiles of these solutions, ψA and ψB , are shown
in Figs. 9(a)-(c) and correspond to the chemical poten-
tials µ = 4, µ = 7, and µ = 10 interpolating between the
free-particle and strongly nonlinear limits, respectively.
These solutions were obtained by finite differencing us-
ing a shooting method to tune the precision of the initial
value of ψA such that ψA ≪ 1 to pick out the ground
state. For convergence at a single radial point, we com-
pute the value of the solution at the dimensionless radius
χi ≡ ri/ξDirac = 10 for several values of the grid size
N = 102, 103, 104, 105, 106. We use the error formula
which depends on the dimensionless radius and number
of grid points

εA(B)(χi,N) ≡
[

ψ(χi)
N+1
A(B) − ψ(χi)

N
A(B)

ψ(χi)
N+1
A(B) + ψ(χi)NA(B)

]

, (20)

where in the symbol ψ(χi)
N
A(B) the subscript A(B) de-

notes the sublattice excitation, χi denotes the ith ele-
ment in the discretized dimensionless radial coordinate,
and the superscript N denotes the number of grid points
used in the calculation. In Figs. 9(d)-(f), we have plot-
ted log10

∣

∣εA(B)(10,N)
∣

∣ versus log10N, for the solutions
shown in Figs. 9(a)-(c).


