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Abstract

Wave function microscopy images for Stark resonance states of H atoms are simulated using

the quantum-mechanical formalism developed previously. Spatial distributions of ejected electron

current densities are compared with experiment, and a good agreement is shown. The nonzero

values of minima in the experimentally observed electron current distributions are reproduced

by convoluting the theoretical current distribution with an instrumental function representing

uncertainties in the position. Our relative strengths of the ejected electron current densities differ

from those calculated with the wave packet propagation technique. We show that for the full

convergence of the calculation, the distance between the ionized atom and the detector should

exceed 10 µm.
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I. INTRODUCTION

Since it was shown that photoionization of atoms in the presence of static electric fields

leads to a spatial interference [1] and that the corresponding wave function can be ob-

served on a macroscopic scale [2], a great deal of theoretical and experimental progress has

been made on the wave function microscopy. Ejected photoelectron current densities, pro-

duced in photoionization of neutral atoms and photodetachment of negative ions in electric

fields can be calculated within the framework of semiclassical theory [1–3]. The first ex-

perimental implementation of photodetachment microscopy was accomplished by Blondel et

al. [4]. The photoelectron currents in detachment of negative ions Br− were recorded on

a position-sensitive detector placed in the plane perpendicular to the applied electric field.

The subsequent photoionization microscopy experiment for neutral atoms Xe was performed

by Nicole et al. [5], and a detailed semiclassical analysis of the Xe experimental results was

presented [6].

The semiclassical analysis used in Ref. [6] is incomplete, because it does not incorporate

Maslov indices, does not treat tunneling through classically forbidden regions, and does not

correct singularities that arise in semiclassical approximations. A semiclassical open-orbit

theory (OOT) [7], which incorporates all the effects mentioned above, was presented to

describe the dynamics of electron wave propagation in the combined Coulomb and electric

fields. The OOT, based on an assumption that the electron wave propagates along classical

trajectories, provides a clear and intuitive physical picture for interpretation of structures

of observed geometrical interference patterns in photoionization. The reliability of the OOT

was confirmed by a fully quantum-mechanical formalism for H atoms in a Stark field [8].

The role of Stark resonances in the interference patterns was studied in the photoioniza-

tion microscopy experiment [9]. A number of Stark resonances were discerned for Xe atoms.

However, many observed resonances were not assigned because of the limitation of semi-

classical theory for Stark H atoms used in that paper. Obviously, it is necessary to develop

theoretical methods for multielectronic atoms in an external electric field. The pioneering

theoretical work in photoionization microscopy for multielectronic atoms was performed by

Robicheaux and Shaw [10], based on Harmin’s semiclassical theory [11]. Their approach has

been applied to explanation of the experiment for Stark Xe atoms [12], and an extensive

theoretical investigation for Xe was also reported by Texier [13]. Zhao et al [14] developed a
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fully quantum-mechanical coupled-channel theory to simulate spatial distributions of elec-

tron current densities produced in photoionization for nonhydrogenic atoms in an electric

field.

A recent experimental development of photoionization microscopy makes it possible to

visualize electron standing waves tunneling through a potential barrier formed by the super-

position of the atomic Coulomb field and the uniform external field. The first observations

of resonance tunneling have been implemented for Li atoms by Cohen et al. [15] and for H

atoms by Stodolna et al. [16]. The wave function images recorded on a two-dimensional de-

tector clearly display signatures of quasibound electronic states. Their experimental results

confirm the theoretical prediction of resonance tunneling made by Zhao and Delos [7, 8].

However, the quasibound resonance states observed in the experiment for H and Li atoms

were found to be only in qualitative agreement with those calculated using the wave packet

propagation technique. In particular, the nonzero values of the current density at minima

observed in the experiment were not reproduced either for H or for Li atoms. The exist-

ing discrepancies between experiment and theory stimulated us to perform investigations of

wave function microscopy on Stark resonances. The results of these studies for H atoms are

presented in the present paper.

II. THEORETICAL OUTLINE

The quantum-mechanical formalism used in this study has been presented in Ref. [8],

where theoretical derivation for the outgoing electron wave function and details of numerical

integrations of the Schrödinger equations can be found. Here we give only key outlines and

list the main formulas related to calculations of electron current densities.

The formalism was developed to simulate spatial distributions of electron current den-

sities, generated in photoionization of H atoms in an external electric field. In the mixed

parabolic and semiparabolic coordinates ξ =
√
r + z, η = r − z, and φ = tan−1(y/x),

we solve the homogeneous Schrödinger equations for bound and continuum states, while the

outgoing electron wave functions, incorporating the atom-radiation field interaction, is given

by the solution of the inhomogeneous Schrödinger equation which is constructed in terms

of the solutions of the homogeneous Schrödinger equations. The outgoing-wave solution is
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written as [8]

Ψout(r) =

∫

G+(r, r′)DΨini(r
′)dr′, (1)

where D denotes the dipole operator, Ψini(r
′) represents the wave function for the ini-

tial bound state of the atomic system, and G+(r, r′) is the Green’s function satisfying the

outgoing-wave boundary condition, given by

G+(r, r′) = −iπ
2

∑

βm

[ψǫβm(r
′)]

∗
Ξβ(ξ)

v+β (η)√
η

Φm(φ), (2)

where Ξβ(ξ) and Φm(φ) represent the wave function of Stark H atoms in the ξ and φ

coordinate, v+β (η) denotes the outgoing wave function in the η coordinate, and ψǫβm(r
′) is

the three-dimensional orthonormalized wave function,

ψǫβm(ξ
′, η′, φ) = Ξβ(ξ

′)
vregβ (η′)
√
η

Φm(φ
′), (3)

where vregβ (η′) is the regular solution of the Schrödinger equations in the η coordinate. The

dimensionless ratio of the electron current density to the photon current density in cylindrical

coordinates (ρ, z, φ) is given by [17]

R(ρ, zdet, φ) =
2πω

c
Im

[

Ψ∗
out(r)

dΨout(r)

dz

]

z=zdet

, (4)

where ω is the photon frequency, c is the speed of light, and the zdet represents the distance

from the origin to the detector. This is in fact the differential cross section, but per unit

area, rather than per unit solid angle. This ratio can be integrated over the azimuthal angle

φ, and it is convenient to represent the result as a differential cross section per unit length

in the ρ variable
dσ (ρ, zdet)

dρ
=

∫

2π

0

R(ρ, zdet, φ)ρdφ. (5)

In case this does not cause a confusion, R = ρR will also be called the electron current

density.

III. RESULTS AND DISCUSSION

According to the experimental conditions of Ref. [16], the present calculations assume

that ground-state H atoms in an electric field with strength 808 V/cm are resonantly excited

to a mixture state of 2s and 2p by a two-photon transition, and then ionized into states near
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ionization threshold by tunable laser pulses. The polarization of the laser is along the applied

electric field. Such a polarization leads to the m = 0 final ionization states.

Spatial distributions of ejected electron currents were simulated for photoionization into

resonance states of H atoms in a Stark field from the initial state Ψini(r) = c1ψ2p1/2(r) +

c2ψ2s1/2(r), where ψ2p1/2(r) and ψ2s1/2(r) denote wave functions for field-free H atoms in

the jj representation, and c1 and c2 are field-dependent mixing coefficients determined from

the corresponding secular equation. Generally, the ψ2p3/2 state should be added too, but

for the relatively weak field considered in the present paper, F = 808 V/cm, the coupling

with the j = 3/2 state is so weak that it is negligible. Moreover, our calculations show

that the spatial distribution of photoelectron currents is insensitive to the mixing coefficient,

apparently because of the dominance of one resonance term in the sum of Eq. (2). Therefore

changing the initial state in Eq. (1) leads only to the change of the absolute value of the wave

function Ψout(r), but does not change shape of the distribution. The detector is assumed to

be located under the source of H atoms at the distance −1000 µm. This distance is large

enough to guarantee convergence of the radial distribution shapes of the ejected electron

currents.

The photoelectron images for four resonance states (n1, n2, m) = (0, 29, 0), (1, 28, 0),

(2, 27, 0), and (3, 26, 0), where n1 and n2 are the parabolic quantum numbers and m is the

magnetic quantum number, are shown in the left panels of Fig. 1. These images clearly

show one, two, three and four bright fringes, respectively, corresponding to the zero, one,

two, and three nodes of the wave functions of the four resonances states. In the right panels,

differential cross sections or radial distributions of ejected electron currents calculated using

the quantum mechanical formalism are compared to the experimental results reported by

Stodolna et al. [16]. The electron currents convolved with a Gaussian function of FWHM

2000 a0, corresponding to the experimental resolution of the detector [18], are also illustrated

in the figure. A good agreement is observed, and in particular the convolved electron currents

reproduce the nonzero values at minima observed in the experiment.

The energies of four resonance states (0, 29, 0), (1, 28, 0), (2, 27, 0), and (3, 26, 0) of H

atoms in an electric field with strength 808 V/cm, calculated using the quantum mechanical

formalism [8], are compared to the experimental results [16] and those from the semiclassical

theory based on the Bohr-Sommmerfeld quantization rule [14] in table I. Our quantum-

mechanical calculations are in excellent agreement with both experimental and semiclassical

5



results.

The present ejected electron current densities produced in photoionization into the four

Stark resonance states (0, 29, 0), (1, 28, 0), (2, 27, 0), and (3, 26, 0) of H atoms in an electric

field 808 V/cm are compared with those from the wave packet propagation technique [16]

in Fig. 2. The peak positions are in good agreement for all the four current density profiles.

However, the relative strengths of the electron current densities obviously differ. Considering

the fact that no complicated electron correlations occur in the Stark H atom system, such

a disagreement is unsatisfactory. The wave packet propagation calculations [16] show the

stable spatial distribution of ejected electron currents for these resonances starting from zdet

= − 0.4 µm on, where zdet is the distance from the atomic source to the detector. Such

a conclusion is different from ours. We investigated the change of spatial electron current

distributions with distances zdet for a number of Stark states including these four resonance

states using the quantum mechanical formalism [8] and semiclassical open-orbit theory [7],

and found that these two theories do not produce the convergent spatial distribution of

ejected electron currents at zdet = − 0.4 µm. Figure 3 displays the change of spatial electron

current distributions with distances zdet for the Stark resonance state (3, 26, 0) of H atoms in

an electric field 808 V/cm. The electron current density distribution for each zdet is drawn

together with that at zdet = − 1000 µm. The results in Fig. 3 illustrates that convergence

of the electron current distributions is reached only beyond zdet = − 10 µm.

To explain this result, we can assume that an established current density distribution

can occur only at distances significantly exceeding the classical turning point. Thus one

may employ the potential barrier, determined by the electric field strength, the parabolic

quantum number, and the magnetic quantum number for the final state, to estimate how far

the current density distributions may converge away from the atomic source, and therefore

it is easy to understand what controls the convergence. For the (2,27,0) resonance, for

example, the classical turning point in the η coordinate equals 5404 a.u. This means that

the minimum tunnel exit value of z is − 2702 a.u. = − 0.14 µm, and one cannot expect

convergent result for the current density distribution if zdet is of the same order of magnitude.

Our value zdet = −10 µm is consistent with this estimate.

The pronounced differences between photoelectron images of Stark on-resonance and im-

ages of off-resonance states were observed in the experiment [16]. The experiment shows

that the signature of the resonance state (2, 27, 0), the two nodes, disappears when the
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resonance energy is shifted. We simulated spatial distributions of the electron current den-

sities for the two off-resonance states at ǫ = − 165.347 cm−1 and − 168.257 cm−1. The

computed quantum results are compared to experiment in Fig. 4. The complete disap-

pearance of the resonance effect is reproduced for the two off-resonance energies in our

calculations, although the electron current distribution for − 168.257 cm−1 has a peak shift

toward ρ = 0. We also performed a semiclassical calculation using the open-orbit theory

[7]. It is well known that semiclassical waves undergo refraction near a fold-type caustic

surface dividing the configuration space into the classically allowed and forbidden regions,

and therefore the semiclassical electron wave functions display singularities at the caustic

surfaces. The uniform approximation is able to fix such singularities. Here we adopt the

uniform approximation developed in Ref. [7] to calculate the electron current densities. The

obtained results from the semiclassical and uniform approximations are shown in Fig. 4. The

quantum mechanical calculations are in good agreement with the uniform and semiclassical

approximations except for the divergence of the semiclassical currents at the caustics.

IV. CONCLUSION

In summary, we have simulated the wave function microscopy images for Stark reso-

nance states of H atoms using the quantum-mechanical formalism. We have compared the

calculated spatial distributions of electron current densities with experiment. The results

are in good agreement. The nonzero values of minima in the electron current distribution,

corresponding to the Stark resonance states experimentally observed, are reproduced by

convoluting the theoretical results with the instrumental function. However, our relative

strengths of the ejected electron current densities differ from those calculated with the wave

packet propagation technique. Our quantal calculations show that the electron current dis-

tributions are convergent only beyond 10 µm from the atomic source, but the wave packet

propagation technique gives stable electron current distributions beyond 0.4 µm from the

atomic source. From the calculation of classical turning points for the electron motion,

we conclude that our distance of convergence is more physically reasonable. Furthermore,

we simulated spatial distributions of the electron current densities at off-resonance energies

using the quantal formalism, the semiclassical and uniform approximation. The complete

disappearance of the the resonance effect is observed for the off-resonance energies.
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TABLE I: Comparison of resonance positions (in cm−1) for H atoms in an electric field with

strength 808 V/cm between the present calculations (FQM: fully quantum-mechanical results; SC:

semiclassical results) and experiment (Exp.) [16].

(n1, n2,m) FQM SC Exp.

(0,29,0) -172.809 -172.745 -172.82

(1,28,0) -169.617 -169.558 -169.67

(2,27,0) -166.427 -166.377 -166.45

(3,26,0) -163.240 -163.199 -163.30

the diameter of the images is 1 ∼ 3 mm.
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FIG. 1: (To editor: the four photoelectron images should be arranged in one column of the left

panel, corresponding to each subfigure in the right panel.) (Color online) Differential cross sections

or radial distributions of ejected electron currents in photoionization into four given resonance states

(0, 29, 0), (1, 28, 0), (2, 27, 0), and (3, 26, 0) of H atoms from a mixture of 2s and 2p states at an

electric field 808 V/cm. The four resonance states are located at −172.809 cm−1, −169.617 cm−1,

−166.427 cm−1, and −187.029 cm−1, respectively. The simulated photoelectron images are shown

in the left panels, while the experimental and computational electron currents are compared in the

right panels. The blue dots, red dashed curves and solid green curves represent the experimental

measurements, the calculated electron current densities and these current densities convolved with

the experimental resolution of the detector. Note that for the purpose of comparison, the calculated

results in the right panel are scaled to the macroscopic dimensions of the experiment.
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FIG. 2: (Color online) Comparison of the computed electron current densities in photoionization

into the resonance state (0, 29, 0), (1, 28, 0), (2, 27, 0), and (3, 26, 0) of H atoms from a mixture

state of 2s and 2p at an electric field 808 V/cm. The cyan solid curves and dashed magenta curves

denote the present results and those from the wave packet propagation technique [16].
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FIG. 3: (Color online) The change of spatial electron current distributions with distances zdet of

the atomic sources for the resonance state (3, 26, 0) of H atoms in an electric field 808 V/cm. The

resonance state is located at − 163.240 cm−1. The cyan solid curves represent the electron current

density distributions at zdet = − 1000 µm, while the red dashed curves denote those at zdet = −

0.4 µm, − 1.0 µm, − 10 µm, and − 100 µm. Note: the electron current distributions spread out

with increasing zdet, and therefore ρ of the red dash curve in each panel is multiplied by a factor

denoted.
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FIG. 4: (Color online). Comparison of electron current distributions for off-resonance states of

Stark H atoms in an electric field 808 V/cm. The two off-resonance states are located at ǫ = −

165.347 cm−1 and− 168.257 cm−1. Experiment: • Stodolna et al. [16] (Exp.). Theory: —– present

quantum mechanical calculation (QM); - - - - present semiclassical calculation (SC) using open-orbit

theory; - ·- · present calculation using the uniform approximation. Note: the semiclassical electron

currents diverge at caustics corresponding to the red dashed vertical lines.
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