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The success of quantum optimal control for both experimental and theoretical objectives is connected to the

topology of the corresponding control landscapes, which are free from local traps if three conditions are met: (1)

the quantum system is controllable, (2) the Jacobian of the map from the control field to the evolution operator

is of full rank, and (3) there are no constraints on the control field. This paper investigates how the violation

of assumption (3) affects gradient searches for globally optimal control fields. The satisfaction of assumptions

(1) and (2) ensures that the control landscape lacks fundamental traps, but certain control constraints can still

introduce artificial traps. Proper management of these constraints is an issue of great practical importance for

numerical simulations as well as optimization in the laboratory. Using optimal control simulations, we show

that constraints on quantities such as the number of control variables, the control duration, and the field strength

are potentially severe enough to prevent successful optimization of the objective. For each such constraint, we

show that exceeding quantifiable limits can prevent gradient searches from reaching a globally optimal solution.

These results demonstrate that careful choice of relevant control parameters helps to eliminate artificial traps

and facilitate successful optimization.

I. INTRODUCTION

Applications of quantum control in the laboratory have

grown dramatically over the past fifteen years [1–9].

Successful optimal control experiments (OCEs) have in-

cluded selective control of molecular vibrational [10–17]

and electronic states [18–27], preservation of quantum

coherence [28, 29], control of photoisomerization reac-

tions [30–35], selective manipulation of chemical bonds

[36–44], high-harmonic generation and coherent manip-

ulation of the resulting soft X-rays [45–51], and control

of energy flow in biomolecular complexes [52–55]. Opti-

mal control theory (OCT) [7, 9, 56–59] has facilitated an

improved understanding of coherently controlled quan-

tum phenomena such as electron density transfer [60, 61],

electron ring currents in molecules [62], molecular pho-

todissociation [63–68], photoisomerization [69–73] and

photodesorption [74], strong-field ionization [75], quan-

tum information processing [76–107], energy transfer in

photosynthetic complexes [108–112], transport of Bose-

Einstein condensates [113–115], and transport of atoms

in optical lattices [116–118].

In general, the goal of OCE and OCT is to find a con-

trol field ε(t) that produces the global maximum or min-

imum value of an objective functional J = J [ε(t)]. This

functional represents quantum control objectives such as

the probability of a transition between two pure states,

the expectation value of an observable, or the distance

between a target unitary transformation and the time-

evolution operator [9]. The quantum control landscape

defined by this functional dependence has been depicted

in experimental studies for various control problems

[119–126], and its favorable topology [9, 127] has been

correlated [128–130] to the success of OCEs and OCT

simulations. Specifically, it has been shown [129, 131–

138] that the landscapes forN -level closed quantum sys-

tems lack local optima if three conditions are satisfied:

(1) the quantum system is controllable, i.e., any given

unitary evolution can be generated by some control field

in finite time; (2) the Jacobian of the map from the con-

trol field ε(t) to the final-time evolution operatorU(T, 0)
is of full rank; (3) the control field is unconstrained. We

discuss these conditions in more detail in Sec. II. Local

optima can potentially trap a gradient search, so their ab-

sence from the control landscape facilitates identification

of a globally optimal control field. Although the control

landscape topology [139–142] and optimization search

effort [143] for open quantum systems have been studied,

we do not consider issues related to open-system control

in this work.

In this paper, we assume that conditions (1) and (2)

have been met but that condition (3) is subject to viola-

tion. We consider several types of control constraints:

the representation of the control field, the number of con-

trol variables, the duration of the control pulse, the field

strength, and several parameters of the search algorithm.

The nature of the search algorithm falls under assumption
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(3), as it can artificially limit access to desired controls

in some circumstances. For each of these constraints,

we perform a large number of numerical OCT searches

on a variety of closed, finite-level quantum systems, ac-

cruing statistical evidence of each constraint’s effect on

the gradient optimization of various quantum objectives.

These numerical studies make it possible to quantify the

limits beyond which the severity of a constraint leads to

the emergence of artificial local traps on the control land-

scape and hinders the achievement of a globally optimal

solution. In most cases, we identify two key values of

the constrained parameter: one beyond which at least one

search fails (indicating the emergence of traps on the con-

trol landscape), and one beyond which all searches fail

(suggesting that the global optimum is unreachable).

The remainder of this paper is organized as follows:

Section II discusses the classification of landscape crit-

ical points and the theoretical underpinnings of condi-

tions (1) – (3). Section III describes the control objec-

tives used in this paper, the topology of the corresponding

landscapes, and the numerical methods used to optimize

them. In Sec. IV, we examine how searches for globally

optimal solutions are influenced by severe constraints on

the control field, which may prevent successful optimiza-

tion. Our conclusions are summarized in Sec. V.

II. BACKGROUND

The control problems discussed in this paper are de-

fined as closed N -level quantum systems whose Hamil-

tonians have the form

H(t) = H0 +

K
∑

k=1

Hkεk(t), (1)

which includes a field-free termH0 andK Hermitian op-

erators {Hk} that represent the coupling betweenK con-

trol fields {εk(t)} and the system. Each field is a real-

valued function of time defined on the interval [0, T ]. In

the Schrödinger picture, the state of the system at a time t
is described by the state vector |ψ(t)〉 = U(t)|ψ0〉 or, for

mixed states, by the density matrix ρ(t) = U(t)ρ0U
†(t).

Here, |ψ0〉 ≡ |ψ(0)〉 is the initial state vector, ρ0 ≡ ρ(0)
is the initial density matrix, and U(t) ≡ U(t, 0) is the

time-evolution operator or propagator. U(t) satisfies the

Schrödinger equation:

i~
d

dt
U(t) = H(t)U(t), U(0) = I, (2)

where I is the N -dimensional identity operator.

A quantum system that obeys the Schrödinger equa-

tion is evolution-operator controllable [9, 57] if for any

unitary operator W there exists a set of controls {εk(t)}
such that W is the solution to Eq. (2) at some finite

time. For a system governed by the Hamiltonian of form

(1), the necessary and sufficient condition for evolution-

operator controllability is that the Lie algebra generated

by the set of operators (i/~){H0, H1, . . . , HK} be u(N )

[or su(N ) if the Hamiltonian has zero trace] [144–148].

A previous work [149] has examined the loss of control-

lability and the resulting local traps on the control land-

scape, but in this paper, we only study systems that are

assumed to satisfy this controllability criterion. We con-

sider control problems that employ one control field ε(t)
except when specifically noted otherwise. In this limiting

case, Eq. (1) simplifies to the Hamiltonian of the form

H(t) = H0 − µε(t), (3)

which arises in the electric dipole approximation; the

dipole operator µ couples the system to the field. In the

remainder of this section and in Sec. III, we assume that

the Hamiltonian has the form in Eq. (3). It is straight-

forward to generalize the analysis to Hamiltonians of the

form in Eq. (1).

Critical points of a quantum control landscape are the

set of control fields at which the first-order functional

derivative of the objective J with respect to the control

field is zero:

δJ

δε(t)
= 0, ∀t ∈ [0, T ]. (4)

The topology of the control landscape is determined by

the classification of critical points according to the prop-

erties of the higher-order functional derivatives of J ; crit-

ical points can be characterized as local optima, global

optima, and saddles [9, 127]. The landscape topology

has practical significance for quantum control optimiza-

tions, since local optima may trap gradient searches and

can even affect the efficiency of genetic algorithms [150].

When the landscape lacks local traps, on the other hand,

several OCT studies consisting of thousands of numer-

ical simulations have shown that gradient searches can

quickly locate globally optimal controls [130, 151–153].

In the laboratory, a gradient algorithm [154] and a deran-

domized evolution strategy [155] have been successfully

employed to make OCEs more efficient.

The landscape analysis also draws the important dis-

tinction between regular and singular critical points [7,

9, 127, 156]. Further partitioning the functional relation-

ship between the objective J and the control field ε(t),
we can represent J as a function of the final-time evolu-

tion operator UT ≡ U(T ), and UT in turn as a functional

of the control field; i.e., J = J(UT ) and UT = UT [ε(t)].
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We then use the chain rule to rewrite Eq. (4) as:

δJ

δε(t)
=

〈

∇J(UT ),
δUT

δε(t)

〉

= 0, ∀t ∈ [0, T ], (5)

where ∇J(UT ) is the gradient of J at UT , the Jacobian

matrix δUT /δε(t) is the first-order functional derivative

of UT with respect to the control field, and 〈·, ·〉 is the

Hilbert-Schmidt inner product. A critical point of J is

regular if the Jacobian δUT /δε(t) is of full rank, and

singular if δUT /δε(t) is rank-deficient. If conditions (1)

and (3) for a landscape free of local optima are satisfied,

i.e, the system is controllable and the control field is un-

constrained, then none of the regular landscape critical

points are local optima [7, 9, 127, 131–138]. No such

result has been demonstrated for singular critical points,

nor, at present, is there an analytical method to determine

whether there are singular critical points on the landscape

corresponding to a particular control problem. However,

a recent numerical study [157] described an algorithm

capable of locating singular critical points; various con-

trol problems were studied and none of the detected sin-

gular points trapped gradient searches. This result indi-

cates that the overwhelming majority of singular critical

points are not local optima. Another pair of recent works

[158, 159] showed that, for several specially constructed

combinations of control objective and Hamiltonian, a sin-

gular critical point at ε(t) = 0 is a second-order trap. For

a maximization problem, a critical point is a second-order

trap if the Hessian matrix of the second functional deriva-

tives of J with respect to the field,

H(t, t′) =
δ2J

δε(t)δε(t′)
, (6)

is negative semidefinite. Such a trap is not necessarily

a local maximum of the landscape, since higher-order

functional derivatives may be indefinite [160], but it can

in principle prevent a simple gradient search from find-

ing a globally maximal solution. However, a subsequent

computational study [161] examined the same control

problems as [158, 159] and found that the second-order

traps only attract search trajectories that originate very

close to them (i.e., at fields which are several orders

of magnitude weaker than the optimal ones) and thus

are very unlikely to affect gradient-based optimizations

under realistic searching conditions. In this work, we

nonetheless assume, for the sake of simplicity, that con-

dition (2) is satisfied and that there are no singular critical

points on the control landscape.

When a control problem satisfies conditions (1) and

(2), the corresponding landscape is free of fundamental

traps. However, constraints on the control field violate

condition (3) and can interfere with optimization. Unlike

the first two conditions, some constraints are unavoid-

able; for example, in OCEs with lasers, the number of

available control variables is determined by the design

of the pulse shaper and bandwidth limitations are dic-

tated by the optical source. These restrictions were dis-

cussed in early experimental studies [162]. OCT sim-

ulations generally discretize the system evolution, which

also constrains the control fields that can be generated. In

this paper, we focus on the subset of severe constraints,

i.e., those that prevent achievement of the target objective

by introducing local optima onto the control landscape.

It has been shown, however, that even more mild con-

straints can have a significant effect on OCT optimiza-

tions, e.g., by increasing the search effort [163–168].

Several approaches have been taken to address the

presence of control constraints. Special algorithms

that facilitate successful optimization when the control

field has significant spectral constraints have been intro-

duced, for problems such as population transfer in a one-

dimensional asymmetric double well [169] and molecu-

lar alignment [166]. Other works have explored the ef-

fect of a specific constraint on OCT optimization; time-

optimal control, the problem of achieving a target objec-

tive in the minimum possible time, has received the great-

est attention [81, 168, 170–179], and constraints on the

number of field components have also been investigated

[180]. In this work, we perform extensive OCT simu-

lations to evaluate constraints whose effects on the suc-

cess of gradient optimization have not previously been

examined, identifying values of each constrained param-

eter beyond which some or all of a set of searches fail

to optimize. We also expand upon these prior studies to

include new systems and objectives.

III. METHODOLOGY

A. Quantum control objectives and corresponding

landscape topology

The aim of OCT and OCEs is to find a control field ε(t)
that corresponds to the global maximum (or minimum) of

an objective functional J [ε(t)]. The OCT simulations in

this paper target three common quantum control goals:

(I) The state-transition objective is to maximize the

probability of a transition between initial and final

pure states |i〉 and |f〉 at time T :

JP = |〈f |UT |i〉|2. (7)

(II) The observable objective is to maximize the expec-
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tation value of a quantum observable θ at time T :

Jθ = Tr
(

U †
T θUTρ0

)

. (8)

(III) The evolution-operator objective is to minimize

the distance between UT , the unitary evolution op-

erator at time T , and a target unitary transformation

W :

JW =
1

2
− 1

2N
ℜTr

(

W †UT

)

. (9)

The state-transition objective JP is a special case of the

observable objective Jθ for which ρ0 = |i〉〈i| and θ =
|f〉〈f |, i.e., ρ0 and θ are projectors onto the states |i〉 and

|f〉, respectively. Unless noted otherwise, the simulations

in this work only consider ρ0 and θ that are diagonal in

the eigenbasis of H0, an assumption that still permits a

fully general analysis of the control landscape topology

[137].

The landscape analysis for objectives (I) – (III) can be

performed in either the dynamic formulation, in which

the control landscape J = J [ε(t)] is defined on the L2

space of control fields, or the kinematic formulation, in

which the control landscape J = J(UT ) is defined on the

unitary group U(N). If the Jacobian δUT /δε(t) is of full

rank at a critical point δJ/δε(t) = 0 in the dynamic for-

mulation, then the final-time propagator UT correspond-

ing to that control field must also satisfy the kinematic

critical point condition ∇J(UT ) = 0. In general, there

exist many critical control fields ε(t) that correspond to

the same critical propagator UT . Additionally, at a reg-

ular critical point, the number of positive and negative

eigenvalues in the Hessian spectrum are the same in the

dynamic and kinematic formulations [137]. Therefore,

if conditions (1) – (3) for a trap-free landscape are met,

then the kinematic and dynamic formulations of the con-

trol landscape have the same topology.

Under the assumption that conditions (1) – (3) are sat-

isfied, the analysis of the landscape topology for control

objectives (I) – (III) has been performed in the kinematic

formulation [9] and all critical points have been char-

acterized. The landscape JP (UT ) for pure-state transi-

tion control has two critical points that correspond to the

global maximum at JP = 1 and the global minimum at

JP = 0, respectively [128, 135]. In general, the land-

scape Jθ(UT ) for observable control has a global max-

imum and a global minimum as well as other critical

points that are shown to be saddles by the analysis of the

Hessian spectrum [129, 137]. The values of the objec-

tive Jθ that correspond to critical points are determined

by the eigenvalues of the initial density matrix ρ0 and

the target observable θ. When ρ0 and θ are both pure-

state projectors, the observable landscape has the same

topology as the state-transition landscape, with no saddle

points. When ρ0 and θ are of full rank, the observable

landscape contains N ! critical points, of which N ! − 2
are saddles [129, 137]. For ρ0 and θ with other eigen-

value spectra, the observable landscape has fewer than

N !− 2 saddles. For evolution-operator control, the land-

scape JW (UT ) has N + 1 critical points corresponding

to the objective values JW = 0, 1/N, 2/N, ..., 1. The

global minimum and maximum correspond to the objec-

tive values JW = 0 and JW = 1, respectively, while

the other critical points are saddles [132, 133]. We will

denote the objective values corresponding to the global

maximum and minimum of a control landscape as Jmax

and Jmin, respectively.

B. The optimization procedure

OCT simulations and OCEs have used a variety of op-

timization algorithms to find globally optimal controls

for the objectives defined in Eqs. (7) – (9) [7, 9]. Global

methods, such as genetic algorithms, sample a large re-

gion of the control space stochastically and can therefore

avoid trapping at local optima at the expense of a lower

efficiency. Local methods include the gradient-based and

simplex algorithms, the former of which have been em-

ployed with great success in OCT simulations due to the

absence of local traps when conditions (1) – (3) are sat-

isfied. Gradient-based methods also have several prop-

erties that render them ideal for identifying the local op-

tima that may arise when one of the three conditions is

violated. They are “myopic”, i.e, any step taken by the

algorithm is dictated by the geometry of the control land-

scape at the current control field, and they are determin-

istic, i.e., the algorithm will always take the same step at

the same point on a given landscape. Therefore, we em-

ploy a gradient-based algorithm in the OCT simulations

in this work. Atomic units are used throughout this paper.

Each numerical optimization in this paper is parame-

terized in terms of a dimensionless index s, which de-

notes the changes made to the control field as the search

proceeds. Therefore, we write the control field as ε(s, t),
where the value s = 0 corresponds to the initial field

ε0(t). Successive control fields (s > 0) are found by

solving the initial value problem

∂ε(s, t)

∂s
= γ

δJ [ε(s, t)]

δε(s, t)
, ε(0, t) = ε0(t), (10)

where γ is a positive (negative) constant when maximiz-

ing (minimizing) J . Using the following result [129]:

δUT

δε(t)
=
i

~
UTµ(t), µ(t) = U †(t)µU(t), (11)
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one can apply the chain rule, as in Eq. (5), to calculate

the functional derivative δJ/δε(s, t) in Eq. (10) for the

quantum control objectives in Eqs. (7) – (9). The result

is [129, 133, 135, 180]:

δJP
δε(t)

=
2

~
ℑ

[

〈f |UT |i〉〈i|µ(t)U †
T |f〉

]

, (12a)

δJθ
δε(t)

=
2

~
ℑTr

[

U †
T θUTρ0µ(t)

]

, (12b)

δJW
δε(t)

=
1

2N~
ℑTr

[

W †UTµ(t)
]

. (12c)

Having calculated the functional derivative of J with re-

spect to the control field, we numerically solve Eq. (10)

using the MATLAB routine ode45 [181], which imple-

ments a variable-step-size fourth-order Runge-Kutta gra-

dient method. Searches using ode45 must specify the

absolute error tolerance τ , a positive quantity that in-

fluences the determination of the step size at each algo-

rithmic iteration. The simulations in this paper use the

value τ = 10−8 unless otherwise stated; a prior numer-

ical study [161] indicates that this choice of τ generally

leads to excellent solutions of Eq. (10). The optimization

is considered to have converged successfully when the

search reaches a control field ε(sf , t) corresponding to

an objective value J ≥ (Jmax − η) (for maximization of

J) or J ≤ (Jmin + η) (for minimization of J). Smaller

values of the convergence parameter η demand greater

accuracy from the optimal control field. In this paper, we

use the value η = 0.001 · (Jmax − Jmin). The search ef-

fort is defined as the number of iterations required for the

optimization to converge and is an important indicator of

algorithmic efficiency.

Controls that satisfy the critical point condition in

Eq. (4) are in principle continuous. However, numeri-

cal optimizations typically represent ε(t) as a piecewise-

constant function; in this work, the control field is defined

overL equal intervals of time, each of length ∆t = T/L:

ε(t) = {εl|t ∈ (tl−1, tl]}Ll=1, (13)

where tl = l∆t. With the control field defined in this

way, Eq. (2) can be numerically integrated by calculating

a series of incremental evolution operators, each of which

propagates the system over one of the L constant-field

intervals:

U(tl, tl−1) = exp

[

− i

~
(H0 − µεl)∆t

]

, (14)

and constructing the evolution operator U(tl, 0) as a

product of these incremental propagators:

U(tl, 0) = U(tl, tl−1) · · ·U(t2, t1)U(t1, 0), (15)

where the final-time evolution operator is UT =
U(tL, 0). The control field discretization ∆tmust be suf-

ficiently small in order for this piecewise-constant field to

accurately approximate a continuous one. A large value

of ∆t may severely constrain the control field, as dis-

cussed in Sec. IV A.

The specific optimization procedure depends on the

choice of control variables. There are many possible

choices, but this work uses two common ones:

(i) The control variables are the L field values {εl} de-

fined in Eq. (13). They are real-valued and indepen-

dently addressable. The simulations in this work

begin with a vector of initial field values {εl(0)}:

εl(0) = A(tl)

M
∑

m=1

am cos(ωmtl), (16a)

A(tl) = A0 exp
[

−(tl − T/2)2/(2ζ2)
]

, (16b)

where A(tl) is the Gaussian envelope function

whose width is determined by the positive param-

eter ζ. We use ζ = T/10, which enforces the con-

ditions that ε0(t) ≈ 0 at t = 0 and t = T , and

M = 20 except when otherwise noted. The fre-

quencies {ωm} are randomly selected from a uni-

form distribution on [ωmin, ωmax], where ωmin and

ωmax are the smallest and largest transition frequen-

cies in H0, respectively. The amplitudes {am} are

randomly selected from a uniform distribution on

[0, 1]. The normalization constant A0 is chosen so

that the fluence,

F = ‖ε‖22 =
∫ T

0

ε2(t)dt, (17)

of each initial field has the same value F0. After

the initialization (i.e., for s > 0), the field values

{εl(s)} are allowed to vary independently at each

step of the optimization algorithm, and the opti-

mization proceeds by solving a discrete analog of

Eq. (10):

∂εl(s)

∂s
= γ

δJ

δεl(s)
= γ∆t

∂J

∂ε(tl)
. (18)

This flexible set of control variables allows the field

fluence to vary freely during the search.

(ii) The control variables are the phases {φm} of M
spectral components of the field, which has the form

ε(t) = A(t)
M
∑

m=1

cos(ωmt+ φm). (19)



6

The envelope function A(t) and the frequencies

{ωm} are chosen at the beginning of the search and

remain fixed throughout the optimization; addition-

ally, the amplitude of the m-th term in Eq. (19) re-

mains at 1.0. Thus, this form is constrained even

when M is large. The field is still discretized into

L intervals as in Eq. (13). A(t) is defined as in

Eq. (16b). The gradient-based algorithm generates

an evolving phase vector {φm(s)} along the search

trajectory by solving the equation [180]:

∂φm(s)

∂s
= γ

∂J

∂φm(s)
, (20)

where elements of the gradient vector are obtained

from

∂J

∂φm
=

∫ T

0

δJ

δε(t)

∂ε(t)

∂φm
dt, (21)

and the search starts from a vector of initial phase

values, {φm(0)}, each of which are randomly cho-

sen from the interval [0, 2π]. Since the envelope

function and the amplitudes of the field components

are fixed, the fluence remains very close to its initial

value F0 throughout the optimization.

Each choice of control variables, including others be-

yond those above, has its own advantages and limitations.

Choice (i) makes it possible to represent arbitrary shapes

of the control pulse as L increases. Choice (ii) is more

representative of a pulse shaper’s output, but its form

is inherently constrained as the amplitude of each field

component is fixed.

IV. EFFECTS OF SEVERE CONTROL FIELD

CONSTRAINTS

Several OCT studies have shown that violating condi-

tion (3) by limiting the number of control variables [180]

or the control period T [81, 168, 170–179] can prevent

the achievement of a globally optimal solution. In this

section, we investigate the practical effects of imposing

various types of constraints. It is not possible to avoid

constraints altogether, as they result from any of the limi-

tations on experimental or computational parameters that

are invariably present in OCE and OCT. Constraints do

not necessarily interfere with optimization [165], but se-

vere constraints introduce artificial local optima and sad-

dles to the control landscape. Thousands of successful

simulations in the quantum control literature were facil-

itated by having only relatively mild constraints on the

control field. This section cannot serve as an exhaustive

rubric for evaluating whether a specific control scheme

is amenable to successful optimization, nor is it a com-

prehensive list of significant control constraints. How-

ever, the simulations below examine several common

constraints that, when sufficiently severe, are very likely

to impede a gradient search. OCEs and OCT simulations

almost always involve multiple constraints, which may

have a cumulative effect on the success of an optimal

search. In this section, we study each constraint as in-

dependently as possible by introducing only one severe

constraint for each set of simulations.

A. Representation of the control field and system

dynamics

The numerical representation of the control field as a

piecewise-constant function of time, as in Eq. (13), and

the corresponding discretized unitary system evolution

in Eq. (15), is a common practical procedure in OCT.

This discrete representation of ε(t) constrains the theo-

retically continuous field. Gradient searches have been

observed to fail with a large time discretization interval

∆t, and subsequently optimize when ∆t was reduced

[152]. These results suggest that a sufficiently small

∆t is essential for successful optimization. In particu-

lar, ∆t must be small enough to resolve all the features

required of an optimal field. While one cannot a pri-

ori predict the pulse shapes required to optimize a par-

ticular objective, high-frequency transitions essential to

the optimal field can only be resolved using a finer time

discretization. Many laboratory experiments use pulse

shapers with analogously discretized elements ∆ω in the

frequency domain.

We performed numerical optimizations of Jθ , using a

range of ∆t values, on the quantum system

H0 =

N−1
∑

j=0

λj(j + 1)|j〉〈j|, (22a)

µ =

N−1
∑

j 6=k

D|j−k|

D
|j〉〈k|, (22b)

with N = 6, λ = 1 and D = 0.5. In these opti-

mizations, we used choice (i) of control variables de-

scribed in Sec. III B, i.e., the L field values {εl(s)}.

The optimization goal was to maximize the objective Jθ ,

with the initial state and target observable selected as

ρ0 =
∑1

j=0 pj |j〉〈j| with p0 = 0.6 and p1 = 0.4, and

θ =
∑5

k=3 θk|k〉〈k| with θ3 = 0.1, θ4 = 0.2, and θ5 =
0.7. The final time was T = 50 and ∆t = 50/L, where

L is the number of intervals into which the time period
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[0, T ] is divided. 1000 optimization runs were performed

for each value of ∆t over the range 0.098 ≤ ∆t ≤ 0.625
(511 ≥ L ≥ 79).
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FIG. 1. The fraction of searches that optimized successfully, as

a function of the time discretization interval ∆t, using control

form (i). 1000 optimization runs were performed for each ∆t

value.

Figure 1 shows that the fraction of searches that opti-

mized clearly depends on ∆t. For ∆t > 0.213, at least

one search failed to optimize, while for ∆t > 0.331, all

searches failed to optimize. These results indicate that

constraint-induced traps begin to emerge on the control

landscape for ∆t > 0.213, while for ∆t > 0.331 the

global optimum may be unreachable. These two val-

ues help to quantify the effect of constraining the time

discretization interval. Thus, the choice of a large ∆t
severely constrains the control field, whereas gradient

searches will generally optimize when ∆t is sufficiently

small.

B. Number of control variables

Control landscape analysis shows that for the state-

transition objective the gradient δJP /δε(t) can be con-

structed from at most 2N−2 independent basis functions

[182] (the so-called natural basis), and that the Hessian

matrix H(t, t′) at a globally optimal solution contains no

more than 2N − 2 negative eigenvalues [152, 183]. It

was shown [182] that simulations of the objective JP
using the natural basis will optimize successfully with

a gradient-based method similar to the one described in

Sec. III B. In this section, we chose a different set of con-

trol variables and performed optimizations of JP to in-

vestigate the degree to which constraining the number of

control variables prevents gradient-based searches from

optimizing. We used the control form (ii) in Sec. III B,

so the control variables were the phases {φm}, whereas

the frequencies {ωm}, the amplitudes {am}, and the en-

velope function A(t) were fixed. The frequencies were

set to integer values ωm = m and the amplitudes were

identically am = 1 ∀m. The control period T = 50 was

divided into L = 1023 intervals, and the initial field flu-

ence was F0 = 103. The simulations were performed

on the system from Eqs. (22), with N = 4, λ = 1, and

D = 0.9. The goal was to maximize JP for the transition

|0〉 → |3〉. 1000 optimization runs were performed for

each value of M (the number of control variables) over

the range 3 ≤M ≤ 16. Statistical results from these sim-

ulations are summarized in Fig. 2, which illustrates that

at least one search failed for M < 12 and all searches

failed for M < 4. These data confirm that an insufficient

number of control variables (here, in the spectral domain)

is a severe constraint.
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FIG. 2. The fraction of searches that optimized successfully,

as a function of the number of control variables M , using the

control form (ii) in Eq. (19). The initial field fluence was F0 =

10
3, and

1000 optimization runs were performed for each value of M .

Unlike the natural basis described in [182], choice

(ii) does not ensure successful optimization when M =
2N − 2 control variables are used; similar behavior was

observed in an earlier work [180] with a different sys-

tem. This result confirms that different choices of con-

trol parameterization may require a distinct number of

variables in order to optimize successfully. In addition,

choice (ii) of the control variables contains parameters

that themselves must be chosen carefully in order for op-
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timizations to be successful. The simulations in Fig. 2 in-

cluded field components {ωm} resonant with transitions

inH0, and they optimized whenM was sufficiently large.

It has been shown [180] that simulations using control

fields with no resonant field components are much more

likely to fail than those using fields with resonant com-

ponents. However, the intuitively appealing choice of

including only resonant field components does not neces-

sarily improve optimization success. In Fig. 2, 67 of 1000

simulations with M = 5 optimized successfully; these

runs used a combination of resonant and non-resonant

field frequencies, with ωm = m. We also performed

1000 simulations on the same control problem, but in-

stead used five field components corresponding to the

resonant transitions in H0. None optimized successfully.

Therefore, while it is clear that an improper choice of

variables can severely constrain the control field, there

is no known method a priori to be certain that a set of

variables is inappropriate.

C. Duration of control pulse

Theoretical analysis and numerical simulations have

both shown that a sufficiently large control time T is nec-

essary in order to generate an optimal control; for exam-

ple, a recent computational study evaluated the minimum

time required to optimize the objective JW [168] for two-

, three-, and four-qubit coupled-spin model systems. In

particular, the CNOT, SWAP, and quantum Fourier trans-

form (QFT) gates were chosen as the target unitary trans-

formations. For each control problem, it was shown that

some minimum control time is necessary for successful

optimization.

Another control problem [184] utilizes six control

fields with the objective of minimizing J̃W = 1 −
1
N

∣

∣Tr
(

W †U
)∣

∣, a phase-independent form [168] of

the evolution-operator objective JW (see Eq. (9)), for

an eight-level system consisting of three Ising-coupled

qubits:

2H(t) = Z1Z2 + Z2Z3 + ε1(t)X1 + ε2(t)Y1

+ ε3(t)X2 + ε4(t)Y2 + ε5(t)X3 + ε6(t)Y3,
(23)

where the operatorsX1 = σx ⊗ I ⊗ I , Y2 = I ⊗ σy ⊗ I ,

Z3 = I ⊗ I ⊗ σz , etc. The target unitary transformation

is the three-qubit QFT gate:

W =

8
∑

j,k=1

exp(2πi(n+ 1
4
)/8)√

8
ξjk|j〉〈k|, (24)

where ξ = exp(−2πi/8) and n is an integer. In [184],

1000 OCT optimizations of this problem, with n = 5,

were performed using a control period T = 8 divided

into L = 140 intervals. A small fraction of them be-

came trapped at suboptimal fidelities. In another work

[161], optimizations of J̃W on the same system were per-

formed for T = 6, 7, 8, 9, 10; all runs failed to optimize

for T = 6 and all runs succeeded for T = 10, leading

to the conclusion that the smaller choices of T severely

constrain the control field.

In this work, we performed optimizations of the objec-

tive JW with different control systems and unitary targets

than in these prior works. We used the control variables

(i) described in Sec. III B, and the Hamiltonian was de-

fined as in Eq. (22), with N = 5, λ = 1, and D = 0.9.

To ensure controllability, i.e., that any W ∈ U(N) can

be generated by the Hamiltonian evolution, it is required

that Tr(µ) 6= 0 [57]. In order to satisfy this condition, the

diagonal dipole elements were set as 〈j|µ|j〉 = 1 ∀j in

these simulations. Quasirandom target unitary transfor-

mations Wj were chosen by first constructing Hermitian

matrices Aj ; the real and imaginary part of each element

of Aj was randomly generated on the interval [0, 2π],
subject to the restrictions of hermiticity. The targets Wj

were then generated using the relation

Wj = exp (iAj) . (25)

The optimizations in this section were performed on two

target transformations,
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W1 =











0.456− 0.034i 0.064 + 0.711i 0.055 + 0.108i 0.222 + 0.163i 0.409− 0.154i
−0.031− 0.246i −0.418 + 0.232i 0.621− 0.342i −0.137− 0.417i −0.101− 0.067i
−0.399− 0.008i −0.236 + 0.003i −0.076 + 0.216i −0.327 + 0.139i 0.278− 0.727i
−0.485− 0.329i 0.112 + 0.326i 0.198 + 0.521i −0.123 + 0.156i −0.071 + 0.427i
0.075 + 0.471i 0.225 + 0.190i −0.074 + 0.337i −0.347− 0.668i −0.035 + 0.004i











(26a)

W2 =











0.131 + 0.215i −0.005− 0.039i −0.121 + 0.034i 0.292 + 0.332i 0.603 + 0.601i
0.084− 0.732i 0.317− 0.420i 0.122 + 0.240i −0.232 + 0.059i 0.123 + 0.187i
0.119− 0.023i 0.082 + 0.098i 0.749− 0.486i 0.087− 0.318i 0.055 + 0.245i
0.083− 0.584i −0.239 + 0.423i −0.126− 0.214i 0.474 + 0.287i −0.217 + 0.031i
−0.105− 0.143i −0.241 + 0.641i 0.099 + 0.208i −0.575− 0.017i 0.330 + 0.080i











, (26b)

that were chosen in this way. The control period T was

divided into L = 128 intervals, and 100 simulations were

performed for each target and for each value of T over

the range 1 ≤ T ≤ 4. Figure 3 shows that for the tar-
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FIG. 3. (Color online) The fraction of searches that optimized

successfully as a function of the control pulse duration T , for

target unitary transformations W1 (solid black line) and W2

(dashed red line). 100 optimization runs were performed for

each value of T .

get W1, at least one search failed for T ≤ 2.45 and all

searches failed for T ≤ 2.3; for the target W2, at least

one search failed for T ≤ 3.1 and all searches failed for

T < 2.8. These results indicate that insufficient T is

a severe control constraint in optimizations not only for

the previously-studied multi-qubit systems [161, 168],

but also for multilevel systems as defined in Eq. (22).

Threshold values of T can be identified in these latter

systems, and most importantly, distinct threshold values

for T exist for each target unitary transformation. The

choice of T = 2.8, for example, resulted in the success

of all optimizations targeting the transformation W1, but

the failure of all optimizations targeting W2. This point

emphasizes that the distinction between a severe and mild

constraint is highly problem-dependent and can be estab-

lished by a single parameter in otherwise similar opti-

mizations.

D. Strength of the control field

A control field of insufficient strength can impede the

achievement of the control objective. In this work, we

use the field fluence F [see Eq. (17)] as a measure of the

strength of the control field. It is often desirable that con-

trol simulations and experiments achieve an optimal field

while also minimizing the fluence. This is commonly at-

tempted by adding a fluence penalty term to the objective

functional, which is a constraint discussed in Sec. IV F.

However, searches that use choice (ii) of the control vari-

ables (see Sec. III B) also constrain the field since the flu-

ence cannot increase significantly during the search. To

investigate the effect of fluence constraints on the results

of an optimization, we performed two sets of optimiza-

tions of JP using the same control system but different

choices of variables. In both sets of runs, the system

from Eq. (22) (N = 4, λ = 1, D = 0.9) was used, the

transition |0〉 → |3〉 was targeted, and the control period

T = 50 was divided into L = 1023 intervals.

The first set of simulations used choice (ii) of the con-

trols, with M = 16 phase component variables. The fre-

quencies were set to integer values ωm = m, and the ini-

tial field fluence F0 had a pre-selected value ranging over

0.5 ≤ F0 ≤ 50. As a result of the choice of variables,

the fluence F remains very close to F0 for the entire op-

timization. 1000 optimizations were performed for each

value of F0. Figure 4 shows a clear relationship between

the initial fluence F0 and the fraction of searches that
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failed to optimize; at least one search failed for F0 < 30
and all searches failed for F0 < 2. The non-monotonic

behavior in Fig. 4 is probably an artifact of the particu-

lar control parameterization and may also be related to

an oscillatory dependence of the optimal-field fluence on

the control duration, which has been previously observed

in [168, 185].
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FIG. 4. The fraction of searches that optimized successfully,

as a function of the initial fluence F0, for simulations that used

choice (ii) of the control variables. 1000 optimization runs were

performed for each F0 value, for 0.5 ≤ F0 ≤ 50. The field

fluence remains very close to F0 during the search.

The second set of simulations used choice (i) of the

control variables. One hundred runs were performed for

each F0 value over the range 10−6 ≤ F0 ≤ 103, and

every search succeeded. For each F0 value, the mean flu-

ence Fopt of the twenty optimized fields was computed.

These statistical results are summarized in Fig. 5, which

indicates that for F0 < 0.15, the field fluence increased

during the optimization so that Fopt ≈ 0.15, while for

F0 ≥ 0.15, Fopt ≈ F0. A similar result has also been

observed for evolution-operator control [185].

The significant differences between the results of

these two sets of simulations confirm that sufficient field

strength is necessary for successful optimization. A low

initial fluence does not prevent successful optimization if

the field strength can increase during the search, as with

choice (i) of the control variables. However, parameteri-

zations of the control that restrict the field strength, such

as choice (ii), are only effective for finding optimal fields

when the initial fluence is sufficiently large.

Moreover, choice (ii) appears to lead to a much higher

fluence requirement for successful optimization in com-

parison to the freely varied fields using choice (i). For

Initial �eld �uence F  (a.u.)  
0

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

M
e

a
n

 �
u

e
n

ce
 o

f 
o

p
ti

m
iz

e
d

 �
e

ld
 F

   
  (

a
.u

.)
o

p
t

FIG. 5. The mean fluence Fopt of the optimized field as a func-

tion of the initial fluence F0, for simulations that used choice (i)

of the control variables. Twenty optimizations were performed

for each F0 value. The dashed line indicates where Fopt = F0.

choice (ii), a field fluence of F ≈ 2 was required in

order for any searches to succeed. For choice (i), how-

ever, the fluence of many optimized fields was an order

of magnitude smaller. This result shows the influence of

the parameterization in choice (ii), which introduces con-

straints beyond those on the field strength.

E. Algorithmic parameters

Gradient searches may be impeded by algorithmic pa-

rameters that prevent accurate solutions to Eq. (10), i.e.,

severe constraints on the s-evolution of the field. This

circumstance is especially relevant for search algorithms

that employ a fixed step size ∆s. If the step size is too

large, then searches may fail to optimize successfully.

Other constraints on the search algorithm, such as the

method used to integrate Eq. (10), may also affect op-

timization.

We performed fixed-step-size gradient optimizations

to study how the choice of step size affects the ability to

reach a global optimum. The objective was to maximize

JP for the transition |0〉 → |5〉 in the system defined in

Eq. (22), with N = 6, λ = 1, andD = 0.5. Choice (i) of

the control variables was used, and the initial field fluence

was F0 = 10. The final time was T = 50 and the con-

trol period was discretized into L = 511 intervals. The

objective was optimized with fourth-order Runge-Kutta

and forward Euler integrators, and both used a fixed step

size chosen on the interval 0.01 ≤ ∆s ≤ 0.5. 1000 opti-
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mization runs were performed for each ∆s value.
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FIG. 6. (Color online) The fraction of simulations that opti-

mized successfully (solid lines) and the mean final objective

value (dashed lines) for fixed-step fourth-order Runge-Kutta

(black circles) and Euler (red triangles) methods, as functions

of step size ∆s.

Statistical data obtained from these optimizations are

shown in Fig. 6. With both choices of integrator, at

least one search failed for ∆s > 0.07 and every search

failed for ∆s > 0.2. In addition, the mean final objec-

tive value J [ε(sf , t)], averaged over the set of 1000 runs,

decreased as ∆s increased. The proportion of searches

that failed to optimize for a given ∆s differs slightly be-

tween the two algorithms; the fourth-order Runge-Kutta

routine achieves a higher mean objective value than the

Euler method for a given step size, but it is computation-

ally slower. For both algorithms, severely constraining

the step size will prevent optimization.

Variable-step routines such as MATLAB’s ode45

[181] estimate an appropriate ∆s at each step in the

search, but this method requires the input of a maximum

tolerable error τ as described in Sec. III B. This parame-

ter influences the determination of ∆s. We used ode45

to perform additional optimizations on the same control

problem described above. 1000 simulations were per-

formed for each value of τ over the range 10−3 ≤ τ ≤
10−1. Figure 7 shows that at least one search failed to

optimize for τ > 2 × 10−3 and that all searches failed

to optimize for τ > 2 × 10−2. This confirms that exces-

sive error in the solution to Eq. (10) constrains the control

field and can prevent the achievement of an optimal con-

trol.
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FIG. 7. (Color online) The fraction of simulations that opti-

mized successfully (solid black line) and the mean final objec-

tive value (dashed red line) using ode45, a variable-step-size

fourth-order Runge-Kutta method, as a function of error tol-

erance τ . 1000 optimization runs were performed for each τ

value.

F. Composite objectives

The landscape analysis in Sec. III A applies to the three

cost functionals defined in Eqs. (7)-(9); collectively, they

include the great majority of OCT and OCE objectives.

However, some quantum control searches are designed

to simultaneously optimize one of these objectives along

with one or more other goals. The most common of these

other goals is to minimize the field fluence, such that

J = J1 − w

∫ T

0

ε(t)2dt, (27)

where J1 is the primary objective for maximization (e.g.,

JP or Jθ) and the weight w > 0 determines the rela-

tive importance of the fluence term. In this case, the re-

sults in Sec. IV D suggest that it may be challenging to

maximize this objective, since the fluence penalty term

constrains the field strength; the significance of this con-

straint is determined by the value ofw. It has been shown

that such a constraint can prevent the achievement of high

values of the primary objective J1 [60, 72, 127, 186].

More generally, composite objectives involving compet-

itive goals may not exhibit the advantageous landscape

structure described in Sec. II. Controls that are critical

points of the overall objective J =
∑

i Ji, i.e., that sat-

isfy δJ/δε(t) = 0, are generally not critical points of the

individual objectives J1, J2, . . . and so it is not possible

to simultaneously optimize multiple objectives by includ-

ing them as terms in a single composite objective. For
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example, in one numerical study, optimizations of a com-

posite objective relevant to adiabatic quantum computa-

tion [187] encountered local traps. In some OCEs, the

cost functional is formulated as a ratio between two ob-

jectives (i.e., J = J1/J2), and local traps can appear on

the corresponding control landscapes of J as well [188–

190]. Thus, a composite objective may introduce a se-

vere constraint, which can prevent the achievement of a

globally optimal value of the individual objective and/or

the composite objective, even when other constraints are

well-managed.

V. CONCLUSIONS

The success of quantum control experiments has

prompted several works devoted to the theoretical analy-

sis of the landscape critical topology [82, 127–129, 131,

135, 137, 140, 148, 182, 183]. Collectively, these studies

contend that the absence of local optima on the control

landscape is responsible for the favorable results in OCEs

and OCT simulations. This trap-free topology depends

upon three conditions: controllability, the full rank of the

Jacobian matrix δUT /δε(t), and the unconstrained con-

trol field ε(t). This paper has investigated how gradient-

based searches are affected by violating the third condi-

tion.

We have shown that the generic favorable properties of

the landscape topology can be obscured by placing severe

constraints on the control field. We studied the effects of

such constraints on OCT searches using a gradient-based

algorithm. Artificial traps on the control landscape were

observed when the time discretization, number of control

variables, control duration, field strength, and algorith-

mic step size were excessively constrained. These traps

are likely to prevent the algorithm from locating a glob-

ally optimal control, with the probability of failure typi-

cally correlated with the severity of constraint. We have

additionally shown that the effect of a constrained param-

eter on the success of OCT searches may be mediated

by other parameters. Importantly, the simulations also

demonstrated that no traps are encountered when the con-

straints are managed properly. Although this paper em-

ploys the conservative, myopic gradient algorithm, suf-

ficiently severe constraints can prevent full optimization

even with global genetic algorithms.

It has been shown that uncontrollable quantum systems

are extremely rare [148] and that the presence of singular

critical points on the landscape, i.e., the violation of con-

dition (2), appears to produce virtually no risk of trapping

in any practically relevant circumstances [161]. Com-

bined with these previous conclusions, the present results

strongly suggest that the overwhelming majority of en-

counters with traps ensue from severe control constraints

and do not reflect the fundamental landscape character.

We conclude that gradient searches performed on con-

trollable quantum systems are extremely unlikely to fail

unless the field is severely constrained. Thus, a search

that avoids such constraints can take full advantage of

the inherently favorable landscape topology.
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