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In this paper we study an archetypical scenario in which repulsive Casimir-Polder forces between
an atom or molecule and two macroscopic bodies can be achieved. This is an extension of previous
studies of the interaction between a polarizable atom and a wedge, in which repulsion occurs if the
atom is sufficiently anisotropic and close enough to the symmetry plane of the wedge. A similar
repulsion occurs if such an atom passes a thin cylinder or a wire. An obvious extension is to compute
the interaction between such an atom and two facing wedges, which includes as a special case the
interaction of an atom with a conducting screen possessing a slit, or between two parallel wires.
To this end we further extend the electromagnetic multiple-scattering formalism for three-body
interactions. To test this machinery we reinvestigate the interaction of a polarizable atom between
two parallel conducting plates. In that case, three-body effects are shown to be small, and are
dominated by three- and four-scattering terms. The atom-wedge calculation is illustrated by an
analogous scalar situation, described in the Appendix. The wedge-wedge-atom geometry is difficult
to analyze because this is a scale-free problem. But it is not so hard to investigate the three-body
corrections to the interaction between an anisotropic atom or nanoparticle and a pair of parallel
conducting cylinders, and show that the three-body effects are very small and do not affect the
Casimir-Polder repulsion at large distances between the cylinders. Finally, we consider whether
such highly anisotropic atoms needed for repulsion are practically realizable. Since this appears
rather difficult to accomplish, it may be more feasible to observe such effects with highly anisotropic
nanoparticles.

PACS numbers: 42.50.Lc, 32.10.Dk, 12.20.-m, 03.70.+k

I. INTRODUCTION

It is quite remarkable that after nearly seven decades,
interest in the so-called Casimir effect [1] remains so high.
There have been many theoretical and experimental de-
velopments in the last few years. For a review of the
status of quantum vacuum energy phenomena in general,
the reader is referred to the volume edited by Dalvit et
al. [2].

One of the hottest topics in the field is the subject of
repulsive Casimir effects. This could have a major im-
pact in nanotechnology, where at distances well below
1 µm, Casimir forces can play a dominating role. Re-
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pulsion can occur between electric and magnetic bodies,
between electric bodies separated by a medium with an
intermediate value of permittivity, or purely due to the
geometry of the two bodies. The geometric repulsion
that was demonstrated in Ref. [3] was based on numer-
ical methods. A great deal of effort has been given to
understanding the underlying analytical structure of re-
pulsive effects [4–6]. A brief review, with references, is
provided in Ref. [7]. For further work on repulsion see
Refs. [8–10].

In this paper, we will further develop the multiple-
scattering approach to include three-body effects, which
was introduced in the scalar context in Refs. [11–13],
in particular in the context of Casimir repulsion. The
electromagnetic formulation is in turn based on Green’s
dyadics, which have a long history. The Green’s dyadic
approach to computing the Casimir effect was first pro-
posed in Refs. [14, 15]. This was a tensorial generaliza-
tion of the scalar Green’s function variational approach
Schwinger had given a few years earlier [16]. All of this
was in the direct line of evolution to what is now referred
to as the multiple scattering method.

Although it is well-appreciated that Casimir forces
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are not additive, most work on such interactions has
concentrated on forces between two bodies. But the
multiple-scattering formalism is easily generalized to in-
clude three-body interactions. In Sec. II of this paper we
develop the three-body formalism for the electromagnetic
case. This is relevant to computing the force between a
polarizable atom and two co-planar half planes, forming
a slit, for example. As a simple illustration of the formal-
ism, we re-examine, in Sec. III, the interaction between
an atom and two parallel conducting plates, first consid-
ered by Barton [17]. Naturally, the two-body forces dom-
inate when the atom is near one or the other of the plates,
and three-body effects become significant at the several
percent level only when the atom is roughly equidistant
from the two plates, but then the force is quite small.
In Ref. [18] we examined the nonmonotonicity that can
arise when two polarizable atoms are near each other
and close to a conducting plate. These are reminiscent
of effects seen between two macroscopic objects and a
wall [19, 20]; our work generalized that given in Ref. [21].
We broke up the three-body terms into three- and four-
scattering contributions; although both are comparable
at short distances, as expected, the former dominate for
atoms far from the plate. In order to work out the three-
body effects for an atom interacting with two half-planes,
constituting a slit in a conducting plane, or more gener-
ally, facing wedges, in Sec. IVA we work out the scat-
tering matrix for a single wedge, and then, in Sec. IVB,
apply that to recalculate the two-body repulsion found
in Ref. [4]. Because of the complexity of the calculation,
a scalar analog is also considered in the Appendix. We
then go on to consider three-body effects between a po-
larizable atom and a pair of parallel conducting cylinders
in Sec. V. In Ref. [5] we showed that for an anisotropic
atom moving along a line perpendicular to but not in-
tersecting a perfectly conducting cylinder, and polariz-
able along that same line, a repulsive force occurs near
the cylinder, provided the distance of closest approach is
sufficiently large compared to the radius of the cylinder.
(The same does not occur for a sphere.) Here we consider
the three-body effects due to a second cylinder parallel
to the first, so the pair forms an aperture, perpendicu-
lar to which the anisotropic atom moves. We adapt our
formalism to this case, where a multipole expansion is
also possible, and show that when the distance between
the cylinders is sufficiently large, repulsion is not affected
by the three-body corrections, since the latter are very
small. Finally, in Sec. VI, we present a calculation that
suggests that highly anisotropic atoms, necessary to ex-
hibit the repulsive effects we are considering, may be be-
yond reach. Therefore, as in the numerical calculations
of Ref. [3], it may be more appropriate to consider the
interaction with highly anisotropic conducting nanopar-
ticles, such as needles, as suggested in related work on
negative Casimir-Polder entropy [22].

II. THREE-BODY CASIMIR ENERGY

The multiple scattering formulation has proved excep-
tionally useful in computing Casimir energies for com-
plex configurations. It is usually presented in terms of
potentials, where the potential stands in for the devia-
tion of the permittivity from its vacuum value, for in-
stance. Here, however, we wish from the outset to con-
sider perfect conductors, so we give the formulation en-
tirely in terms of scattering matrices. In particular, we
wish to analyze three-body effects. The formalism we
apply here appears in many places; recent examples are
Refs. [22, 23]. We use natural units, with ~ = c = 1, and
Heaviside-Lorentz electromagnetic units, except for the
definition of the polarizability.
The quantum vacuum energy, with the bulk vacuum

energy subtracted, is in general given by

E =
i

2
Tr lnΓΓ−1

0 , (2.1)

where the Tr symbol represents a trace over tensor indices
as well as spatial coordinates. Here Γ0 is the free Green’s
dyadic, which, for a given frequency ω, can be written as

Γ0(r, r
′) = (1ω2 +∇∇)G0(|r− r′), (2.2)

in terms of the free Helmholtz Green’s function

G0(R) =
ei|ω|R

4πR
, R = |r− r′|. (2.3)

The full Green’s dyadic Γ satisfies the same differential
equation as the free Green’s dyadic,

Γ−1
0 Γ = 1, (2.4)

where

Γ−1
0 =

1

ω2
∇×∇×−1 =

1

ω2

[

∇∇− (∇2 + ω2)1
]

. (2.5)

Here we have adopted a matrix notation for both the
tensor indices and the spatial coordinates, so

1 = 1δ(r− r′), (2.6)

where on the right 1 refers to the tensor indices only. The
conducting surfaces S appear through boundary condi-
tions on the Green’s dyadic,

n̂× Γ

∣

∣

∣

S
= 0, (2.7)

where n̂ is the outward normal to the surface at the point
in question. We may define the scattering matrix T by

Γ = Γ0 + Γ0TΓ0, (2.8)

so that

T = −Γ−1
0 + Γ−1

0 ΓΓ−1
0 . (2.9)
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Now we turn to the quantum interaction of three bod-
ies. It seems easiest to start with the situation where the
bodies may be described by potentials Vi, i = 1, 2, 3,
and then write the result in a form in which only the T

operators appear, so it applies to the conducting bound-
ary problem, defined by Eq. (2.7). The total potential is
V = V1 +V2 +V3, and the vacuum energy is given by
the trace-log of

ΓΓ−1
0 = (1− Γ0V)−1, (2.10)

or

E = − i

2
Tr ln(1− Γ0V). (2.11)

Now it is easy to see that

1− Γ0(V1 +V2 +V3) = (1− Γ0V1 − Γ0V2)

×
[

1− (1− Γ1V2)
−1Γ1V2Γ1V3(1− Γ1V3)

−1
]

×(1− Γ0V1)
−1(1− Γ0V1 − Γ0V3). (2.12)

Here we have introduced the Green’s dyadic belonging to
potential i alone,

Γi = (1− Γ0Vi)
−1Γ0. (2.13)

Now in Eq. (2.12) the factors before and after the square
brackets refer to only one- and two-body interactions (the
latter referring to interactions between bodies 1 and 2,
and 1 and 3, respectively), so the two-body interactions
between 2 and 3, and three-body interactions are all con-
tained in the quantity in square brackets. Now, in terms
of the potential, the corresponding scattering matrix is

Ti = Vi(1− Γ0Vi)
−1. (2.14)

Introducing the modified scattering matrix defined by
Shajesh and Schaden [13],

T̃ = TΓ0, (2.15)

and using the cyclic property of the trace, we find the
two and three body terms:

E23 = − i

2
Tr ln(1− T̃2T̃3), (2.16)

which is sometimes called the TGTG formula, and

E123 = − i

2
Tr ln

(

1−X23

[

X21T̃2(1+ T̃1)X31

×T̃3(1+ T̃1)− T̃2T̃3

])

, (2.17)

where

Xij = (1− T̃iT̃j)
−1. (2.18)

Expression (2.17) has a rather evident geometrical in-
terpretation in terms of multiple scattering off the three
objects. This is not written in as symmetrical a form
as in Ref. [13], but is somewhat simpler, particular for
the Casimir-Polder applications that follow, where body
1 represents the atom, so is treated weakly.

III. POLARIZABLE ATOMS BETWEEN

PARALLEL CONDUCTING PLATES

As a simple check of the machinery developed in the
previous section, we revisit the calculation of the inter-
action energy of an anisotropically polarizable atom be-
tween parallel conducting plates, a geometry first ana-
lyzed by Barton [17]. Since we know the Green’s dyadic
Γ for parallel plates, it is easy to derive the interaction
energy from the general Casimir-Polder formula

ECP = −
∫ ∞

−∞

dζ Trα · Γ, (3.1)

where the integration is over imaginary frequency, ω →
iζ.1 Here the (in general, anisotropic) polarizability of
the atom is α. In the following we will assume α is in-
dependent of frequency, i.e., we are working in the static
approximation. The interaction energy for one conduct-
ing plate at z = 0, one at z = a, and the atom at z = Z,
0 < Z < a, is

ECP =
α11 + α22 − α33

4πa4
ζ(4)

− trα

8πa4
[ζ(4, Z/a) + ζ(4, 1− Z/a)] , (3.2)

in terms of the Hurwitz zeta function.2 Here the two-
body interactions between the atom and one or the other
plate are isolated by extracting the parts singular as Z →
0 or Z → a:

ζ(4, Z/a) =
( a

Z

)4

+ ζ(4, 1 + Z/a),

ζ(4, 1− Z/a) =

(

a

a− Z

)4

+ ζ(4, 2− Z/a). (3.3)

The total Casimir-Polder energy is the sum of two-body
and three-body terms,

ECP = E12 + E13 + E123, (3.4)

where 1 denotes the atom, 2 the lower plate, and 3 the
upper plate. Here

E12 = − trα

8πZ4
, E13 = − trα

8π(a− Z)4
, (3.5a)

1 This replacement requires knowledge of the analytic properties
of the integrand. There can be serious subtleties involved in this
“Euclidean transformation,” for example, see Ref. [24]. See also
Ref. [25].

2 The particular combinations of Hurwitz zeta functions occurring
here and in the following are striking. Such combinations occur in
several places, for instance when considering the Casimir energy
for two parallel plates in D dimensional spacetimes, where the
argument 4 is replaced by D. Two of the first papers in this
direction are Refs. [26, 27]. See also Ref. [28]. Related structures
appear for the theory of the piecewise uniform string [29–31].
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FIG. 1: (Color online) Three-body contributions to the
Casimir-Polder interaction of an anisotropically polarizable
atom between two parallel polarizable plates. What is plot-
ted is the ratio of the three-body contribution relative to the
total energy, r = E123/ECP . The three-body contributions
are generally very small. They become appreciable only far
from both plates, where the Casimir-Polder energy is very
small. Plotted is the ratio for isotropic atoms (middle curve),
atoms polarizable only in the direction perpendicular to the
plates (top curve), and polarizable only parallel to the plates
(bottom curve). In the case when only αzz 6= 0, the sign of
the three-body correction is the same as that of the two-body
term.

and

E123 =
α11 + α22 − α33

4πa4
ζ(4)

− trα

8πa4
[ζ(4, 1 + Z/a) + ζ(4, 2− Z/a)] .

(3.5b)

Note that the first term in E123 is independent of Z, so
it does not contribute to the Casimir-Polder force on the
atom, but is a Casimir-Polder correction to the Casimir
force between the plates. The two-body energies over-
whelmingly dominate the Casimir-Polder interaction, as
shown in Fig. 1. For isotropic atoms, the largest three
body correction is only a 0.8% reduction at the mid-
point between the plates, where the energy is very small.
For atoms only polarizable parallel to the z direction
the three-body correction is an 8% increase at the place
where the energy is the smallest, while for purely trans-
versely polarizable atoms, the three-body correction is a
6% reduction at the midpoint.

A. Multiple-scattering calculation

Since in more general situations we do not have an
exact solution available, we want to calculate the three-
body corrections (3.5b), using the multiple-scattering for-
mula (2.17). For this purpose, we need to compute the
scattering operators for the three bodies.
The scattering matrix for the atom is simply

T1(r, r
′) = V1(r, r

′) = 4παδ(r−R)δ(r− r′), (3.6)

where R = (0, 0, Z) is the position of the atom. The free
electromagnetic Green’s dyadic can be written as

Γ0(r− r′) =

∫

(dk⊥)

(2π)2
eik⊥·(r−r

′)⊥γ0(z, z
′), (3.7)

where

γ0(z, z
′) = (E+H)

1

2κ
e−κ|z−z′|, (3.8)

with the usual abbreviation κ =
√

k2 + ζ2. Here E and
H are matrices corresponding to the transverse electric
(TE) and transverse magnetic (TM) modes,

E = −ζ2





s2 −cs 0
−cs c2 0
0 0 0



 ,

H(z, z′) =





c2∂z∂z′ cs∂z∂z′ ikc∂z
cs∂z∂z′ s2∂z∂z′ iks∂z
−ikc∂z′ −iks∂z′ k2



 . (3.9)

Here k2 = k2
⊥ and c (s) is the cosine (sine) of the angle

between the direction of k⊥ and the x-axis, c = kx/k,
s = ky/k. The polarization operators are transverse, in
the sense that

ik⊥ ·H+ ∂z ẑ ·H = 0, (3.10)

and similarly for E. Thus the modified scattering matrix
for the atom is

T̃1(r, r
′) = 4παδ(z − Z)δ(r⊥)

∫

(dk⊥)

(2π)2
eik⊥·(r−r

′)⊥

×(E+H)(z, z′)
1

2κ
e−κ|z−z′|. (3.11)

The following composition properties of the E and H

operators are easily checked:

EH = 0, (3.12a)

EE = −ζ2E, (3.12b)

H(z, z′)H(z′′, z′′′) = (k2 + ∂z′∂z′′)H(z, z′′′).

(3.12c)

For a single plate, say a conducting plate 2 at z = 0,
we have the reduced Green’s dyadic in the form

γ = EgE +HgH , (3.13)

where

gE,H(z, z′) = g0(z, z
′)∓ 1

2κ
e−κ(|z|+|z′|)

{

1,
sgn(z)sgn(z′),

g0(z, z
′) =

1

2κ
e−κ|z−z′|. (3.14)

Then the reduced modified scattering matrix is

t̃2(z, z
′) = γ−1

0 (γ − γ0)(z, z
′). (3.15)
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This is evaluated by using the transverse property of E
and H [hence, the vector Helmholtz operator reduces to
−∇2 + ζ2—see Eq. (2.5)] and

(

− d2

dz2
+ κ2

)

e−κ|z| = 2κδ(z), (3.16a)

(

− d2

dz2
+ κ2

)

sgn(z)e−κ|z| = 2δ′(z)e−κ|z|.(3.16b)

Thus the modified scattering matrix for a conducting
plate at z = 0 is

t̃2(z, z
′) =

1

ζ2

[

E(z, z′)δ(z)e−κ|z′|

+H(z, z′)
1

κ
δ′(z)e−κ|z|sgn(z′)e−κ|z′|

]

.

(3.17)

However, because δ′(z) is an instruction to integrate by
parts and evaluate at z = 0, which action is on the expo-
nential propagators occurring in every case, we can use,
as in Ref. [22],

t̃2(z, z
′) =

1

ζ2
(E−H)(z, z′)δ(z)e−κ|z′|. (3.18)

Then it is easy to see that the two-body interaction
energy between the atom and the plate is as expected:

E12 =
i

2
Tr T̃1T̃2 = − trα

8πZ4
. (3.19)

B. CP interaction between atom and two parallel

conducting plates

The three-body interaction is worked out by simpli-
fying the multiple-scattering formula (2.17) for the case
when there is only one interaction with the atom, since
that coupling is always weak:

E123 =
i

2
TrX23

(

T̃2T̃1T̃2T̃3 + T̃2T̃3T̃1T̃3

+ T̃2T̃1T̃3 + T̃2T̃3T̃1

)

, (3.20)

where the T̃ operators are given in Sec. III A.
Let us look at the E and H parts separately. For the

TE part,

X23E = E
1

1− e−2κa
δ(z), (3.21)

so

ETE
123 =

1

4π2

∫

dζ (dk⊥) trα

(

−E

ζ2

)

e−2κa

1− e−2κa

(

− ζ2

2κ

)

×
[

e−2κZ + e−2κ(a−Z) − 2
]

, (3.22)

where integrating over the directions of k⊥ gives for the
trace

trα

(

−E

ζ2

)

→ 1

2
(α11 + α22). (3.23)

Thus the TE contribution is

ETE
123 = −α11 + α22

12π

∫ ∞

0

dκ κ3 1

e2κa − 1

×
[

−2 + e−2κZ + e−2κ(a−Z)
]

= −α11 + α22

32πa4

[

− 2ζ(4) + ζ(4, 1 + Z/a)

+ ζ(4, 2− Z/a)

]

. (3.24)

The TM contribution is similarly worked out, with the
result

ETM
123 = − 1

2π

∫ ∞

0

dκ κ3

e2κa − 1

{

α11 + α22

2

×
[

e−2κZ + e2κ(a−Z) − 2
]

+
2

3
α33

[

e−2κZ + e−2κ(a−Z) + 2
]

}

= −3(α11 + α22)

32πa4

× [−2ζ(4) + ζ(4, 1 + Z/a) + ζ(4, 2− Z/a)]

− α33

8πa4
[2ζ(4) + ζ(4, 1 + Z/a) + ζ(4, 2− Z/a)] .

(3.25)

Adding this to the TE contribution (3.24), gives the
three-body energy (3.5b).
The three-body corrections are dominated by the

three- and four-scattering contributions, given by the ex-
plicit scattering terms in Eq. (3.20), with the multiple-
reflection quantity X23 set equal to 1. That translates
into replacing the zeta functions in Eq. (3.5b) by their
leading terms, ζ(4) → 1, ζ(4, x) → 1/x4. Figure 2
compares the exact three-body corrections to the leading
three- and four-scattering approximations. (It is geomet-
rically obvious why the odd-scattering terms give con-
tributions which are independent of the position of the
atom, because the path length is then an integer multiple
of the plate separation.)

IV. CASIMIR-POLDER INTERACTION

BETWEEN ATOM AND WEDGE

Our goal had been to compute the three-body correc-
tions for an atom near an aperture created by two facing
wedges, as shown in Fig. 3. Here we have two parallel
conducting wedges, with opening angles β, whose apexes
are separated by a distance 2X . As both interior wedge
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FIG. 2: (Color online) Three-body contribution to the
Casimir-Polder interaction of an isotropically polarizabable
atom between two parallel polarizable plates. The interaction
energy is given in units of α/a4. The upper dotted horizontal
line is the three-scattering approximation, the lower dashed
curve is the four-scattering approximation, the upper solid
(red) curve is the sum of these two contributions, which is
only slightly above the the full three-body energy (solid blue
curve).

X

•

ρ

β

θ

φ

FIG. 3: Two facing conducting wedges, with an anisotropi-
cally polarizable atom passing along a line perpendicular to
the symmetry plane of the wedges.

angles go to zero, the situation reduces to two conduct-
ing half-planes, lying in the same plane, with a gap be-
tween them. The Casimir-Polder interaction between the
two wedges and an anisotropically polarizable molecule,
located at coordinates ρ, φ relative to the apex of one
wedge, is to be computed. In particular, we wish to study
the three-body interaction, which involves scattering off
all three objects, as a correction to the more elementary
calculation of the interaction between the atom and a
single wedge, which is given in Ref. [4]. For the latter,
repulsion can be achieved for the angle φ sufficiently close
to π, provided β is smaller than 108◦ = 1.88 radians.

A. Scattering Matrix for a Perfectly Conducting

Wedge

In Ref. [4] we gave the Green’s dyadic for a single
perfectly conducting wedge, in terms of polar coordi-
nates based at a point on the apex of the wedge. We

write this most conveniently in terms of the quantity

κ =
√

k2 + ζ2, where ζ = −iω is the imaginary frequency
and the wavenumber in the longitudinal direction or z di-
rection, the direction perpendicular to the plane of the
figure, is k. With θ defined as the angle from the top sur-
face of the wedge, that Green’s dyadic is (the prime on
the summation sign is an instruction to count the m = 0
term with half weight)

Γ(r, r′) =
2p

π

∞
∑

m=0

′

∫ ∞

−∞

dk

2π

×
[

E(r, r′) cosmpθ cosmpθ′

+H(r, r′) sinmpθ sinmpθ′
]

eik(z−z′)

×Imp(κρ<)Kmp(κρ>)

−κ2
. (4.1)

Here ρ> (ρ<) is the greater (lesser) of ρ, ρ′, and p =
π/(2π − β). The electric and magnetic polarization
dyadic operators are

E(r, r′) = −
(

ρ̂
1

ρ
∂θ − θ̂∂ρ

)(

ρ̂′ 1

ρ′
∂θ′ − θ̂′∂ρ′

)

×(∇2
⊥ − k2)

= −ζ2(ẑ×∇⊥)(ẑ×∇
′
⊥)

= −∇2(ẑ×∇⊥)(ẑ×∇
′
⊥), (4.2a)

H(r, r′) =

[

ik

(

ρ̂∂ρ + θ̂
1

ρ
∂θ

)

− ẑ∇2
⊥

]

×
[

−ik

(

ρ̂′∂ρ′ + θ̂′ 1

ρ′
∂θ′

)

− ẑ∇′2
⊥

]

=
(

ik∇⊥ − ẑκ2
) (

−ik∇′
⊥ − ẑκ2

)

= [∇× (∇× ẑ)][∇′ × (∇′ × ẑ)]. (4.2b)

[Here the polarization operators differ from those given
previously in Eq (3.9) by the replacements E → −∇2

⊥E,
H → −∇2

⊥H. For a further discussion of the properties
of the polarization operators, see Ref. [23].] In the sec-
ond forms in Eq. (4.2) we have used the modified Bessel
equation, that is, that for either modified Bessel function

(−∇2
⊥ + κ2)eiν(θ−θ′)

{

Iν(κρ)
Kν(κρ)

= 0. (4.3)

In the following we will need the composition proper-
ties of these operators, analogous to those in Eq. (3.12):

E(r, r′)H(r′′, r′′′) = H(r, r′)E(r′′, r′′′) = 0. (4.4a)

E(r, r′)E(r′′, r′′′) = E(r, r′′′)∇′2
⊥(∇′′2

⊥ − k2)

→ κ2ζ2E(r, r′′′), (4.4b)

H(r, r′)H(r′′, r′′′) = H(r, r′′′)∇′2
⊥(∇′′2

⊥ − k2)

→ κ2ζ2H(r, r′′′), (4.4c)

where we will understand that after differentiation, the
intermediate coordinates r′ and r′′ are set equal and in-
tegrated over; that is, a spatial matrix multiplication is
understood.
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To construct the modified scattering matrices, we need
the free Green’s dyadic, which we can write as Eq. (2.2),
where a representation for the scalar Helmholtz Green’s
function in cylindrical coordinates is

G0(r − r′) =

∫ ∞

−∞

dk

2π
eik(z−z′) 1

2π

∞
∑

m=−∞

eim(θ−θ′)

×Im(κρ<)Km(κρ>). (4.5)

It is easy to verify that in terms of the mode operators,

Γ0(r, r
′) = − 1

∇2
⊥

(E+H)(r, r′)G0(r− r′). (4.6)

Using the above, we find the modified scattering matrix
for the atom to be

T̃atom(r, r
′) = 4παδ(r−R)(E+H)(r, r′)

∫

dk

2π
eik(z−z′)

× 1

2π

∞
∑

m=−∞

eim(θ−θ′) Im(κρ<)Km(κρ>)

−κ2
.

(4.7)

To work out the T̃ matrix for the wedge, we start from
Eq. (2.9),

T̃ = Γ−1
0 (Γ − Γ0). (4.8)

The inverse free Green’s function is the differential oper-
ator given in Eq. (2.5). It is easy to check that

Γ−1
0 E = E

κ2 −∇2
⊥

ω2
, (4.9a)

Γ−1
0 H = H

κ2 −∇2
⊥

ω2
. (4.9b)

The Helmholtz operator appearing as the last factor here
would annihilate the scalar Green’s functions appearing
in Eq. (4.1), except on the boundaries, where the nor-
mal derivatives give contributions to the scattering ma-
trix that live entirely on the surface of the wedge. This
is precisely the same as what occurred for the planes in
Sec. III A: see Eq. (3.16). Here, because we are consid-
ering the region exterior to the wedge, we interpret the
angular mode functions as follows: (θ ∈ [0,Ω])

cosmpθ → cosmpθ η(θ) η(Ω− θ), (4.10a)

sinmpθ → sinmpθ η(θ) η(Ω − θ), (4.10b)

where Ω = 2π − β is the exterior wedge angle, and the
step function is defined by

η(x) =

{

1, x > 0,
0, x < 0.

(4.11)

Then we see that

[∂2
θ + (mp)2] cosmpθ = δ′(θ) − (−1)mδ′(θ − Ω),

[∂2
θ + (mp)2] sinmpθ = mp[δ(θ)− (−1)mδ(θ − Ω)].

(4.12)

From this we can immediately read off the modified scat-
tering matrix for the wedge:

T̃wedge(r, r
′) = −2p

π

∞
∑

m=0

′

∫ ∞

−∞

dk

2π

1

ζ2

×
{

E(r, r′) [δ′(φ− β/2)− (−1)mδ′(φ+ β/2)]

× cosmp(φ′ − β/2)

+mpH(r, r′) [δ(φ− β/2)− (−1)mδ(φ+ β/2)]

× sinmp(φ′ − β/2)

}

eik(z−z′)

× 1

κ2ρ2
Imp(κρ<)Kmp(κρ>), (4.13)

where we have shifted to the angular variable φ mea-
sured from the symmetry plane of the wedge, as shown
in Fig. 3, φ, φ′ ∈ [β/2, 2π−β/2], and the delta functions
are understood to be periodically extended, with period
2π.

B. Two-body Calculation

We now want to use this multiple scattering formalism,
particularly Eq. (2.16), to reproduce the results found in
Ref. [4]. Putting together the scattering matrix for the
atom, Eq. (4.7), and that for the wedge, Eq. (4.13), we
obtain the following expression for the Casimir-Polder
energy,

Eaw = −i
p

4π3
trα

∫

dζdk

κ2

∫ ∞

0

dρ′

ρ′

∞
∑

m=−∞

∞
∑

m′=−∞

× [mE(r, r′′)−m′pH(r, r′′)] eim
′p(φ′′−β/2)

×eimφ
[

e−imβ/2 − (−1)m
′

eimβ/2
]

×Im(κρ<)Km(κρ>)I|m′|p(κρ̃<)K|m′|p(κρ̃>).

(4.14)

Here ρ<,> is the lesser, greater of ρ, ρ′, and ρ̃<,> is the
lesser, greater of ρ′′, ρ′. After the differentiations con-
tained in E and H are performed, the coordinates ρ′′

and φ′′ are to be set equal to ρ and φ, respectively.
Although we can carry out the m summation, or the ρ′

integration, it seems difficult to bring Eq. (4.14) into the
closed form given in Ref. [4]. So we initially will content
ourselves with a special case, β = π or p = 1, that is, the
interaction of an atom with an infinite conducting plane.
In that case, we may as well ultimately set φ = φ′′ = π.
Then only Bessel functions of integer order occur, and
both the m and m′ sums can be carried out, using the
addition theorem,

K0(κP ) =

∞
∑

m=−∞

eim(φ−φ′)Im(κρ<)Km(κρ>), (4.15)
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where

P =
√

ρ2 + ρ′2 − 2ρρ′ cos(φ− φ′). (4.16)

Then the energy can be written as

Eap = − i

2π2

∫ ∞

0

dκ

κ

∫ ∞

0

dρ′

ρ′
trα(E−H)(r, r′′)

×
[

K0(κ
√

ρ2 + ρ′2 − 2ρρ′ sinφ)

×1

i

∂

∂φ′′
K0(κ

√

ρ′′2 + ρ′2 − 2ρ′′ρ′ sinφ′′)

− (sinφ → − sinφ)

]∣

∣

∣

∣

ρ′′→ρ, φ′′→φ=π

=
1

2π2

∫ ∞

0

dκ

∫ ∞

0

dρ trα(E−H)(r, r′′)

×
[

ρ′′ cosφ′′

√

ρ′2 + ρ′′2 − 2ρ′ρ′′ sinφ′′

×K ′
0(κ(

√

ρ′2 + ρ′′2 − 2ρ′ρ′′ sinφ′′)

×K0(κ
√

ρ2 + ρ′2 − 2ρρ′ sinφ)

+ (sinφ → − sinφ)

]∣

∣

∣

∣

ρ′′→ρ,φ′′→φ=π

. (4.17)

The simplest situation occurs when the atom is only
polarizable along the axis of the wedge, α = ẑẑαzz . Then
trαE = 0, trαH = κ4αzz, and we have

Eap = −αzz

π2

∫ ∞

0

dρ′
ρ

√

ρ2 + ρ′2

∫ ∞

0

dκ κ4

×K0(κ
√

ρ2 + ρ′2)K1(κ
√

ρ2 + ρ′2)

= − αzz

8πρ4
, (4.18)

which is the expected Casimir-Polder energy. With only
a bit more effort, we find the familiar result for arbitrary
polarization,

ECP = − trα

8πρ4
. (4.19)

Given the difficulty of even analytically reproducing
the two-body correction given in Ref. [4], it is not sur-
prising that we did not get very far with the three-body
calculation. In the Appendix we consider the scalar ana-
log for the two-body effect, and although we get a bit
further, we have been unable to reproduce the analytic
result obtained by the direct calculation.3 So we turn,
instead, to another problem, the interaction between an
atom and a pair of cylinders.

3 However, it is possible to recast the T̃1T̃2 expression into the
form of the direct CP energy ECP = Tr

∫
dζα(G−G0)—see the

Appendix.

α

y

h

R

a

R

a

FIG. 4: (Color online) An anisotropically polarizable atom,
denoted by α, is symmetrically located relative to two identi-
cal parallel perfectly conducting cylinders (with axes coming
out of the page). The centers of the cylinders are separated
by a distance h, and each has radius a. The atom is on the
line bisecting the line connecting the centers of the two cylin-
ders, but a distance y above it. The atom is a distance R
from the center of either cylinder. The angle θ is defined by
cos θ = y/R.

V. CASIMIR-POLDER INTERACTION OF

ATOM WITH TWO PARALLEL CYLINDERS

The difficulties in extracting usable expressions for
three-body effects for the atom-wedge-wedge problem has
to do with the lack of a scale, so multipole expansions,
for example, are not applicable. Therefore, we turn to
another example, that of an atom interacting with a pair
of parallel cylinders, illustrated in Fig. 4. Here it is as-
sumed the two cylinders are identical, with radius a, and
their centers are separated by a distance h. The atom
is located on the line bisecting the line connecting the
centers of the cylinders, a distance R from the center of
each, and a height y above the centerline. We will con-
sider the case when the atom is only polarizable along
the bisecting line.

A. Scattering matrix for cylinder

We first need to compute the scattering matrix for the
cylinder. The Green’s dyadic, given in Ref. [32], part
of which appears in Ref. [5], can be written, with slight
notational changes, as4

Γcyl(r, r
′) = −

∞
∑

m=−∞

∫

dk

(2π)2
eim(φ−φ′)eik(z−z′)

× [EFm(ρ, ρ′) +HGm(ρ, ρ′)] , (5.1)

4 As noted in Ref. [33], only the terms in the Green’s functions
involving modified Bessel functions, and not powers of the radial
coordinates, contribute to the electric and magnetic fields.
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where the TE and TM Green’s functions are, outside the
cylinder,

Fm(ρ, ρ′) =
1

κ2

[

Im(κρ<)Km(κρ>)

− I ′m(κa)

K ′
m(κa)

Km(κρ)Km(κρ′)

]

,(5.2a)

Gm(ρ, ρ′) =
1

κ2

[

Im(κρ<)Km(κρ>)

− Im(κa)

Km(κa)
Km(κρ)Km(κρ′)

]

,(5.2b)

and the polarization operators are the same as given
in Eqs. (4.2). The modified scattering matrix is given
by Eq. (4.8), where, because of the tranversality of the
polarization operators, the inverse free Green’s operator
may be replaced by Γ−1

0 → 1
ζ2 (∇2 − ζ2) [cf. Eq. (4.9)],

which vanishes everywhere but on the surface of the
cylinder. Because we have a perfectly conducting body,
Fm(ρ, ρ′) = 0 if ρ′ > a > ρ, and so for the TE function
with ρ′ > a

(Fm − F 0
m)(ρ, ρ′) = − 1

κ2
Km(κρ′)

[

I ′m(κa)

K ′
m(κa)

×Km(κρ)η(ρ− a) + Im(κρ)η(a− ρ)

]

. (5.3a)

Similarly, the TM functions are

(Gm −G0
m)(ρ, ρ′) = − 1

κ2
Km(κρ′)

[

Im(κa)

Km(κa)

×Km(κρ)η(ρ− a) + Im(κρ)η(a− ρ)

]

. (5.3b)

Then a simple calculation leads to the scattering matrix

T̃cyl =

∞
∑

m=−∞

∫

dk

(2π)2
eik(z−z′)eim(φ−φ′) 1

κ2ζ2a

×
[

E
1

κ

1

ρ

∂

∂ρ
ρδ(ρ− a)

Km(κρ′)

K ′
m(κa)

−Hδ(ρ− a)
Km(κρ′)

Km(κa)

]

. (5.4)

To check its validity, we reproduce the two-body inter-
action between one cylinder and the anisotropic atom,
for which we obtain

E12 = −1

2

∫ ∞

−∞

dζ

2π
Tr T̃atomT̃cyl

= −
∫

dζdk

(2π)2

∞
∑

m=−∞

tr
α

κ2

[

I ′m(κa)

K ′
m(κa)

E(r, r′)

+
Im(κa)

Km(κa)
H(r, r′)

]

×Km(κρ)Km(κρ′)

∣

∣

∣

∣

r=r′=R

. (5.5)

This is the general result, which may be derived by sim-
pler means. In particular, for the situation envisaged in
Fig. 4, where R = h/(2 sin θ), and the atom is only polar-
izable along the y direction, we obtain the formulas given
in Ref. [5]5 in terms of the distance of closest approach
R0 = h/2,

ETM
CP = − α

4π

sin4 θ

R4
0

∞
∑

m=−∞

∫ ∞

0

dxx
Im(κa sin θ/R0)

Km(κa sin θ/R0)

×
[

m2K2
m(x) sin2 θ + x2K ′2

m(x) cos2 θ
]

,

(5.6a)

ETE
CP =

α

4π

sin4 θ

R4
0

∞
∑

m=−∞

∫ ∞

0

dxx
I ′m(κa sin θ/R0)

K ′
m(κa sin θ/R0)

×
[

m2K2
m(x) cos2 θ + x2K ′2

m(x) sin2 θ
]

.

(5.6b)

These formulas show that repulsion indeed occurs along
the bisector (y) direction provided the distance of closest
approach R0 is larger than about 7 times the radius of
the cylinder; in this case the m = 0 term dominates,
and the TM contribution is much larger than the always
attractive TE contribution, as we will see below.

B. Three-body correction

We now want to see if the above repulsive effect sur-
vives when the effect of both bodies are included. By
virtue of the symmetry seen in Fig. 4, the two-body forces
in the y-direction are doubled. That is, if the atom is
called body 1, and the cylinders are 2 and 3, respectively,
the two-body terms are just

E2−body = E12 + E13. (5.7)

The three-body terms are computed from Eq. (3.20). In
view of the remarks above, because we are considering
large distances between the cylinders, it should suffice to
consider the three- and four-scattering terms, the higher
terms being suppressed,

E3−body ≈ E123 + E132 + E1232 + E1323,

E123 = −1

2
Tr T̃1T̃2T̃3, E1232 = −1

2
Tr T̃1T̃2T̃3T̃2.

(5.8)

Further, we expect dominance by the m = 0 TM mode.
However, we can effect considerable simplification before
we make that last approximation. Indeed, the formula

5 The signs of the energies given there, and in Fig. 3 of that refer-
ence, should be reversed. All physical conclusions in that paper,
however, are correct.
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for the TM mode 3-scattering energy simplifies to

ETM
123 =

∫

dζ dk

(2π)2
1

κ2
trαH(r, r̃)

×
∑

mm′

∫ 2π

0

dφ̃′

2π
ei(mφ−m′φ̃)ei(m

′φ̃′−mφ′)

× Im(κa)

Km(κa)

Km(κρ′)

Km′(κa)
Km(κρ)Km′(κρ̃)

∣

∣

∣

∣

ρ=ρ̃=R

,

(5.9)

and the corresponding TE 3-scattering energy is

ETE
123 =

∫

dζ dk

(2π)2
1

κ2
trαE(r, r̃)

×
∑

mm′

∫ 2π

0

dφ̃′

2π
ei(mφ−m′φ̃)ei(m

′φ̃′−mφ′)

× I ′m(κa)

K ′
m(κa)

K ′
m(κρ′)

K ′
m′(κa)

dρ′

da
Km(κρ)Km′(κρ̃)

∣

∣

∣

∣

ρ=ρ̃=R

,

(5.10)

where a and φ̃′ are the cylindrical coordinates of a point
on the surface of the second cylinder relative to the cen-
tral axis of that cylinder, the same point being located
at cylindrical coordinates ρ′ and φ′ relative to the central
axis of the first cylinder. These coordinates are related
by

ρ′2 = h2+a2−2ah cos φ̃′, tanφ′ =
a sin φ̃′

a cos φ̃′ − h
. (5.11)

The atom is located in the two coordinate systems at

R = (R, φ, 0) = (R, φ̃, 0), (5.12)

where

φ =
π

2
+ θ, φ̃ =

π

2
− θ. (5.13)

It would now be straightforward to work out the multi-
pole expansion of Eqs. (5.9), (5.10) that is, a power series
expansion in powers of a/h. We will content ourselves
with the lowest term, which means we can set m = 0,
because only for small values of a/h do we have 2-body
repulsion. Higher terms are suppressed by powers of a/h.
In this limit, the TE energy is completely negligible, be-
cause of the appearance of derivatives of Bessel functions.
The behavior of the Bessel functions for small argument
makes this point clear:

I0(z) ∼ 1 +
1

4
z2, K0(z) ∼ −γ − ln

z

2
, (5.14a)

I ′0(z) ∼ 1

2
z, K ′

0(z) ∼ −1

z
, z → 0. (5.14b)

FIG. 5: (Color online) The Casimir-Polder energy of an
anisotropic atom or nanoparticle passing on the symmetry
line perpendicular to a pair of identical perfectly conduct-
ing parallel cylinders. The energy, apart from a factor of
α/(4πR4

0), is plotted versus φ̃ = π/2 − θ, that is, the angle
between the line connecting the axes of the cylinders and the
line connecting the atom with the center of either cylinder.
The bottom curve (red) is the two-body energy, the top curve
(dotted-blue) is the three-scattering correction, the second-
from-top curve (dashed red) is the four-scattering term, while
the second curve from the bottom (blue) is the total Casimir-
Polder energy. The energies are plotted for a/R0 = 0.01.
Because a/R0 ≪ 1 it is sufficient to include only m = 0 for
the three-body corrections. Also, the TE contributions are
completely negligible. It is seen that the three-body effects,
in fact, are very small, and do not significantly alter the re-
pulsion between the atom and the pair of cylinders, and the
four-scattering terms are quite negligible.

Then we get a very simple explicit formula, again for an
atom polarizable only in the bisector (y) direction,

ETM
123 ∼ αyy

4πR4
0

cos2 θ sin4 θ

×
∫ ∞

0

dxx3K0(2x sin θ)I0(xa sin θ/R0)

K2
0 (xa sin θ/R0)

K ′2
0 (x).

(5.15)

Here h = 2R0 is the separation distance between the
axes of the cylinders. In the same approximation, the
4-scattering contribution is also given simply:

ETM
1232 ∼ − αyy

4πR4
0

cos2 θ sin4 θ

×
∫ ∞

0

dxx3K
2
0(2x sin θ)I0(xa sin θ/R0)

K3
0(xa sin θ/R0)

K ′2
0 (x).

(5.16)

These TM corrections are plotted in Fig. 5 as a func-
tion of φ̃ = π/2 − θ, so φ̃ = 0 at the position of the
atom closest to the cylinders, and compared to the two
body contributions. (All the TE corrections are com-
pletely negligible.) The figure shows the two-body CP
energy, entirely dominated by the m = 0 TM contribu-
tion, and the m = 0 three-body correction, dominated by
the three-scattering terms, in the limit of large distance
between the cylinders. The TE contributions were com-
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puted, but found, as expected, to be completely insignif-
icant in the large distance regime. The TM three-body
correction is not quite negligible, but does not affect the
Casimir-Polder repulsion discovered in Ref. [5].

VI. DIFFICULTY OF ACHIEVING HIGH

ATOMIC ANISOTROPY

In order for Casimir–Polder repulsion to be possible,
the atom interacting with a body must have a sufficiently
anisotropic polarizability tensor. Defining an anisotropy
factor γ according to

α = αzzẑẑ+ γαzzx̂x̂+ γαzzŷŷ, (6.1)

implying

γ =
Tr(α)− αzz

2αzz
, (6.2)

we found in Ref. [4] that for an anisotropic atom inter-
acting with a half-plane, the critical value of γ was 1/4.
Values γ < 1/4 give repulsion in certain circumstances,
whereas for γ > 1/4 no repulsion is possible. The non-
retarded interaction of an atom and a circular aperture
was considered in Ref. [34] and the critical value of γ was
found to be 1/4 also in this case [4].
In this section we investigate what minimal value of

the anisotropy parameter can be achieved by preparing
an atom in an excited eigenstate |nlm〉. Here, n denotes
the principal quantum number, l = 0, . . . n − 1 is the
quantum number for the orbital angular momentum and
m = −l . . . l that for its z-component. The question is
of great interest especially in the light of recent advances
in experimental techniques using Rydberg atoms, atoms
excited to high principal quantum numbers, near bound-
aries [35, 36], and noting that Rydberg atoms can take
highly anisotropic shapes.
Because of the close spacing of energy levels for highly

excited states, and the fact that transitions to the states
nearest in energy to |nlm〉 dominate the CP energy [36],
the Casimir–Polder interaction of a Rydberg molecule is
essentially non-retarded even at atomically large separa-
tions, up to hundreds of micrometers. It was shown that
in such cases the interaction energy is proportional to the
atomic dipole moment tensor [37, 38],

Enlm = −〈dd〉 : ∇∇G

∣

∣

∣

∣

ω=0

= −〈dd〉 : Γω=0, (6.3)

according to Eq. (2.2). For convenience we will work with
the ratio

q = 〈d2zz〉/〈d2〉. (6.4)

Defining γ similarly as before

γ =
〈d2〉 − 〈d2zz〉

2〈d2zz〉
=

1

2

(

1

q
− 1

)

, (6.5)

we will consider energy eigenstates |nlm〉 such that
anisotropy becomes maximal, i.e., γ becomes minimal
and q maximal.
To evaluate the anisotropy parameter, we insert the

completeness relation
∑

n′l′m′ |n′l′m′〉〈n′l′m′| = I,

q =

∑

n′l′m′〈nlm|dz|n′l′m′〉〈n′l′m′|dz|nlm〉
∑

n′l′m′〈nlm|d|n′l′m′〉·〈n′l′m′|d|nlm〉 (6.6)

The dipole-matrix elements can conveniently be calcu-
lated by means of the Wigner–Eckart theorem [39, 40]

〈n′l′m′|ds|nlm〉 = (−1)l
′−m′

(

l′ 1 l
−m′ s m

)

〈n′l′||d||nl〉 ,
(6.7)

where 〈n′l′||d||nl〉 denotes the reduced matrix element
and the Wigner 3-j symbol can be given in terms of
Clebsch–Gordan coefficients as [41]
(

j1 j2 j
m1 m2 m

)

=
(−1)j1−j2−m

√
2j + 1

〈j1m1j2m2|j −m〉 . (6.8)

Substituting these relations into Eq. (6.6) and using the
orthonormality relation [41]

√

2j + 1
∑

m1m2

(

j1 j2 j
m1 m2 m

)(

j1 j2 j′

m1 m2 m′

)

= δjj′δmm′ ,

(6.9)
we find

q → qlm =
∑

l′

|〈l m 1 0|l′m〉|2 . (6.10)

As expected from the symmetry of the problem, the
anisotropy parameter depends neither on the reduced
matrix element nor on the principal quantum numbers.
The Clebsch-Gordan coefficients in Eq. (6.10) can be

evaluated explicitly, leading to [41]

qlm =
l2 −m2

(2l − 1)(2l+ 1)
+

(l + 1)2 −m2

(2l+ 1)(2l + 3)
. (6.11)

For a given l, the anisotropy parameter obviously takes
its maximum value for m = 0,

ql0 =
l2

(2l − 1)(2l+ 1)
+

(l + 1)2

(2l+ 1)(2l + 3)
=

2l(l+ 1)− 1

4l(l+ 1)− 3
.

(6.12)
The latter expression is equal to 1/3 for l = 0, approaches
1/2 for l → ∞ and takes it maximum value

q10 = 3
5 =⇒ γ = 1

3 (6.13)

for l = 1. The maximally anisotropic eigenstate of orbital
angular momentum is thus a p state.
Since qlm is positive for any given choice of quantum

numbers, it immediately follows that the anisotropy pa-
rameter γ is bounded below by 1/3 for any incoherent
superposition of energy eigenstates. It is possible that
stronger anisotropies could be realizable with a coher-
ent superposition of states. However, the more likely
venue for discovering such repulsive effects would be with
anisotropic particles, such as elongated needles.
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VII. CONCLUSIONS

One of the principal features of Casimir or quantum
vacuum forces is that they are not additive. Unlike clas-
sical electrodynamics, one cannot simply sum pairwise
forces. Such approximations clearly are invalid even for
the simplest situations of parallel plates. This, of course,
makes calculations more challenging.
In this paper, we have explored some aspects of three-

body interactions in the context of Casimir-Polder forces
between an anisotropically polarizable atom or nanopar-
ticle and two conducting surfaces. First we examined
the role of such forces involving an atom between two
perfectly conducting plates, a well-known problem [17],
but one in which we can test our formalism and isolate
explicitly the three-body terms. Then we turned to the
interaction of such an atom with a pair of wedges; we
reproduced the repulsive effects seen for an atom inter-
acting with a single wedge [4], but a closed form for the
three-body correction remains elusive. So we then exam-
ined the interaction of an anisotropic atom with a pair of
parallel cylinders. The two-body repulsive effect found
earlier [5] was reproduced, and the three-body correc-
tion was computed in the limit of large separation be-
tween the cylinders, which is the regime where repulsion
is expected. The three-body correction is non-negligible
in this limit, is completely captured by the TM three-
scattering approximation, but is too small to affect the
earlier-found repulsion.
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Appendix: Scalar analog for atom-wedge problem

In this Appendix we will consider a scalar analog of
the atom-wedge problem. Let the atom be described by
the potential

Vatom = 4παδ(r −R), (A.1)

where R = (R, φ, 0) is the position of the atom. The
modified scattering matrix for the (Dirichlet) wedge is
[note that the sign is reversed compared to Eq. (4.8)]

T̃wedge = 1−G−1
0 Gw, (A.2)

where

Gw(r, r
′) =

2p

π

∫ ∞

−∞

dk

2π
eik(z−z′)

∞
∑

m=1

sinmp(φ− β/2)

× sinmp(φ′ − β/2)Imp(κρ<)Kmp(κρ>).

(A.3)

Applying G−1
0 = −∇2 + ζ2 we obtain the scattering ma-

trix on the wedge:

T̃w =
2p

π

∫ ∞

−∞

dk

2π

∞
∑

m=1

eik(z−z′)mp

ρ2
[δ(φ− β/2)

− (−1)mδ(φ + β/2)] sinmp(φ′ − β/2)

×Imp(κρ<)Kmp(κρ>). (A.4)

The two-body energy is given by

E12 =
i

2

∫

dω

2π
Tr T̃1T̃2 = −1

2

∫ ∞

−∞

dζ

2π
Tr V1G0T̃2.

(A.5)
If we use the two-dimensional representation for the free
propagator,

G0(r) =

∫ ∞

−∞

dkz
2π

eikzz
1

2π
K0(κ|r⊥|), (A.6)

the two-body energy can be written as

E12 = − α

π2
p2

∫ ∞

0

dκ κ

∫ ∞

0

dρ′

ρ′

∞
∑

m=1

m sinmp(φ− β/2)

×Imp(κρ<)Kmp(κρ>)

×[K0(κP+)− (−1)mK0(κP−)], (A.7)

where P± is the distance between the atom and a point
on the upper (lower) wedge boundary,

P± =
√

R2 + ρ′2 − 2Rρ′ cos(φ∓ β/2). (A.8)

Now the integral of the three Bessel functions can be
performed:

∫ ∞

0

dt t Iν(ξt)Kν(t)K0(P±t/ρ>)

=
1

2ξ sin(φ− β/2)

∞
∑

n=0

ξν+n+1 sin(n+ 1)(φ− β/2)

ν + n+ 1
,

(A.9)

where ξ = ρ</ρ>. The radial integrals are then easy,
and we are immediately led to

E12 = − αp2

π2R2

∞
∑

m=1

m sinmp(φ− β/2)

×
∞
∑

n=0

1

(n+mp)(n+mp+ 2)

×
[

sin(n+ 1)(φ− β/2)

sin(φ− β/2)

− (−1)m
sin(n+ 1)(φ+ β/2)

sin(φ + β/2)

]

.(A.10)



13

Now we replace the sum over m by an integral,

∞
∑

m=1

1

mp+N
eimpθ =

∞
∑

m=1

∫ ∞

0

dt e−t(mp+N)eimpθ

=

∫ ∞

0

dt e−tN 1

ep(t−iθ) − 1
.(A.11)

Then the n sum can be carried out as a geometric series,
and the result is a single integral,

E12 = − αp2

4π2R2

∫ ∞

0

dt sinh t sinh pt sin(φ− β/2)

×
{

1

[cosh pt− cos p(φ− β/2)]2
1

cosh t− cos(φ− β/2)

+
1

[cosh pt+ cos p(φ− β/2)]2
1

cosh t− cos(φ+ β/2)

}

.

(A.12)

Alternatively, we can directly calculate the two-body
energy from

E12 =
1

2

∫ ∞

−∞

dζ

2π
V1(G−G0). (A.13)

which may be directly evaluated in closed form:

E12 = − α

8πR2

[

p2

sin2 p(φ− β/2)
+

1

3
(1 − p2)

]

. (A.14)

The form (A.12) may be evaluated straightforwardly in
analytic form for the two special cases p = 1 (β = π, that
is, a plane), and p = 1/2 (β = 0, that is, a half-plane),
in agreement with Eq. (A.14),

E12(p = 1) = − α

8πR2

1

sin2 θ
, (A.15a)

E12(p = 1/2) = − α

32πR2

(

1

sin2 θ/2
+ 1

)

.(A.15b)

For other values of p the analytic evaluation of Eq. (A.12)
seems nontrivial; however, the integral is rapidly conver-
gent, and the numerical coincidence with the closed form
(A.14) is easily verified.

Not surprisingly, it is possible to show that the explicit
form of Eq. (A.13) follows from the multiple scattering
form of the two-body energy (A.7), written in terms of a
sum over four Bessel functions and a sum over m and m′

as in Eq. (4.14). This involves using the integral [notation
as in Eq. (4.14), with ν = m′p],

∫

dρ′

ρ′
Im(κρ<)Km(κρ>)Iν(κρ̃<)Kν(κρ̃>)

=
1

m2 − ν2
[Kν(κR)Iν(κR)− Im(κR)Km(κR)],

(A.16)
where the resulting two terms in the energy are summed
over m and m′, respectively, using

∞
∑

m=−∞

eimθ

m2 − ν2
= −π

ν

cos ν(θ − π)

sinπν
, (A.17a)

∞
∑

m′=1

m′p sinm′p

m2 − (m′p)2
= − π

2p
sin

m

p
(π − pθ) csc

mπ

p
,

(A.17b)
∞
∑

m′=1

(−1)m
′ m′p sinm′p

m2 − (m′p)2
= − π

2p
sinmθ csc

mπ

p
. (A.17c)
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