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Abstract

We observe the microwave transitions of calcium from the 4snf states to the 4s(n+ 1)d, 4sng,

4snh, 4sni, and 4snk states for 18 ≤ n ≤ 23 using delayed field ionization as the state selective

detection technique. The observed intervals between the ℓ ≥ 5 states can be analyzed to extract the

Ca+ ionic dipole (αd) and quadrupole (αq) polarizabilities using two non-adiabatic core polarization

models. Using these two models we determine the ionic dipole and quadrupole polarizabilities to

be 75.3 a30 < αd < 76.9 a30 and 206 a50 < αq < 1590 a50, respectively.
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I. INTRODUCTION

In recent years, much effort has been invested in developing a precise optical frequency

standard, and a proposed candidate is the quadrupole 4s1/2−3d5/2 transition of the Ca+ ion

[1, 2]. An additional attraction of Ca+ is that it can be cooled by Doppler cooling to very

low temperatures by using this transition in conjunction with the dipole allowed 3d5/2−3p3/2

transition [1]. The absolute frequency of the Ca+ 4s1/2−3d5/2 transition has been measured

with an uncertainty of 1 Hz, a fractional accuracy of one part in 1015, which is within a

factor of three of the fractional uncertainty of the present Cs clock [3]. While an optical

transition provides a transition with a higher quality factor, the transition also has a much

larger black body radiation (BBR) shift, and the BBR shift is one of the largest shifts in an

optical clock. In the Ca+ clock transition the BBR shift is calculated to be 0.4 Hz at room

temperature, T = 300K [1, 2, 4]. Since the BBR shift is unavoidable and scales as T 4 [5], it

is essential to understand it well.

The BBR shift is proportional to the difference in the dipole polarizabilities αd of the

two ionic states of the clock transition. While it is possible to calculate the polarizabilities,

due to the charge of the ion the polarizabilities are difficult to measure directly, and other

approaches must be used to check the validity of the calculations. While measurements

of oscillator strengths and lifetimes are often used, an alternative approach is one initially

suggested by Mayer and Mayer, measuring the energy splittings between higher ℓ Rydberg

states of the neutral atom [6]. Here ℓ is the orbital angular momentum of the Rydberg

electron. The field and gradient from the Rydberg electron polarize the ionic core, depressing

the energy levels below the hydrogenic energy of −1/2n2, where n is the principal quantum

number of the Rydberg electron. We use atomic units unless specified otherwise. Since an

electron in a lower ℓ state comes closer to the ionic core, the polarization shift increases

with decreasing ℓ. This approach is only valid if the Rydberg electron does not penetrate

the ionic core, which is why it is limited to high ℓ states. The inner turning point of a

Rydberg nℓ atom is given by rℓ ∼= ℓ(ℓ + 1)/2, and rℓ = 15a0 for ℓ = 5. Since the Ca+ 4s1/2

wavefunction is similar in size to the H 1s wavefunction, less than 0.02% of the ground state

probability distribution is found at radial distances beyond r = 15a0, so it seems that Ca

4snℓ states of ℓ ≥ 5 should be non penetrating states. Here r is the distance of the Rydberg

electron from the ionic core.
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Here we report measurements of the Ca 4snf − 4sng − 4snh − 4sni − 4snk intervals,

made using a delayed field ionization approach. Our data show that the adiabatic model of

Mayer and Mayer is inadequate, and we have fit our measurements to two core polarization

models which take into account the nonadiabatic effects not considered in the approach of

Mayer and Mayer. These analyses yield values for the dipole polarizability in reasonable

agreement with the calculated value. However, the two values we extract for the quadrupole

polarizability are much smaller and much larger than the calculated value. We have also

measured the 4snf → 4s(n + 1)d intervals. These intervals, combined with high resolution

optical spectroscopy could allow a better determination of the Ca+ polarizabilities. In the

sections which follow we describe our approach, present our experimental results, and analyze

them using several variants of core polarization analysis.

II. EXPERIMENTAL APPROACH

We excite neutral Ca atoms in a thermal beam from the ground state to a Rydberg

state using three laser beams. The Ca beam intersects the laser beams at a 90 degree angle

between two parallel horizontal copper plates separated by 1.2-cm long ceramic standoffs.

The laser beams are focused to 1 mm diameters where they intersect the Ca beam. Ground

state 4s2 atoms are excited to the 4s4p, 4s4d, and 4snf states by 422.791 nm, 732.816 nm,

and ∼ 850 nm laser pulses, respectively, as shown in Fig. 1. The last laser is tunable over the

range from 847 to 857 nm to excite the 4snf states of 18 ≤ n ≤ 23. A 1-µs long microwave

pulse starts 50 ns after the last laser pulse to excite the 4snf state to the 4sng and 4snh

states by the one-photon and two-photon transitions, respectively. The 4snf → 4sni and

4snf → 4snk transitions are the three-photon and four-photon transitions. To drive the

three-photon and four-photon excitations, in addition to a 1-µs microwave pulse, we use

a continuous wave (cw) radio frequency (RF) field of frequency between 3.5 and 5 GHz.

The RF and microwave fields are generated by a Hewlett-Packard (HP) 8257D analog signal

generator and 83620A synthesized sweep generator, respectively. The microwave sweep

generator produces a cw output from 10 MHz to 20 GHz, which is formed into pulses by

a General Microwave DM862D switch. The required microwave frequencies to drive the

transitions range from 23 to 75 GHz. Therefore, several frequency multipliers; a Narda

DBS 2640X220 active doubler, a Narda DBS 4060X410 active quadrupler and a Pacific
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Millimeter V2W0 passive doubler are used to multiply the synthesizer frequency to the

desired frequency. The power output of the frequency multipliers ranges from 5 mW to 100

mW. The microwaves propagate through WR28 waveguide and a waveguide feedthrough to

a WR28 horn inside the vacuum chamber. The cw RF propagates through a coaxial cable

and a SMA feedthrough to the coaxial-to-waveguide adapter and is launched by a WR187

horn inside the chamber.

To discriminate between the 4snℓ states of ℓ > 3 and the 4snf state, we take advantage

of the ℓ dependence of the lifetimes of Ca Rydberg atoms. The higher angular momentum

Rydberg states live longer than the lower ones [8], and we use the technique of delayed field

ionization (DFI). The lifetime of the 4s25f state has been measured to be ∼2.5(5) µs [8],

and using the n3 scaling law we find that the lifetimes of the 4snf states of 18 ≤ n ≤ 23 fall

in the range from 0.9 to 1.9 µs. Therefore, if we wait long enough after the microwave pulse,

more than 5µs, atoms in the 4snf states decay significantly compared to atoms in the 4snℓ

states of ℓ > 3. Typically, we apply a negative high voltage pulse to the bottom plate 8 to

10 µs after the microwave pulse to field ionize the surviving Rydberg atoms and drive the

resulting electrons to the microchannel plate (MCP) detector. The timing of the experiment

is shown in Fig. 2. Using this approach a large increase in the number of detected atoms is

observed when the microwave field drives the transition from the 4snf state at resonance.

To detect transitions from the 4snf states to the 4s(n + 1)d states we take advantage of

the fact that the lifetimes of the 4s(n + 1)d states are an order of magnitude shorter than

those of the 4snf states. A delay of only 2 µs is used, and a decrease in signal is observed

at resonance. Frequency shifts due to the stray electric field are minimized by observing

the microwave resonance with different bias voltages on the plates and fitting the resonant

frequencies to a quadratic bias voltage dependence. We then set the bias voltage to the

minimum frequency shift. In this experiment, the frequency shift due to the stray electric

field is in all cases less than 1 MHz. The experiment is repeated every 50 ms, and the signals

are averaged over many laser shots.
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FIG. 1. Laser excitation scheme of the experiment.

FIG. 2. The timing sequence of the experiment.
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III. EXPERIMENTAL OBSERVATIONS

A. One Photon 4snf → 4sng Intervals

For the one-photon transition, 4snf → 4sng, the microwave power was attenuated until

the power broadening was eliminated. We observed one resonant peak for each n. Since the

optical excitation is to the 4snf 1F3 state we assign the states we observe in the microwave

transitions as 1G4 states. A typical resonance is shown in Fig. 3, and the observed intervals

are given in Table I. We did not attempt to eliminate the Earth’s magnetic field. In

the Earth’s magnetic field one might expect linewidths of ∼ 2 − 3 MHz. However, the

typical linewidth of a 1F3 −
1 G4 resonance is ∼1 MHz, the transform limited linewidth of

a 1 µs microwave pulse. The narrow linewidths occur because the one photon transitions

are between the two singlet states, which have the same Landé gj factors. Hence, all the

∆mj = 0 transitions occur at the same frequency, resulting in the narrow lines [23].

TABLE I. nf − ng observed frequencies

n Observed Frequency (MHz)

18 72 891.40(1)

19 62 222.19(1)

20 53 150.84(2)

21 46 053.01(25)

22 40 147.03(1)

23 35 462.65(5)

B. Two Photon 4snf → 4snh Intervals

For the two-photon transition, 4snf → 4snh, we observed two resonant peaks for each

n suggesting that the higher ℓ states, ℓ ≥ 5, are not singlets and triplets. The states are

described by coupling the total angular momentum of the core ~jc to the orbital angular

momentum ~ℓ of the Rydberg electron to form ~K. Explicitly,

~K = ~jc + ~ℓ. (1)
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FIG. 3. One-photon 4s22f → 4s22g resonance. The linewidth of the resonance is ∼1 MHz which

is a transform limited linewidth of a 1 µs microwave pulse.
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The splitting between the two K levels is due to the indirect spin orbit splitting [25, 26].

We ignore the spin of the Rydberg electron. For the Ca 4snℓ states, jc = 1/2, therefore

K = ℓ ± 1/2. Hence, for each ℓ state we observe two transitions from the 4snf to the

4snℓ states, corresponding to K = ℓ + 1/2 and K = ℓ − 1/2. To correct for the small

AC Stark shift due to the microwave field, 1.8 MHz at the highest power we used, the

resonances were observed at different microwave powers, and the resonance frequencies were

extrapolated linearly to zero microwave power to obtain unshifted 4snf − 4snh intervals.

Typical resonances for the two-photon transitions are shown in Fig. 4, and the observed

intervals are given in Table II. The typical linewidth of the resonances is 2-3 MHz. The

linewidth is due to the Earth’s magnetic field since the 4snh states are no longer singlets

and triplets.

TABLE II. nf − nh observed intervals and nh K splittings

n K =9/2 (MHz) K =11/2 (MHz) K splitting (MHz)

18 95 296.36(6) 95 312.53(9) 16.17(11)

19 81 300.49(6) 81 314.41(3) 13.92(7)

20 69 905.16(18) 69 917.62(13) 12.46(22)

21 60 536.07(10) 60 546.51(9) 10.44(13)

22 52 761.38(96) 52 770.12(12) 8.74(97)

23 46 261.65(18) 46 269.19(5) 7.54(19)

C. Three Photon 4snf → 4sni Intervals

For the three-photon transitions, a single microwave field does not have enough power

to drive the three photon 4snf → 4sni transitions. Therefore, the three-photon transitions

were driven by using two microwave photons and one RF photon. The RF frequency of 3.5-5

GHz frequency was fixed near the 4snh− 4sni frequency, and the microwave frequency was

swept. We verified that the observed resonances were indeed the 4snf → 4sni transitions

by varying the RF frequency within ±5 MHz and sweeping the microwave frequency for

each RF frequency. For each RF frequency, the 4snf → 4sni interval, given by twice the

microwave frequency plus the RF frequency, was approximately constant, with only a slight
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FIG. 4. Two-photon 4s18f → 4s18h resonances. The two resonances are separated by the K

splitting of the 4s18h state.
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difference in frequency due to the AC Stark shift. A typical three-photon resonance is shown

in Fig. 6. In Fig. 6, we do not see the K splitting, because the K splitting in the 4sni states

is not resolvable. Since most of the K splitting is from the dipole term, we can estimate the

K splitting in the 4sni states using the adiabatic dipole term of Eqs. (37) and (38a) and

ignoring the quadrupole term of Eq. (38b) of Ref. [25]. Explicitly,

Knℓ =
2(2ℓ+ 1)∆4p〈r

−6〉nℓ〈4s|r|4p〉
2

9(W4s −W4p)3
, (2)

where ∆4p is the fine structure splitting of the Ca+ 4p state, 〈r−6〉nℓ is the expectation value

of 1/r6 of the nℓ Rydberg state, 〈4s|r|4p〉 is the Ca+ radial matrix element, W4s is the energy

of the Ca+ 4s state and W4p is the energy of the Ca+ 4p state. Since we have measured

the K splitting in the 4snh states, we can use Eq. (2) to estimate the K splitting in the

4sni states. The ratio between the K splitting in the 4sni and 4snh states is the ratio

〈r−6〉ni/〈r
−6〉nh = 0.2. Therefore, the K splitting in the 4sni states varies from 4 to 2 MHz

as n increases from 18 to 23, which is not resolvable in our experiment due to the Earth’s

magnetic field.

In the three-photon transitions there are both RF and microwave power shifts. To elim-

inate the AC Stark shift from both fields, we observed the resonances at different RF and

microwave powers. For a given microwave power, we observed resonances at different RF

powers. We extrapolated the observed frequencies linearly to obtain the resonance frequency

at zero RF power for a given microwave power. We repeated the same procedure for several

microwave powers. The resonance frequencies at zero RF power of several microwave powers

were extrapolated to obtain the resonance frequencies at zero RF and microwave powers.

Typical power extrapolations are shown in Fig. 5, a typical resonance is shown in Fig. 6,

and the unshifted intervals are given in Table III.

D. Four Photon 4snf → 4snk Intervals

The 4snf → 4snk four-photon transitions were excited using two microwave photons

and two RF photons. The RF frequency was fixed near the 4snh → 4snk resonance while

the microwave frequency was swept in the vicinity of the 4snf → 4snh resonance. Similar

to the three-photon excitation, we verified that the observed resonances were the 4snf →

4snk transitions by varying the RF frequency within ±5 MHz and sweeping the microwave
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TABLE III. nf − ni observed intervals

n Observed Frequency (MHz)

18 102 558.95(54)

19 87 488.41(40)

20 75 223.05(15)

21 65 141.32(78)

22 56 766.61(69)

23 49 771.37(26)
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FIG. 5. The extrapolation of the three photon 4s19f → 4s19i transition to zero RF and microwave

powers. (a) At relative microwave power 0.63, resonances were observed at different RF powers

to obtain the resonance frequency at zero RF power. (b) Several zero RF power resonances were

obtained at different microwave powers and extrapolated to zero RF and microwave powers.

frequency for each RF frequency. For each RF frequency, the 4snf → 4snk interval was

given by twice the microwave frequency plus twice the RF frequency and was approximately

constant. We eliminated the AC Stark shifts using the process discussed for the three-

photon transitions. Typical signals for four-photon transitions are shown in Fig. 7, and the

unshifted intervals are given in Table IV. Using Eq. (2), we estimate the K splitting in the

4snk states to be on the order of 1 MHz for 18 ≤ n ≤ 20, which cannot be resolved in this

experiment.
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FIG. 6. Three-photon 4s19f → 4s19i resonance at relative microwave power 0.63 and at relative

RF power 1.0. The K splitting of the 4s19i states cannot be resolved due to the Earth’s magnetic

field broadening.
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FIG. 7. Four-photon 4s19f → 4s19k resonance at 0.178 relative microwave power and 0.794 relative

RF power. The K splitting of the 4s19k states is on the order of 1 MHz and cannot be resolved.
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TABLE IV. nf − nk observed intervals

n Observed Frequency (MHz)

18 105 362.90(52)

19 89 879.91(7)

20 77 278.61(15)

E. One Photon 4snf → 4s(n+ 1)d Intervals

We have observed the 4snf → 4s(n+1)d transitions for n =19, 20, and 21. In this region

the 4snd 1D2 Rydberg states are perturbed by their interaction with the 3d2 1D2 state [24].

The perturbation results in shorter lifetimes and rapidly changing quantum defects. For

19 ≤ n ≤ 21 the 4snd 1D2 states lie close enough in energy to the 4snf 1F3 states that

the 4snf → 4s(n + 1)d frequencies are within the microwave frequency range that we can

generate. A typical resonance is shown in Fig. 8, and the observed intervals are presented

in Table V.

TABLE V. nf − (n+ 1)d observed intervals

n Observed Frequency (MHz)

19 84 377.04(4)

20 49 143.13(12)

21 24 542.36(4)

IV. DATA ANALYSIS

We analyze the measured ∆ℓ intervals using several variants of the core polarization

model. First, we use the core polarization model as originally introduced by Mayer and

Mayer [6]. In the high angular momentum 4snℓ Rydberg states of ℓ > 4, the Rydberg nℓ

electron is assumed to be in a hydrogenic nℓ state which does not penetrate the Ca+ core.

Furthermore, the Rydberg electron is assumed to move slowly compared to the electrons in

the ionic core. Thus we term this model the adiabatic core polarization model. The presence

of the Rydberg electron leads to a quasistatic electric field and gradient at the Ca+ core,
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FIG. 8. One-photon 4s19f → 4s20d resonance.
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and, due to the dipole and quadrupole polarizabilities of the core, the energy levels of the

Ca 4snℓ states are depressed below the hydrogenic energy, −1/2n2. The polarization energy

shift is given by [6]

Wpol,nℓ = −
1

2
αd〈r

−4〉nℓ −
1

2
αq〈r

−6〉nℓ, (3)

where αd and αq are the dipole and quadrupole polarizabilities of the Ca+ 4s core, and

〈r−4〉nℓ and 〈r−6〉nℓ are the expectation values of the squares of the nℓ Rydberg electron’s

field and field gradient at the core. Since the Rydberg electron is assumed to be in a

hydrogenic state, analytic expressions exist for these expectation values. We can write

Eq.(3) in Edlen’s experimentally convenient form as [20]

Wpol,nℓ = −αdPnℓ − αqPQnℓ, (4)

where

Pnℓ = RCa〈r
−4〉nℓ, (5)

and

Qnℓ =
〈r−6〉nℓ
〈r−4〉nℓ

. (6)

Here RCa is the Rydberg constant for Ca, RCa = 109735.81 cm−1. Since we measure the

intervals between the 4snℓ and 4sn(ℓ + 1), ℓ > 3, states of the same n, we express the

difference between the core polarization energies of 4snℓ and 4sn(ℓ + 1) states of the same

n as follows.

∆Wpol,nℓ′ℓ

∆Pnℓℓ′
= αd + αq

∆PQnℓℓ′

∆Pnℓℓ′
, (7)

where ∆Wpol,nℓ′ℓ = Wpol,nℓ′ − Wpol,nℓ, ∆Pnℓℓ′ = Pnℓ − Pnℓ′ , and ∆PQnℓℓ′ = PnℓQnℓ −

Pnℓ′Qnℓ′. ∆Pnℓℓ′ and ∆PQnℓℓ′ are easily calculated, and ∆Wpol,nℓ′ℓ is the measured 4snℓ −

4snℓ′ interval. Fig 9 shows the graph of
∆Wpol,nℓ′ℓ

∆Pnℓℓ′
versus

∆PQnℓℓ′

∆Pnℓℓ′
using the measured nh-ni

(N) and ni − nk (�) intervals. For the 4snh states in which the K = 9/2 and 11/2 states

are resolved, we use the centers of gravity in our calculation. As suggested by Eq. (7), by

plotting
∆Wpol,nℓ′ℓ

∆Pnℓℓ′
versus

∆PQnℓℓ′

∆Pnℓℓ′
, the values of dipole and quadrupole polarizabilities can

be extracted from the y-intercept and slope of a line through the data points, as shown in

Fig. 9. The resulting Ca+ 4s dipole and quadrupole polarizabilities are αd=75.32(4) a30 and

αq=-257(8) a50, respectively. In this, its simplest form, the adiabatic core polarization model

yields a negative quadrupole polarizability, which is impossible.
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van Vleck and Whitelaw pointed out that the polarization energy shift of Eq. (3) is

a limiting case of a second order shift due to the higher multipole terms in the coulomb

interaction between the Rydberg nℓ electron and the ion core. For example, the dipole

polarization energy of a Ca 4snℓ state comes from the dipole coupling to Npn′(ℓ ± 1) and

Npǫ(ℓ± 1) bound and continuum states, as shown in Fig. 10. By considering only the two

valence electrons we are implicitly ignoring inner shell excited states of Ca, which amounts

to ignoring the contribution of the Ca++ polarizability to the Ca+ polarizability. The shift

is readily calculated in second order perturbation theory by summing over N and n′, and

integrating over ǫ. The sum over n′ and the integral over ǫ span an energy range ∆, as

shown by Fig. 10. If

∆ ≪ W4s−Np, (8)

for all N , the result of Mayer and Mayer is recovered. For example, the dipole polarization

energy shift is given by the dipole term of Eq. (3). Eq. (8) is a more precise statement of the

adiabatic condition. For alkali atoms, in which the excited states of the ion are all at high

energies, the requirement of Eq. (8) is easily met, and the adiabatic approximation works

well. For alkaline earth atoms this requirement is not met, and the adiabatic approximation

fails, as is evident in Fig. 9.

To correct for the non adiabatic effects and extract the core polarizabilities from the

∆ℓ intervals there are two approaches we can take. One is the adiabatic expansion method,

which can be viewed as an expansion in powers of ∆/W4s−Np. The attraction of this approach

is that we are only calculating the corrections to the analytic shifts obtained using hydrogenic

expectation values. The potential problem is convergence of the expansion. The alternative

approach is the direct numerical calculation of the hydrogenic matrix elements for the dipole

and quadrupole interactions, as exemplified in Fig. 10. This approach is in principle exact,

but since the entire energy shift is calculated numerically, small errors are important.

In the adiabatic expansion approach the higher order terms in the expansion appear as

expectation values of higher inverse powers of r. If the expansion is to converge, these

terms should become smaller with increasing order. While this condition is met for the

high ℓ states, it is not for the 4snh states. In the nonadiabatic correction to the dipole

polarization energy the 〈r−8〉nℓ term is larger than the 〈r−6〉nℓ term. In short, the expansion

is non convergent, and we can not use this method to analyze our data. However, using

the leading correction term for the dipole polarization energy provides a bound for the
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polarizabilities. The leading term in the correction to the dipole polarization energy has a

〈r−6〉nℓ dependence and is thus indistinguishable from the quadrupole polarization energy.

With the inclusion of this term, Eq. (7) becomes

∆Wpol,nℓℓ′

∆Pnℓℓ′
= αd + (αq − 6β1)

∆PQnℓℓ′

∆Pnℓℓ′
, (9)

where β1
∼= 0.95αd/(2W4p−4s) [16]. The numerical factor of 0.95 comes from the fact that

5% of αd comes from higher lying np states of Ca+ and Ca++ [10]. We calculate 6β1 to be

1850(40) a50. Including the leading term in the adiabatic expansion simply raises the value of

αq by 6β1, yielding αq = 1590(40) a50. The value of αd is unchanged. Since the 6β1 correction

term in Eq. (9) overcorrects for the nonadiabatic effect, these values are lower and upper

bounds to αd and αq respectively.

The alternative approach is the direct calculation of the multipole interactions, as shown

in Fig. 10 for the dipole interaction. As an approximation we assume that all the dipole

and quadrupole polarization energies of the Ca 4snℓ states come from the couplings to the

Ca 4pn′ℓ′ and 3dn′ℓ′ states. For both the dipole and quadrupole shifts, we find the ratio of

the explicitly calculated shift to that predicted by the adiabatic model. These ratios, the

non-adiabatic factors kd and kq, are then used to correct the adiabatic model. Explicitly, we

rewrite Eq. (3) as

Wpol,nℓ = −
1

2
kdαd〈r

−4〉nℓ −
1

2
kqαq〈r

−6〉nℓ. (10)

The non-adiabatic factors kd and kq are defined in Eqs. (17.25) and (17.26) of Ref. [27]. Both

are calculated numerically using a Numerov algorithm to calculate hydrogenic wavefunctions.

The calculated values of kd and kq are given in Tables VI and VII, respectively. There are

sum rules for the sums of the squares of the matrix elements [22], and using them we estimate

the percentage uncertainties in kd and kq to be 0.3% for both values. As shown in Table VI,

to three significant digits, there is no n dependence in kd. As shown in Table VII, to four

significant digits, there is n dependence in kq for ℓ = 5 and ℓ = 6 but not for ℓ = 7. We can

express Eq. (10) in Edlen’s form as follows.

Wpol,nℓ = −αdP
′

nℓ − αqP
′Q′

nℓ, (11)

where

P ′

nℓ = kdP, (12)
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FIG. 9. The adiabatic plot of the measured nh− ni (N) and ni− nk (�) intervals using Eq. (7).

There are 3 data points for the ni − nk (�) intervals, 18 ≤ n ≤ 20, and 6 data points for the

nh−ni (N) intervals, 18 ≤ n ≤ 23. A fit to the straight line yields the y-intercept and slope, which

are αd and αq, respectively. The resulting fit values are αd = 75.32(4) a30 and αq = -257(8) a50.
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FIG. 10. Energy levels of the Rydberg states converging to the Ca+ 4s and Np states and the

continua associated with the latter. A 4snℓ Rydberg state is dipole coupled to Npn′(ℓ± 1) states

which span an energy range ∆. If ∆ ≪ W4s−Np the adiabatic approximation is valid.
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and

Q′

nℓ =
kq
kd

Qnℓ. (13)

Hence, the difference between the core polarization energy of 4snℓ and 4snℓ′ of the same n

is

∆Wpol,nℓ′ℓ

∆P ′

nℓℓ′
= αd + αq

∆P ′Q′

nℓℓ′

∆P ′

nℓℓ′
, (14)

where ∆Wpol,nℓ′ℓ is defined in Eq. (7), ∆P ′

nℓℓ′ = P ′

nℓ−P ′

nℓ′ , and ∆P ′Q′

nℓℓ′ = P ′

nℓQ
′

nℓ−P ′

nℓ′Q
′

nℓ′.

We plot
∆Wpol,nℓ′ℓ

∆P ′

nℓℓ′
versus

∆P ′Q′

nℓℓ′

∆P ′

nℓℓ′
in Fig. 11 using the nh-ni (N) and ni−nk (�) measured

intervals. From Fig. 11, the intercept and slope of the graph yield fit values of αd=76.99(7)

a30 and αq=228(12) a50, respectively, shown by the solid line.

At this point it is useful to compare Figs. 9 and 11, in particular the points on the solid

line in Fig. 11. There is almost no difference in the horizontal positions of the data points

but a large difference in their vertical positions, leading to very different values for αq. The

difference in the vertical positions comes from substituting ∆P ′ for ∆P , i. e. introducing

kd, the non adiabatic correction to the dipole polarization energy. The small difference in

the horizontal positions of the points in the two graphs indicates that the introduction of kq,

the non adiabatic correction for the quadrupole polarization energy has a negligible effect

for these ∆ℓ intervals. The uncertainties in the fit in Fig. 11 do not reflect the uncertainty

in the calculation of kd. When it is taken into account the values we obtain are αd = 77.0(3)

a30 and αq = 228(12) a50.

We now return to our assumption that the polarization shifts are due entirely to the

couplings to the 4pn′ℓ′ and 3dn′ℓ′ states. This assumption is equivalent to assuming the Ca+

polarizabilities arise entirely from the Ca+ 4p and 3d states. The calculations of Safronova

and Safronova indicate that 95% of αd is due to the 4p state, and 58% of αq is due to the

3d state [10]. Thus in kd and kq we have overcorrected. Inspecting Figs. 9 and 11 we

can see that the overcorrection due to kq is insignificant, but that due to kd is important.

Accordingly, we have reduced the correction due to kd by 5 %, resulting in the broken line

in Fig. 11. This modification leads to the values αd = 76.91(5) a30 and αq = 206(9) a50.

When the uncertainty in the calculation of kd is taken into account the values we obtain are

αd = 76.9(3) a30 and αq = 206(9) a50. As we shall discuss shortly, we believe these values to

be upper and lower bounds to αd and αq.
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V. DISCUSSION

Tables VIII and IX show values of αd and αq from this work and other experimental and

theoretical work. The uncertainties for our values represent the uncertainties from the fits of

the data to the two models. The values labelled ae are from the adiabatic expansion method,

Eq. (9), and the values labelled dc are from the direct calculation method, Eq. (14). There

are three experimental results for αd to which we can compare ours. The value of ref. [8] is

based on the measurement of the 4snf → 4sng intervals. The analysis of these data relied

heavily on a more complex theoretical model, which was probably inadequate to represent

the 4sng states. The value of αd given in ref. [13] was obtained by assuming that the 4snh

quantum defects arise solely from the dipole polarizability and applying the adiabatic core

polarization model. Since the quadrupole polarizability is small and the nonadiabatic effect

on the dipole polarization cancels its effect to some extent, this approach yields a value for

αd close to the value we obtained from Fig. 9. In ref. [9] lifetime measurements of the Ca+

4pj states were used to obtain the oscillator strengths of the 4s−4pj transitions, taking into

account the small branching ratios for decay to the 3dj states. The oscillator strengths of

the 4s− 4pj transitions were then used to calculate the value of αd. The resulting value of

αd is too small due to the neglect of higher lying Ca+ Np states and the dipole polarizability

of Ca++, but when this omission is taken into account it is consistent with our value for αd.

The theoretical values for αd from refs. [10] and [12] fall within our experimental bounds

given in Eq. (15), while the theoretical value of ref. [11] is clearly outside the bounds.

To our knowledge, our values of αq are the first experimental values. As shown in Table

TABLE VI. kd calculated values

n ℓ = 5 ℓ = 6 ℓ = 7

18 0.956 528 0.972 293 0.982 680

19 0.956 518 0.972 178 0.982 543

20 0.956 500 0.972 111 0.982 437

21 0.956 437 0.972 033

22 0.956 453 0.971 906

23 0.956 423 0.971 892

20



IX, our value obtained by the adiabatic expansion method is twice the theoretical value,

and the value obtained by the direct calculation method is a factor of four smaller than

the theoretical value. Since a large fraction, two thirds, of the quadrupole polarizability is

due to the Ca+ 3d states, an alternative check of the calculated quadrupole polarizability

is the lifetime of the Ca+ 3d state, which decays by quadrupole radiation. The measured

lifetime is in good agreement with the calculated lifetime, supporting the validity of the

calculation of αq. It is worth noting that if the value of kd for the 4snh states is reduced

to 98.35% of the current kd value we would obtain αd = 75.3(1) a30 and αq = 878(15) a50, in

excellent agreement with the recent theoretical values. In view of the sensitivity of the direct

calculation approach to the numerical calculations of kd and the large discrepancy between

our value of αq and the theoretical values, we view the direct calculation values of Tables

VIII and IX as upper and lower bounds for αd and αq, respectively. As a consequence, we

report bounds for αd and αq. Explicitly,

75.3 a30 < αd < 76.9 a30 (15)

and

206 a50 < αq < 1590 a50. (16)

Our ability to specify αd and αq is limited by our confidence in the core polarization

models. Two experimental avenues can be explored to minimize this problem. The first is

measuring higher ℓ intervals in which the non adiabatic corrections are not as large, as done

by Lundeen et al. for other atoms [21]. The second is high resolution laser spectroscopy of

the Ca 4snd 1D2 states. Absolute measurements of their energies, good to 10 MHz, would

TABLE VII. kq calculated values

n ℓ = 5 ℓ = 6 ℓ = 7

18 0.9780 0.9273 0.9376

19 0.9797 0.9277 0.9376

20 0.9812 0.9284 0.9376

21 0.9824 0.9284

22 0.9835 0.9287

23 0.9845 0.9292
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FIG. 11. The non-adiabatic plot of the measured nh− ni (N) and ni− nk (�) intervals using Eq.

(14). There are 3 data points for the ni − nk (�) intervals, 18 ≤ n ≤ 20, and 6 data points for

the nh− ni (N) intervals, 18 ≤ n ≤ 23. A linear fit (solid line) gives values for the y-intercept and

slope of 76.99(7) a30 and 228(12) a50, respectively. When we take into account the overcorrection

of kd, we obtain the data points (•) and the lower fit line (broken line), which leads to our final

values of αd=76.91(5) a30 and αq = 206(9) a50.
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TABLE VIII. The Ca+ 4s dipole polarizability (αd) obtained from this work and other theoretical

and experimental results.

αd (a30)

This workae 75.32(4)

This workdc 76.9(3)

Expt. [8] 87(2)

Expt. [13] 75.3(4)

Expt. [9] 70.89(15)

Theory [10] 76.1(5)

Theory [11] 73.0(1.5)

Theory [12] 75.49

locate the 4snd levels relative to the hydrogenic nℓ levels. The microwave measurements

reported here could then be used to locate the Ca 4snℓ levels relative to the H nℓ levels,

and the present data could then be analyzed in terms of the displacements of the energies

from the hydrogenic levels, instead of the differences in the displacements. The 4snh states

could be dropped from the analysis, substantially reducing the uncertainty due to the non-

adiabatic corrections.

Making measurements involving higher ℓ states should minimize the non adiabatic effects,

allowing a better determination of the polarizabilities. However, it is not obvious that

the discrepancy between the theoretical and experimental values will disappear. Intervals

between the high ℓ Ba 6snℓ levels have been measured, but the value of αq extracted by

the direct calculation method is a factor of two smaller than the theoretical value, a similar

discrepancy to that reported here for Ca. Determining the source of these discrepancies is

a worthy theoretical challenge.

VI. CONCLUSION

We have measured ∆ℓ intervals of Ca 4snf → 4snℓ, 18 ≤ n ≤ 23 and 4 ≤ ℓ ≤ 7 using a

microwave and RF resonance approach. We have used these measurements to place bounds

on the Ca+ dipole and quadrupole polarizabilities. The Ca+ 4s dipole and quadrupole
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TABLE IX. The Ca+ 4s quadrupole polarizability (αq) obtained from this work and other theo-

retical and experimental results.

αq (a50)

This workae 1590(40)

This workdc 206(9)

Theory [10] 871(4)

Theory [12] 875.1

polarizabilities are 75.3 a30 < αd < 76.9 a30 and 206 a50 < αq < 1590 a50. The Ca+ 4s

dipole polarizability agrees well with recent theoretical values. However, we are not able

to place tight bounds on the Ca+ 4s quadrupole polarizability due to uncertainties in the

core polarization analyses. We hope this work will motivate theoretical work to reexamine

the problem of core polarization analysis and, more generally, the source of the discrepancy

between the experimental and theoretical values of αq.
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