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Indirect control of qubits by a quantum actuator has been proposed as an appealing strategy to
manipulate qubits that couple only weakly to external fields. While universal quantum control can
be easily achieved when the actuator-qubit coupling is anisotropic, the efficiency of this approach is
less clear. Here we analyze the time-efficiency of quantum actuator control. We describe a strategy
to find time-optimal control sequence by the quantum actuator and compare their gate times with
direct driving, identifying regimes where the actuator control performs faster. As a paradigmatic
example, we focus on a specific implementation based on the Nitrogen-Vacancy center electronic
spin in diamond (the actuator) and nearby carbon-13 nuclear spins (the qubits).
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Fast and high fidelity control of quantum systems is
a key ingredient for quantum computation and sensing
devices. The critical task is to reliably control a quan-
tum system, while staving off decoherence, by keeping it
isolated from any external influence. These requirements
pose a contradiction: fast control implies a strong cou-
pling to an external controlling system, but this entails
an undesired interaction with the environment, leading
to decoherence. One is then often faced with the choice
between using a strongly connected system, implying a
stronger noise, or a weakly connected one, which is more
isolated from the environment and thus offers longer co-
herence times, but results in slower control. A strategy
to overcome these issues is to use a hybrid system where
a quantum actuator interfaces the quantum system of
interest to the classical controller, thus allowing fast op-
erations while preserving the system isolation and coher-
ence [1]. This strategy has been proposed for a broad
range of systems, from superconducting qubits [2, 3] to
nanomechanical resonator [4, 5] and qubit networks [6, 7].
This indirect control is particularly appropriate for nu-
clear spin qubits, which only couple weakly to external
fields, but often show strong interactions with nearby
electronic spins. This model describes several systems,
from spins associated with phosphorus donors in Si [8],
to fullurene qubits [9], ensemble-ESR systems (such as
malonic acid [10]) and, most recently, Nitrogen-Vacancy
(NV) centers in diamond [11, 12]. While there are practi-
cal advantages to this indirect control strategy, as it does
not require experimental apparatus to directly drive the
nuclear spins, an important question is whether it can
reach faster manipulation than direct control. In this
letter we describe a strategy to achieve time-optimal in-
direct control of a qubit by a two-level quantum actuator.
We focus on the NV center in diamond as a paradigmatic
example, assessing the achievable gate times of this strat-
egy as compared with those for direct driving. The meth-
ods and results are however broader: thanks to the wide
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range of couplings to 13C spins in the lattice, we can sur-
vey a large parameter space, encompassing many other
physical systems considered as qubit candidates.

We propose to use alternating controls to drive the evo-
lution of a nuclear spin anisotropically hyperfine-coupled
to an electronic spin [10, 13]; in particular, periodically
driving the spin of a NV center in diamond can steer
the evolution of a proximal 13C nuclear spin in a po-
tentially shorter time than a direct, slow radio-frequency
(rf) addressing. In general, the method ensures the use
of the nuclear spin as a resource within the same imple-
mentation time range of direct addressing, while entirely
by-passing the application of rf, thus avoiding any noise
and errors associated with it [14].

The paper is organized as follow. We first introduce the
general concepts of control by a quantum actuator, using
the NV center spin system to provide a concrete physical
example. We then show how to find the time-optimal ac-
tuator control sequence, combining algebraic constraints
with numerical optimization. The main results of the pa-
per are an extended comparison of the quantum actuator
control with direct driving of the qubit. We use the NV
center spin system to explore a broad range of parame-
ters in order to show when actuator control is more conve-
nient, ending the paper with a discussion of more general
applications. Some technical results are contained in the
appendices.

I. QUANTUM ACTUATOR

A. Indirect control by a quantum actuator

We assume a two-level quantum actuator, with eigen-
states |0〉, |1〉 separated by an energy gap much larger
than the coupling to the qubit; then, the qubit Hamilto-
nian depends on the state of the quantum actuator:

H = Ha +Hq + |0〉〈0|a ⊗H0
q + |1〉〈1|a ⊗H1

q , (1)

where Ha,q are the internal Hamiltonian of the actuator
and qubit, respectively, and we only retained the part
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of the coupling Hamiltonian that conserves the actuator
eigenstates. The qubit thus evolves under two different
Hamiltonians depending on the actuator state. Switching
between the actuator eigenstates is enough to achieve full
controllability of the qubit, as long as the coupling is
anisotropic [10, 13]. In the absence of direct driving of
the qubit, Pontryagin’s minimum principle proves that
this bang-bang control achieves time-optimality [15–17].

As a concrete example, we consider a single NV center
electronic spin S = 1 [18, 19] coupled to a 13C nuclear
spin I = 1/2 [20, 21] (see Appendix A). Their Hamilto-
nian is

H = ∆S2
z + γeB0Sz + γCB0Iz + ~S ·A · ~I , (2)

where ∆ = 2.87GHz is the NV zero-field splitting; γe ≈
2.8MHz/G, γC≈1kHz/G are, respectively, the gyromag-
netic ratios of the electron and nuclear spins; B0 is a
static magnetic field along the NV ẑ-axis; and A is the
hyperfine tensor. The NV spin triplet can be reduced to
an effective two-level system by driving the system on res-
onance with a transition between two Sz eigenstates (e.g.
|ms = 0〉 ↔ |ms = +1〉), while the third eigenstate (e.g.
|ms = −1〉) can be neglected. Then the Hamiltonian can
be rewritten in the electronic spin rotating frame as

H=ω0Iz+Sz ~Az ·~I= |0〉〈0|ω0Iz+ |±1〉〈±1| (ω0Iz± ~Az ·~I) ,
(3)

where ω0 = γCB0 (that we assume > 0). The contact
and dipolar contributions [21] to the hyperfine coupling
~A can be described by a longitudinal component A‖ and
a transverse component A⊥, that we will take without
loss of generality along the x̂ direction. The nuclear spin
thus rotates around two distinct axes, depending on the
electronic spin manifold. Then, a simple strategy for the
indirect control of the nuclear spin is to induce alternat-
ing rotations by flipping the electronic spin state with
(fast) π-pulses. We define the axes and rotation speeds
in the two manifolds as

ω0 = γCB0 = κω±1, ω±1 =
√

(ω0 ±A‖)2 +A2
⊥ ,

v̂0 = ẑ , v̂1 = ẑ cos(α) + x̂ sin(α) ,

(4)

with
tan(α) =

A⊥
ω0 ±A‖

, κ =
ω0

ω±1
. (5)

If the NV electronic spin is initially in the |0〉 state, apply-
ing π-pulses at times Tk gives the nuclear spin evolution:

U = e−iφ
1
n~v1·~σ . . . e−iφ

0
k~v0·~σe−iφ

1
k−1~v1·~σ . . . e−iφ

0
i~v0·~σ, (6)

where φ
0(1)
k = (Tk − Tk−1)ω0(1), for odd (even) k, and ~σ

are the Pauli matrices.

B. Time-optimal control by a quantum actuator

For a fair comparison to direct driving, we need to
consider the time-optimal synthesis of the desired unitary

U by alternating rotations [15, 16, 22]. Explicit solutions
to this optimization problem have been recently obtained
using algebraic methods [22, 23] and we only describe
here the most important and relevant results.

The optimization of Eq. (6) looks daunting at first,
since one needs to find n ≤ ∞ phases φk. However, it
was found [15, 22] that for n ≥ 4, the internal angles are
related by

tan

(
φ1

2

)
= tan

(
φ0

2

)
κ− cos(α)

1− κ cos(α)
, (7)

with φ1(φ0) the rotation angle about ~v1(~v0). Thus the
solution depends on only four parameters, greatly simpli-
fying the problem: the outer angles φi, φf , the internal
angle φ0 of the rotation around ~v0, and the total number
of rotations n (the sequence length). We can distinguish
two important cases that yield different time-optimal so-
lutions, whether κ ≶ cos(α). This condition is simply
set by the sign of the longitudinal hyperfine interaction,
since it corresponds to ω0 ≶ (ω0 ±A‖).

If κ < cos(α), optimal sequences are finite and we al-
ways have φ0 ≤ π and φ1 ≥ π. Finite sequences with
n ≥ 6 have π/3 < φ0 < π and their length is bound by
n ≤ b 2π

α c+ 1.
For κ > cos(α), both finite and infinite time-optimal

sequences are possible. For large angles between rotation
axes, α > 2π/3, only n = 3 or infinite sequences are
possible, with φ0 > π. For smaller angles, we can have
longer time-optimal sequences. The number of switches
is limited by n ≤ bπαc+ 3 and, correspondingly, we have

π < φ0 ≤ (n−1)
(n−2)π. Loose bounds can also be found for the

outer angles [23] and thus on the total time to implement
general unitaries.

These conditions on the admissible time-optimal se-
quences severely constraint the search space of the time-
optimal control sequence for specific goal unitaries and
Hamiltonian parameters. We were thus able to perform
an exhaustive analysis of time-optimal control for a large
number of nuclear spins surrounding the NV center. In
turns, the broad range of parameters considered allows
us to encompass many other physical situations, also not
linked with the specific system considered here.

II. COMPARISON WITH DIRECT DRIVING

An alternative strategy for qubit control is to use clas-
sical driving fields. Resonant driving along a desired ro-
tation axis achieves time-optimal steering of the qubit in
the xy plane [15, 24].

Even when the direct driving of the qubit is slow, the
rate might be increased by virtual transition of the ac-
tuator. This is the case for nuclear spins: while their
coupling to an external driving field is weak, indirect for-
bidden transitions mediated by the electronic spin can
considerably enhance the driving strength [20, 25, 26].
This nuclear Rabi enhancement depends on the state of
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the electronic spin. The effective Rabi frequency Ω for
an isolated nuclear spin, hence, is modified from its bare
value Ω by the enhancement factors ζ0,±1, corresponding
to the electronic spin states |0〉, | ± 1〉 (see Appendix B).
The enhancement is proportional to the ratio of the qubit
and actuator coupling to the external field. For nuclear
and electronic spins considered here, γe/γn ≈ 2600 and
the effective Rabi frequencies Ωi = (1+ζi)Ω can be much
larger than the bare frequency.

We assume Ω≈ 100kHz as an upper-limit on realistic
bare nuclear Rabi frequencies by considering data in [27],
where the 13C considered was only weakly coupled and
thus no Rabi enhancement was present. To achieve this
strong driving, a dedicated microfabricated coil was nec-
essary [28]. Rabi frequencies Ω≈ 20kHz are, in our ex-
perience, in the upper achievable range with modest am-
plifiers and a simple wire to deliver the rf field.

Both regimes of κ ≶ cos(α) for the time-optimal solu-
tions can be explored in the NV center system by consid-
ering the coupling to 13C at different distances from the
NV defect [29–31]. The hyperfine tensors for 13C located
up to≈8Å away from the NV center were estimated using
density functional theory [32]. In what follows, we nu-
merically compare the performance of the proposed con-
trol method against direct driving under diverse exper-
imental conditions and for a number of distinct nuclear
spins.

Using the relationship between internal angles given by
Eq. (7) and the bounds on their values, we numerically
searched for sequences U?, by solving the numerical equa-
tions for the 3 angle parameters. The search was deemed

successful when the fidelity F ≡ 1
2 |tr(U

?U†goal)| = 1 − ε,
with ε . 10−10. We repeat the search for different
sequence lengths and choose the sequence with mini-
mal time cost among all sequences obtained in success-
ful searches to ensure that we are at the global time-
optimum within numerical error.

Typical results for the case κ < cos(α) are illustrated
in Fig. (1) by a 13C at a distance r ≈ 2.92Å from the
NV center, at an external magnetic field B0 ≈ 500G
(ω0 = 0.5MHz) aligned with the ẑ axis. This magnetic
field strength is experimentally convenient: it achieves
fast nuclear spin polarization since in the electronic ex-
cited state the nuclear and electronic spins have similar
energies, allowing polarization transfer during optical il-
lumination. We will consider later the effects of differ-
ent magnetic field strengths. The hyperfine interaction
of this spin, A‖ ≈ 1.98MHz and A⊥ ≈ 0.51MHz, yields
α ≈ 11.6o and κ ≈ 0.20. Although the upper bound on
the sequence length is 32, we found that the optimal se-
quences were much shorter (red crosses). The simulation
results indicate that, given a rotation angle θ, the actua-
tor implementation times for rotations around any axis in
the {ŷ, x̂} plane are comparable, with a maximum around
θ≈ π, and a symmetry for θ = π ± δ. We plot, in par-
ticular, the optimal times TA(θ) required to generate the
unitaries X(θ) ≡ e−iθσx/2 and Y(θ) ≡ e−iθσy/2 with the
actuator scheme (blue circles). Here and in the follow-
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FIG. 1. Comparison of gate time: Case κ < cos(α),
occurring for a 13C at a distance of ≈ 2.92Å from the NV
center, with an external magnetic field B0 ≈ 500G aligned
with the ẑ axis. We plot the simulated actuator implemen-
tation time (blue circles-left axis) of the unitaries X(θ) (left)
and Y(θ) (right) and the corresponding sequence lengths (red
crosses-right axis). For comparison, we plot the time required
with direct driving (green lines) with bare Rabi frequencies
20 and 100kHz, when the electronic spin in state | − 1〉 (left),
thus maximizing the enhancement factor, or |0〉 (right). Note
that the direct-driving time for θ > π depends on whether
the driving phase can be inverted (dashed line) or not (solid
line).
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FIG. 2. Comparison of gate time: Case κ > cos(α),
occurring for a 13C at a distance of ≈ 4.31Å from the NV
center. See Fig. 1 for comparison and explanation of symbols.
Note that virtual transition of the electronic spin in the ms =
0 manifold result in a decrease of the effective Rabi frequency,
thus making direct driving in that manifold unfavorable.

ing we neglect the time needed for the actuator π-pulses,
since it can be as low as 2-5ns [33]. For comparison,
we consider direct driving with bare Rabi frequencies in
the range Ω ≈20-100kHz. In Fig. (1) we plot the gate
time TD(θ) required with directive driving (green solid
and dashed lines), taking into account the Rabi enhance-
ment factors, which for this nuclear spin are ζ0≈−2.43,
ζ+1 ≈ 0.62 and ζ−1 ≈ 1.81. Note that for bare Rabi fre-
quencies weaker than ≈ 20kHz, the actuator protocol is
advantageous for any rotation angle.

In Fig. (2), we examine the driving of a 13C at a dis-
tance of ≈ 4.31Å from the NV center, for which A‖ ≈
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FIG. 3. Left panel: Actuator gate-implementation times for
Y(π), for the entire α range. Values for κ span from 10−3

(bottom thick red line), through 0.1 to 0.9 in 0.1 intervals
(thin red lines), to 1 (top thick red line). For the same values
of κ, we plot the direct driving times for Rabi frequencies Ω≈
20kHz (green lines) and Ω ≈ 100kHz (green shaded region).
Blue crosses represent the actuator times for all the tabulated
carbon spins around the NV center. Right panel: ratio of
actuator to direct driving times for the generation of Y(π) in
the NV system as a function of the distance between nuclear
and electronic spins. We consider all three electronic spin
states |0〉, |+ 1〉, | − 1〉 (blue circles, red plus signs, and green
dash-dot, respectively), for a bare Rabi frequency Ω≈20kHz.

−0.35MHz andA⊥≈0.23MHz. Under the same magnetic
field conditions, B0 ≈ 500G, we have κ≈ 1.8, α≈ 57.4o,
and thus κ > cos(α), with n = 6 the maximal possi-
ble length of a finite time-optimal sequence. The figures
show the optimal times to synthesize the unitaries X(θ)
and Y(θ) as a function of the rotation angle θ as well as
the corresponding length of the time-optimal sequence.
For the synthesis of some unitaries, the optimal scheme
requires infinite-length sequences. We compare the time
required with the actuator protocol to the direct driving,
taking into account the enhancement factors (ζ0≈−1.07,
ζ+1≈0.29 and ζ−1≈0.78). Even if the hyperfine coupling
strength is smaller than for the first spin considered, the
actuator times are in general smaller; similarly, even for
the highest considered direct-driving Rabi frequency the
actuator protocol can have a lower time-cost.

While the results shown for particular nuclear spins are
indicative of the achievable gate times, the broad range
of parameters for different actuator/qubit systems could
give rise to quite different behaviors. We thus investigate
the actuator implementation time of a particular unitary
Y(π) for an extended range in {α, κ} space; the result is
plotted in the leftmost panel of Fig. (3). To find the times
for a smooth set of parameters, we interpolate the im-
plementation times found numerically for representative
pairs {α, κ}. We compare the times achievable with the
actuator scheme with the times required for direct driv-
ing, taking into consideration the effective Rabi frequen-
cies over the same range of parameters {α, κ}. If only a

moderate driving strength is available (a bare Rabi fre-
quency of Ω≈20kHz) the actuator scheme is faster than
direct driving for a broad region of the parameter space.
While 13C nuclear spins coupled to the NV center do not
span the whole region, other systems might, presenting
an even more favorable situation.

As shown in Fig. 3 (right panel), for the NV center sys-
tem the dependence on the hyperfine parameters of both
the actuator scheme time and the direct driving strength
yields a broad variation of results for both close-by and
more far away nuclei; while a trend toward longer times
for the actuator scheme vs. direct driving is apparent as
the distance from the NV center increases, the large vari-
ations indicate that the best scheme should be evaluated
for individual nuclear spins.

Finally, we analyze the effect of the qubit’s internal
Hamiltonian, which sets the energy gap between its eigen-
states. As this increases, the angle α between the two
axes of rotation decreases and thus we expect longer se-
quences (both in terms of number of switches and of
total time). On the opposite end, if the energy gap is
small, the rotation speeds decrease in both manifolds;
thus, although the time-optimal sequences might have
short lengths, the total time could still be long. For the
nuclear spin qubits, the energy is set by the external
magnetic field strength: in Fig. (4) we plot for various
fields the bare Rabi frequency for which the actuator im-
plementation time of Y(π) coincides with the minimum
direct driving time (that is, when the enhancement fac-
tor is maximal). If the available experimental bare Rabi
frequency is lower than the depicted value at any given
field, the actuator control method will yield an advan-
tage over direct driving. At intermediate fields, around
B0≈250− 500G, Rabi frequencies that favor direct driv-
ing are relatively large, indicating a region where actu-
ator control can prove especially beneficial. As before,
variations in the hyperfine coupling parameters yield size-
able variations on top of the expected behavior.

Incidentally, the upper bound on the implementation
time of any considered unitary, T ≈ 25µs, is still much
shorter than the nitrogen-vacancy center spin-lattice re-
laxation time at room temperature, T1≈ 1-10ms [21].

III. DISCUSSION

Indirect control of qubits by a quantum actuator
is an attractive strategy in many situations when the
qubits couple weakly to external fields, but interact more
strongly to another quantum system.

Here we analyzed an exemplary situation, consisting
of a hybrid quantum register composed of electronic and
nuclear spins centered around the NV center in diamond.
Using this particular system, we analyzed the parameter
space where indirect control by an actuator presents a
time-advantage over direct control methods. The com-
parison was performed by using time-optimal control re-
sults. Similar control schemes have been proposed and
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FIG. 4. Minimal bare Rabi frequency for which direct driving
is advantageous over the actuator method for the implemen-
tation of Y(π), for different magnetic fields.

experimentally implemented previously, as it was realized
early on that switched control is universal [10, 13]; how-
ever, time-optimality was not considered. For example,
the most frequent scheme [12, 34, 35] applies alternate
rotations for equal times; even if this is a convenient way
of implementing dynamical decoupling on the actuator
while manipulating the qubits, the scheme is not time-
optimal and has in general poor fidelity except in the
limit of small qubit/actuator coupling (see appendix D).
In contrast, here the electronic spin was used just as an
actuator (always in an eigenstate), and as such dynamical
decoupling is not required.

An interesting extension of our results would be to si-
multaneously control two or more qubits by the same
quantum actuator. While this is possible, provided the
qubits are coupled with different strengths [10], it be-
comes more difficult to find time-optimal solutions except
for particular tasks (such as state-to-state transforma-
tions [36]) or geometries [2, 37]. Still, even when the goal
is to control a larger number of qubits, our results can
guide the experimentalist’s choice between direct driving
and the actuator control, for which these results give an
upper bound.
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Appendix A: The Nitrogen-Vacancy in diamond

The Nitrogen-Vacancy (NV) center is a localized de-
fect in diamond [38, 39], consisting of a vacancy close
to a nitrogen substitutional atom. It is a common im-
purity in natural diamond and it can be as well cre-
ated in a controlled manner by nitrogen ion implantation.
NV centers have generated much interest thanks to spin-
dependent fluorescence, optical polarization and good co-
herence properties even at room temperature , with ap-
plications ranging from sensors to fluorescent biomarkers
and qubits.

Single NV centers can be detected by optical scanning
confocal microscopy with excitation at 532nm and fluo-
rescence emission in the range 650-800nm. The NV spin
state can be measured even at room temperature using
spin-dependent decay into metastable states: The |±1〉
states undergo spin-orbit induced inter-system crossing
[40], decaying in 1/3rd of the cases to metastable singlet
states (with ∼300 ns lifetime) followed by non-radiative
decay to the ground state. Thus, a NV in the |0〉 state
will emit more photons on average than a NV in the |±1〉
states, yielding state discrimination by fluorescence in-
tensity. Room temperature optically detected magnetic
resonance (ODMR) of a single NV spin was demonstrated
in groundbreaking experiments [41, 42]. The metastable
state decays via spin-non conserving processes into the
|0〉 state thereby re-orienting the spin. While this re-
duces measurement contrast, it allows spin polarization
in excess of 95%.

The ground state of the NV electronic spin can be
manipulated by on-resonance microwave fields. The |0〉
and |±1〉 levels are separated by a zeros field splitting
∆ ≈ 2.87GHz. A small magnetic field aligned with the
NV axis splits the degeneracy between the |±1〉 levels, al-
lowing addressing one transition at a time, as considered
in the main text.

NV centers have garnered much attention also due
to their very good coherence properties. Coupling to
phonons is weak and relaxation is dominated by spin-
spin processes. For ultra-pure type II-a diamond, the
main source of decoherence is the nuclear 13C spin bath,
which can be further suppressed in isotopically engi-
neered diamonds [43–45]. The coherence time can be
extended by using dynamical decoupling techniques (a
series of π pulses) [46, 47] to T2 ≈ 600µs in natural di-
amond [20, 48, 49]. The limiting factor is the T1 relax-
ation process of NV centers. The process is generally
slow thanks to low coupling to phonons yielding relax-
ation times of T1 ≈5-10 ms (depending on the NV and
other paramagnetic impurity density).

While the nuclear spin bath is a source of decoherence,
proximal individual 13C nuclear spins can be used as a
resource [27, 50]. Because 13C isotopic impurities are
distributed randomly in the diamond lattice with 1.1%
probability, each NV centre couples to spins at different
locations, leading to distinct hyperfine structure and co-
herence properties. We can considered the discrete set of
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FIG. 5. Left: Histogram of the distribution of hyperfine coupling strengths for the closest 70 nuclear spins. Center: Histogram
of the relevant parameters for time-optimal control for the closest nuclear spins calculated from their coupling to a NV center
in diamond at B0 = 500G using the hyperfine couplings on the left. Right: Histogram of Rabi enhancement factors, |1 + ζi|,
for the closest nuclear spins to a NV center in diamond at B0 = 500G. While a few spins have large enhancement > 3 (not
plotted), the majority of spins have factors 1− 1.5.

proximal lattice sites, in the first five lattice cells, that
will be probabilistically occupied by a 13C nuclear spin.
The hyperfine coupling of these nuclear spins to the NV
center is set by their positions through the dipolar inter-
action and the contact term, which is set by the NV elec-
tronic spin wavefunction density at the spin location. We
used the results of ab-initio calculations [29, 32, 51] that
yield a discrete set of possible hyperfine splittings for the
13C in the region of interest. Because of the strong angu-
lar dependence of the magnetic dipolar coupling and of
the electronic wavefunction (which presents a C3v sym-
metry) there is a wide variety of coupling strengths, even
for nuclear spins at similar distances from the central NV
electronic spin, leading to different results in the compari-
son between the quantum and classical control strategies,
as discussed in the main text.

Here we thus survey some of the relevant properties
for the comparison of direct driving versus the actuator
model. We considered the 13C nuclear spin in the first 5
lattice cells around the NV center. As shown in Figure 5,
there is a great variation in the hyperfine parameters,
even for spins that are located at similar distances from
the NV center. This in turns translates into a spread in
the enhancement factors of the Rabi driving frequency
(right panel) and the magnitude and angle of the axis of
rotation in the ms = 1 manifold (left panel).

Appendix B: Enhancement of the Rabi driving

In the qubit/actuator model, a critical assumption
is that the actuator can be controlled by an external
driving much faster than the qubit. In addition, for
the actuator model to have an advantage in terms of
gate-implementation time, the actuator-qubit coupling
should be strong. Under these conditions, there is a large
energy-scale separation between the qubit and the ac-
tuator and a careful analysis of their joint dynamics is
needed.

In particular, for electronic and nuclear spin systems,
the nuclear spin driving field also couple to the electronic
spin. While this coupling is well off-resonance, it is in

general quite strong and cannot be disregarded. Because
the driving is off-resonant, it cannot induce electronic
transitions. However, it can increase the probability
of the on-resonance nuclear spin transition probabilities,
thanks to virtual transitions. This enhancement has been
long observed in ENDOR (electron-nuclear double reso-
nance) experiments [25, 52, 53] and is usually described
as a pseudo-Zeeman effect, affecting both the resonance
frequency and the transition probability of nuclear spins.

The enhancement is due to the mixing of the nuclear
spin Zeeman eigenstates due to the anisotropic hyper-
fine interaction. We can calculate the enhancement by
performing second order perturbation theory in the hy-
perfine coupling strength, obtaining:

ζ+1 = γe
γn

2A⊥
∆+B0(γe−γn)−A‖

;

ζ0=− γe
γn

4A⊥(∆−A‖)
(∆+B0(γe−γn)−A‖)(∆−B0(γe−γn)−A‖)

;

ζ−1 = γe
γn

2B
∆−B0(γe−γn)−A‖

.

(B1)

We can rewrite these expressions in terms of the param-
eters α, κ which determine the performance of the actu-
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FIG. 6. Maximum number of switches required for the time
optimal solution. Here we survey the closest nuclear spins to
a NV center in diamond at B0 = 500G.
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FIG. 7. Left: Gate Infidelity 1 − |Tr
{
UeqU

†
g

}
|, where Ug is a π rotation about Y. Here Ueq is obtained by rotations around

alternating axes (separated by an angle α) for equal time periods. While the fidelity is good for small α, it becomes poor at
larger α. Note that the infidelity for the time-optimal scheme is in principle 0 and was set to < 10−10 in the numerical searches.
Right: Gate time for the same gate (solid lines) compared to the time-optimal solution time (dotted lines). Note that the
equal-time solutions seem to be time-favorable at high α, but then their fidelity is poor.

ator protocol:

ζ+1 = 2B0γe sin(α)
κ(B0γe+∆)−B0γn cos(α) ;

ζ0 = − 4B0γe sin(α)(κ(B0γn+∆)−B0γn cos(α))
[κ(B0γe+∆)−B0γn cos(α)]{κ[∆−B0(γe−2γn)]−B0γn cos(α)}

ζ−1 = 2B0γe sin(α)
κ[∆−B0(γe−2γn)]−B0γn cos(α) .

(B2)
Note that the enhancement is proportional to the ratio
γe/γn, which is in general quite large. More generally,
this corresponds to a proportionality to the relative cou-
pling strength of the actuator and qubit to external fields.

Note that ζi can be either positive or negative, depend-
ing on the sign of the transverse hyperfine coupling, thus
leading to either an enhancement or a reduction of the
effective Rabi frequency Ωi = (1 + ζi)Ω.

Appendix C: Length of quantum actuator control
sequences

While in the main text we neglected the time required
to apply π-pulses on the NV center, this time can become
substantial if the number of required pulses grows. In
addition, pulse errors might also accumulate and degrade
the nuclear spin unitary fidelity. The actuator sequence
length is thus a very important parameter, and we thus
survey in Figure 6 its spread over the nuclear spins of
interest. In particular we plot the maximum sequence
length, as determined by constraints on the time-optimal
solution [23], while the actual solution might be much

shorter.
We note that for typical parameters, the sequence

length is relatively short, as good implementation of
dynamical decoupling pulse sequences comprising more
than thousands π pulses have been implemented, both
in the NV spin system [54] and in other systems [55–57],
including a long tradition in nuclear magnetic resonance,
where thousands of pulses are routinely employed.

Appendix D: Fidelity of quantum actuator control

The simplest scheme to obtain rotations of the tar-
get qubit is by alternating its evolution about the two
non-parallell axes for equal amounts of time. While
this scheme has advantages, in particular when one also
seek to preserve the coherence of the quantum actua-
tor [12, 34] or when the exact rotation axes are not known
with enough precision, it provides high fidelity gates only
for small angles α. In addition, the rotations are not
time-optimal. In figure 7 we compare the equal-time
sequences with the time-optimal sequences. While the
time-optimal construction can achieve in principle per-
fect fidelity (and we set the infidelity to 10−10 in the nu-
merical searches) the equal-time decomposition does not
leave enough degrees of freedom to achieve the desired
gate. The fidelity is worse for large angles between the
rotation axes and a large mismatch between the two rota-
tion rates. When the equal time decomposition achieves
acceptable fidelities, this is paid for by long decomposi-
tion times.
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