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Recently the question of whether the D-Wave processors exhibit large-scale quantum behavior or can be de-
scribed by a classical model has attracted significant interest. In this work we address this question by studying
a 503 qubit D-Wave Two device as a “black box”, i.e., by studying its input-output behavior. Our work gen-
eralizes an approach introduced in Boixo et al., Nature Comm. 4, 3067 (2013), and uses groups of up to 20
qubits to realize a transverse Ising model evolution with a ground state degeneracy whose distribution acts as a
sensitive probe that distinguishes classical and quantum models for the D-Wave device. Our findings rule out all
classical models proposed to date for the device and provide evidence that an open system quantum dynamical
description of the device that starts from a quantized energy level structure is well-justified, even in the pres-
ence of relevant thermal excitations and a small value of the ratio of the single-qubit decoherence time to the
annealing time.

I. INTRODUCTION

How can one determine whether a given “black box” is
quantum or classical [1]? A case in point are the devices built
by D-Wave [2–4]. These devices are commercial computers
that the user can only access via an input-output interface. Re-
ports [5–7] that the D-Wave devices implement quantum an-
nealing (QA) with hundreds of qubits have attracted much at-
tention recently, and have also generated considerable debate
[8–12]. At stake is the question of whether the experimental
evidence suffices to rule out classical models, and whether a
quantum model can be found that is in full agreement with the
evidence.

It is our goal in this work to distinguish several classi-
cal models (simulated annealing, spin dynamics [9], and hy-
brid spin-dynamics Monte Carlo [11]) and a quantum adia-
batic master model [13] of the D-Wave device, and to decide
which of the models survives a comparison with the experi-
mental input-output data of a “quantum signature” test. This
test is not entanglement-based and does not provide a Bell’s-
inequality-like [14] no-go result for classical models. Instead,
our approach is premised on the standard notion of what de-
fines a “good theory:” it should have strong predictive power.
That is, if the theory has free parameters then these can be
fit once, and future predictions cannot require that the free
parameters be adjusted anew. It is in this sense that we will
show that we can rule out the classical models, while at the
same time we find that the adiabatic quantum master equation
passes the “good theory” test.

The D-Wave devices operate at a non-zero temperature that
can be comparable to the energy gap from the ground state, so
one might expect that thermal excitations act to drive the sys-
tem out of its ground state, potentially causing the annealing
process to be dominated by thermal fluctuations rather than
by quantum tunneling. Furthermore, the coupling to the en-

vironment should cause decoherence, potentially resulting in
the loss of any quantum speedup. This issue was recently
studied in Refs. [6, 7], where data from a 108-qubit D-Wave
One (DW1) device was compared to numerical simulations
implementing classical simulated annealing (SA), simulated
quantum annealing (SQA) using quantum Monte Carlo, and a
quantum adiabatic master equation (ME) derived in Ref. [13].
These studies demonstrated that SA correlates poorly with the
experimental data, while the ME (in Ref. [6]) and SQA (in
Ref. [7]) are in good agreement with the same data. Specif-
ically, the 8-qubit “quantum signature” Hamiltonian intro-
duced in Ref. [6] has a 17-fold degenerate ground state that
splits into a single “isolated” state and a 16-fold degenerate
“cluster,” with the population in the former suppressed rela-
tive to the latter according to the ME but enhanced according
to SA; the experiment agreed with the ME prediction [6]. Sub-
sequently, Ref. [7] rejected SA on much larger problem sizes
by showing that the ground state population (“success proba-
bility”) distribution it predicts for random Ising instances on
up to 108 spin variables is unimodal, while the experimental
data and SQA both give rise to a bimodal distribution. This
was interpreted as positive evidence for the hypothesis that
the device implements quantum annealing.

However, interesting objections to the latter interpretation
were raised in Refs. [9, 11], where it was argued that there
are other classical models that also agree with the experimen-
tal data of Refs. [6, 7]. First, Smolin and Smith [9] pointed
out that a classical spin-dynamics (SD) model of O(2) rotors
could be tuned to mimic the suppression of the isolated ground
state found in Ref. [6] and the bimodal success probability his-
tograms for random Ising instances found in Ref. [7]. Shortly
thereafter this classical model was rejected in Ref. [10] by
demonstrating that the classical SD model correlates poorly
with the success probabilities measured for random Ising in-
stances, while SQA correlates very well. In response, a new
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hybrid model where the spin dynamics are governed by Monte
Carlo updates was very recently proposed by Shin, Smolin,
Smith, and Vazirani (SSSV) [11], that correlates at least as
well with the DW1 success probabilities for random Ising in-
stances as SQA. In this model the qubits are replaced by O(2)
rotors with classical Monte Carlo updates along the annealing
schedule of the D-Wave device. This can also be interpreted
as a model of qubits without any entanglement, updated at
each time step to the classical thermal equilibrium state deter-
mined by the instantaneous Hamiltonian. Moreover, the hy-
brid model correlates almost perfectly with SQA, suggesting
that the SSSV model is a classical analogue of a mean-field
approximation to SQA, and that this approximation is very ac-
curate for the set of problems solved by the DW1 in Ref. [7].1

At this point it is important to note that recent work already
established that 8-qubit entangled ground states are formed
during the course of the annealing evolution in experiments
using a D-Wave Two device [15]. This demonstration of en-
tanglement was done outside of the “black-box” paradigm we
are considering here,2 and is, of course, a crucial demonstra-
tion of non-classicality. However, it does not necessarily im-
ply that non-classical effects play a role in deciding the final
outcome of a computation performed by the D-Wave devices.
It is the latter that we are concerned with in this work, and it
is the fundamental reason we are interested in the “black-box”
paradigm.

Using a physically motivated noise model, we show that
none of the three classical models introduced to date matches
new data we obtained from the D-Wave Two (DW2) device
using a generalized “quantum signature” Hamiltonian on up
to 20 qubits. At the same time the ME matches the new
data well. Thus our results confirm the earlier rejection of
the SA and SD models—this is of independent interest since
the “quantum signature” provided in Ref. [6] for the DW1
had remained in question in light of the SD-based critique of
Ref. [9]—and also serve to reject the new SSSV model [11]
for system sizes of up to 20 qubits. Of course, this still leaves
open the possibility that a classical model can be found that
will match the experimental data while satisfying the “good
theory” criteria. Since, as mentioned above, our quantum
signature-based test does not provide a no-go result for classi-
cal models, the distinction we demonstrate between a natural
quantum model and fine-tuned classical models is perhaps the
best that can be hoped for within our approach.

The “quantum signature” Hamiltonian we consider here is
defined in Sec. II and is a direct generalization of the Hamil-
tonian introduced in Ref. [6]. We introduce a controllable

1 We note that phases of quantum models often have an accurate mean-field
description, and that SQA is a classical simulation method obtained by
mapping a quantum spin model to a classical one after the addition of an
extra spatial dimension of extent β (the inverse temperature). Moreover,
SQA scales polynomially in problem size, which is the reason that Ref. [7]
was able to use SQA to predict the experimental outcomes of 108 qubit
problem instances.

2 The experiment had access to the internal workings of the D-Wave device,
in particular the ability to perform qubit tunneling spectroscopy and thus
obtain the instantaneous energy spectrum.

overall energy scale, or an effective (inverse temperature)
“noise control knob”. Decreasing the energy scale amounts
to increasing thermal excitations, enabling us to drive the D-
Wave processor between qualitatively distinct regimes. At the
largest energy scale available, the annealing process appears
to be dominated by coherent quantum effects, and thermal
fluctuations are negligible. As the energy scale is decreased,
thermal excitations become more relevant, and for a suffi-
ciently small energy scale, the system behaves more like a
classical annealer based on incoherent Ising spins. Neverthe-
less, at all energy scales the system is very well described by
the ME. This suggests that an open system quantum dynami-
cal description of the D-Wave device is well-justified, even in
the presence of relevant thermal excitations and a small single-
qubit decoherence time to annealing time ratio, at least for the
class of Hamiltonians studied here.

The structure of this paper is as follows. We provide the-
oretical background on the quantum signature Hamiltonian—
our workhorse in this study—in Sec. II. We describe a noise
model for the D-Wave device in Sec. III, which includes both
stochastic and systematic components, the latter being domi-
nated by spurious qubit cross-talk. We analyze the effect of
tuning the thermal noise via the magnitude of the final Hamil-
tonian in Sec. IV. Our first set of main results are presented in
Sec. V, where we demonstrate a clear difference between the
behavior of the classical and quantum models in the absence
of cross-talk. We then include the cross-talk and establish in
Sec. VI the input-output characteristics of the D-Wave device
that allow us to critically assess the classical models, and con-
firm the agreement with an open quantum system description
via the adiabatic quantum master equation. We achieve a close
match between the ME and the experimental data, while re-
jecting the SSSV model, the strongest of the classical mod-
els. We demonstrate that the ME predicts that an entangled
ground state is formed during the course of the annealing evo-
lution in Sec. VII. We provide a discussion and conclusions
in Sec. VIII. The appendices provide further technical details,
experimental and numerical results.

II. THEORETICAL BACKGROUND

Quantum and classical annealing are powerful techniques
for solving hard optimization problems, whether they are im-
plemented as numerical algorithms or on analog (physical) de-
vices. The general simulation strategy is to implement an “es-
cape” rule from local minima of an energy or penalty function
to reach the global minimum, representing a solution of the
optimization problem [16–18]. The physical strategy is to use
a natural system or build a device whose physical ground state
represents the sought-after solution [19–22]. In both cases,
by progressively reducing the escape probability, the system
is allowed to explore its configuration space and eventually
“freeze” in the global minimum with some probability.
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A. Quantum annealing Hamiltonian

The quantum annealing Hamiltonian is given by

H(t) = A(t)HX +B(t)HI , (1)

where HX = −∑i σ
x
i (with σxi being the Pauli matrix act-

ing on qubit i) is the transverse field, HI is the classical Ising
Hamiltonian,

HI = −
∑
i∈V

hiσ
z
i −

∑
(i,j)∈E

Jijσ
z
i σ

z
j , (2)

and the time-dependent functions A(t) and B(t) control the
annealing schedule. TypicallyA(tf ) = B(0) = 0, where tf is
the total annealing time, andA(t) [B(t)] decreases (increases)
monotonically. The local fields {hi} and couplings {Jij} are
fixed. The qubits occupy the vertices V of a graphG = {V, E}
with edge set E .

A spin configuration is one of the 2N elements of a set
of ±1 eigenvalues of all the Pauli matrices {σzi }Ni=1, which
we denote without risk of confusion by ~σz = (σz1 , . . . , σ

z
N ).

The goal is to find the minimal energy spin configuration of
HI, i.e., argmin~σzHI. In QA, the non-commuting field HX

[17, 18, 23, 24] allows quantum tunneling out of local min-
ima. This “escape probability” is reduced by turning off this
non-commuting field adiabatically, i.e., the time-scale of the
variation of the A(t) and B(t) functions must be slow com-
pared to the inverse of the minimal energy gap of H(t). In
a physical device implementation of QA there is always a fi-
nite temperature effect, and hence one should consider both
tunneling and thermal barrier crossing [25–28].

Such physical QA devices, operating at ∼ 20 mK using su-
perconducting flux technology, have been built by D-Wave [2–
4]. The qubits occupy the vertices of the “Chimera” graph
(shown in the Appendix A). Excluding the coupling to the
thermal bath, the Hamiltonian driving the device is well-
described by Eq. (1), with the functions A(t) and B(t) de-
picted in Fig. 1.

B. The quantum signature Hamiltonian

Ref. [6] introduced an 8-qubit “quantum signature Hamil-
tonian,” schematically depicted in Fig. 2, designed to distin-
guish between SA and QA. The 8 spin problem comprises 4
spins connected in a ring, which we refer to as core spins,
and 4 additional spins connected to each core spin, which we
refer to as outer spins. One special property of this Hamilto-
nian is that it has a 17-fold degenerate ground state. Of these,
16 states form a subspace of spin configurations connected
via single flips of the outer spins, hence we refer to them as
the clustered (C) ground states, or just the “cluster-states”, or
“cluster”. There is one additional state, which we call the iso-
lated (I) ground state, connected to the cluster-states via 4 core
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FIG. 1. (Color online) DW2 annealing schedules A(t) and B(t)
along with the operating temperature of T = 17mK (black dashed
horizontal line). The largeA(0)/(kBT ) value ensures that the initial
state is the ground state of the transverse field Hamiltonian. The large
B(tf )/(kBT ) value ensures that thermal excitations are suppressed
and the final state reached is stable. Also shown are the attenuated
αB(t) curves for (a) the value of α at which the intersection between
A(t) and αB(t) coincides with the operating temperature (blue dot-
dashed curve), and (b) the largest α such that αB(t) remains below
the temperature line for the entire evolution (blue dotted curve).
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FIG. 2. (Color online) The 8-spin Ising Hamiltonian. The inner
“core” spins (green circles) have local fields hi = +1 [using the con-
vention in Eq. (2)] while the outer spins (red circles) have hi = −1.
All couplings are ferromagnetic: Jij = 1 (black lines).

spin flips:

C : {|0000 0000〉 , |0001 0000〉 , . . . , |1111 0000〉} , (3a)
I : {|1111︸︷︷︸

outer

1111︸︷︷︸
core

〉} , (3b)

where |0〉 and |1〉 are, respectively, the +1 and−1 eigenstates
of σz . This structure of the ground state manifold is easily
verified by inspection of the Hamiltonian of Fig. 2.

The clustered ground states arise from the frustration of the
outer spins, due to the competing effects of the ferromagnetic
coupling and local fields. This frustration arises only when the
core spins have eigenvalue +1, which is why there is only a
single additional (isolated) ground state where all spins have
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FIG. 3. (Color online) Schematic representation of the 12, 16 and 20 spin Hamiltonians used in our tests. Extensions to larger N follow the
same pattern, with N/2 qubits in the inner ring and N/2 qubits in the outer ring. Notation conventions are as in Fig. 2.

eigenvalue −1 (for a more detailed discussion of the energy
landscape of this 8-spin Hamiltonian, see Ref. [6].) Here
we also consider quantum signature Hamiltonians with larger
numbers of spins N , as depicted in Fig. 3. These Hamiltoni-
ans share the same qualitative features, but the degeneracy of
the ground state grows exponentially with N :

Degeneracy of C : NC = 2N/2 ;

Degeneracy of I : NI = 1 .
(4)

At the end of any evolution, be it quantum or classical, at
t = tf , there is a certain probability of finding each ground
state. Let us denote the observed population of the isolated
state at t = tf by PI, and the average observed population in
the cluster at t = tf by

PC =
1

NC

NC∑
c=1

Pc , (5)

where NC = 16 for the 8-spin case, and where Pc is the pop-
ulation of cluster-state number c. As shown in Ref. [6] for the
8-spin case, SA and QA can be distinguished because they
give opposite predictions for the population ratio PI/PC. For
SA, the isolated state population is enhanced relative to any
cluster state’s population, i.e., PI/PC ≥ 1, whereas for QA,
the isolated state population is suppressed relative to any clus-
ter state’s population, i.e PI/PC ≈ 0. This conclusion also
holds for the N > 8 cases, as we show in detail in Appendix
B.

These two starkly different predictions for QA and SA al-
lowed Ref. [6] to rule out SA as an explanation of the ex-
perimental results obtained from the DW1 using the 8-spin
Hamiltonian. In addition, Ref. [6] demonstrated that the ME
[13] correctly predicts the suppression of the isolated state,
including the dependence on the annealing time tf , thus pro-
viding evidence that the DW1 results correlate well with the
predictions of open system quantum evolution. However, as
we shall discuss in detail and demonstrate with data from the
DW2, the suppression of the isolated state can change as a
function of the thermal noise, and suppression can turn into
enhancement at sufficiently high noise levels. Yet, this does
not imply that the system admits a classical description.

One limitation of the analysis so far is that the quantity PC

as defined in Eq. (5) is an average over the cluster state pop-

ulations, so it does not account for variations in individual
cluster state populations. In the absence of any non-idealities
in the quantum Hamiltonian of Eq. (1), SA and QA (under a
closed system evolution) predict that all the cluster states end
up with equal populations. Therefore, the cluster state pop-
ulations alone cannot be used to distinguish between SA and
QA, yet, as we will show, not all classical models preserve
the cluster state symmetry, making it a useful feature to take
into account. However, when we make |J | and |h| unequal or
introduce additional spurious couplings between qubits, the
symmetry between the cluster states is broken in all models,
and we must be careful to model such noise sources accu-
rately.

III. D-WAVE CONTROL NOISE SOURCES

So far we have not considered the effect of control noise
on the local fields and couplings in HI, which are important
effects on the D-Wave processor. For each annealing run of
a given problem Hamiltonian, the values of {hi, Jij} are set
with a Gaussian distribution centered on the intended value,
and with standard error of about 5% [29]. In our experiments
we used averaging techniques described in Appendix C to
minimize the effects of this noise. However, it is important
to test its effects on the quantum and classical models as well.

Besides this random noise source on the {hi, Jij}, there is
a spurious cross-talk between qubits. The model accounting
for this cross-talk is

hi 7→ hi − χ
∑
k 6=i

Jikhk (6a)

Jij 7→ Jij + χ
∑
k 6=i,j

JikJjk , (6b)

where χ is the qubit background susceptibility multiplied by
the mutual inductance [29].

To understand the correction to Jij consider first the case
where i and j are nearest-neighbor qubits (i.e., are perpen-
dicular, intersecting superconducting loops in the same unit
cell of the Chimera hardware graph), and k is an index of
qubits that are next nearest neighbors of i (i.e., are parallel,
non-intersecting loops in the same unit cell of the Chimera
hardware graph) [30]. Then both Jij and Jjk are existing
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“legitimate” couplings in the unit cell, but χJjk is a spuri-
ous next nearest neighbor coupling. Next consider the case
where qubits i and j are next-nearest neighbors (i.e., parallel
loops), so that nominally Jij = 0. Now the correction is due
to qubits k that are nearest neighbors of (i.e., perpendicular
to) both i and j. The sign is determined by the following rule
of thumb: a ferromagnetic chain or ring is strengthened by the
background χ, i.e., the intermediate qubit is mediating an ef-
fective ferromagnetic interaction between next-nearest neigh-
bors.

While in reality χ is time- and distance-dependent, for sim-
plicity we model it as constant and separately fit χ for the ME
and SSSV to the DW2 cluster state populations. The sum in
Eq. (6) extends over the unit cell of the Chimera graph, i.e.,
in the sum over k we include all the couplings between phys-
ically parallel qubits. We set Jik and Jjk equal to the unper-
turbed Jij . To account in addition for the effect of Gaussian
noise on h and J we apply the cross-talk perturbation terms
after the Gaussian perturbation.

IV. INTRODUCING AN ENERGY SCALE

The QA and SA protocols represent two opposite extremes:
in the former quantum fluctuations dominate while in the lat-
ter thermal fluctuations dominate. Can we interpolate between
these regimes on a physical annealer? Since we are unable
to directly change the temperature on the DW2 device3, our
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FIG. 4. (Color online) Numerically calculated evolution of the gap
between the instantaneous ground state and the 17-th excited state
(which becomes the first excited state at t = tf ), for the 8-spin
Hamiltonian in Eq. (1), following the annealing schedule of the DW2
device (Fig. 1). The gap value is shown for some interesting values
of α (see Fig. 1). The kinks are due to energy level crossings, as
explained in Appendix D. A reduction in α results in a reduction of
the size of the minimal gap and delays its appearance.

3 On-chip variability of the SQUID critical currents leads to uncertainty in
both the qubit biases h and the qubit coupling strengths J . These uncertain-

strategy to answer this question is to indirectly modify the rel-
ative strength of thermal effects during the annealing process.
As we now discuss, this can be done by modifying the overall
energy scale.

A straightforward way to tune the thermal noise indirectly
is to change the overall energy scale of the problem Hamil-
tonian HI by rescaling the local fields and couplings by an
overall dimensionless factor denoted by α:

(Jij , hi) 7→ α (Jij , hi) (7)

In the notation above, α = 1 corresponds to implementing
the largest allowed value of the physical couplings on the de-
vice (assuming |hmax| = |Jmax| = 1 in dimensionless units).
The scale of the transverse field HX is not changed. Due to
the form of the cross-talk corrections this scales the cross-talk
corrections by α2.

For SA, reducing α is tantamount to increasing the temper-
ature. Since this does not change the energy spectrum, the
earlier arguments for SA remain in effect, and we expect to
have PI ≥ PC for all α > 0 values. This is confirmed in our
numerical simulations as shown in Appendix E.

For QA, decreasingα from the value 1 has two main effects,
as can be clearly seen in Fig. 4. First, the minimal gap between
the instantaneous ground state and the 17th excited state is re-
duced (the lowest 17 states become degenerate at the end of
the evolution as explained previously). Since thermal excita-
tions are suppressed by a factor of e−β∆ (with β = 1/kBT
the inverse temperature and ∆ the energy gap), a reduction
in the gap will increase the thermal excitation rate [13]. One
might expect that, by sufficiently reducing α, it is possible to
make the gap small enough that the competition between non-
adiabaticity and thermalization becomes important. However,
simulations we have performed for the closed system case
with α ∈ [0.01, 1] show that PI/PC is essentially 0 over the
entire range. Therefore we do not expect non-adiabatic tran-
sitions to play a role over the entire range of α’s we studied.
Second, reducing α delays the appearance of the minimal gap.
This effectively prolongs the time over which thermal excita-
tions can occur, thus also increasing the overall loss of ground
state population. Hence we see that by changing α we expect
to move from a regime where thermal fluctuations are negli-
gible (α ' 1), to a regime where they are actually dominant
(α . 0.1), when the minimal gap is comparable to or even
smaller than the physical temperature of the device.

In agreement with these considerations, the effect that the
position and size of the minimal gap have on the probabil-
ity of being in a given energy eigenstate is shown in Fig. 5.
This figure shows the total population of the 17 lowest en-
ergy eigenstates (i.e., the subspace that eventually becomes
the ground state manifold), computed using the master equa-
tion. As is clear from Fig. 5, as α decreases, the increasingly

ties are calibrated out each time the chip is thermally cycled. The condi-
tions required for optimum calibration are however temperature-dependent.
We therefore conduct our experiments at a fixed operating temperature of
17 mK.
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FIG. 5. (Color online) ME simulation for the time-dependence of the
probability of being in the lowest 17 energy eigenstates, for differ-
ent values of α. Simulation parameters are tf = 20µs (the mini-
mal annealing time of the DW2) and κ = 1.27 × 10−4, where κ is
an effective, dimensionless system-bath coupling strength defined in
Appendix E 3. The chosen value of κ allows us to reliably probe the
small α regime.

delayed and smaller minimum gap causes this subspace to lose
more population due to the increased rate and duration of ther-
mal excitations. This behavior is interrupted by kinks caused
by level crossing, whose position is a function of α, with the
kinks occurring later for smaller α (see Appendix D).

V. NUMERICAL SIMULATIONS WITHOUT CROSS-TALK

We have performed extensive numerical simulations us-
ing simulated annealing (described in Appendix E 1), spin-
dynamics (Appendix E 2), the master equation (Appendix
E 3), and the SSSV model [11], which we describe below.
Since experimental evidence for rejection of SA and the
SD models has already been presented in Ref. [6, 7], while
the SSSV model presents a particularly interesting challenge
since it nicely reproduces the success probability correlations
that were used in Ref. [7] to reject both SA and SD, we focus
on the SSSV model here, and present our discussion of SA
and SD in Appendix F.

The starting point of the SSSV model is a classical Hamil-
tonian inspired by the original QA model (1):

H(t) = −A(t)
∑
i

sin θi (8)

+B(t)

−∑
i

hi cos θi +
∑
i,j

Jij cos θi cos θj

 ,

i.e., each qubit i is replaced by a classical O(2) spin ~Mi =
(sin θi, 0, cos θi) and the annealing schedules A(t) and B(t)
are the same as those of the D-Wave device. However, the
time evolution is now governed by a Metropolis algorithm.

In particular, at each discrete time step a certain number of
Monte Carlo update steps are performed, as follows. Starting
from the initial condition θi = π/2, one variable at a time a
random angle θi ∈ [0, π] is drawn with uniform probability.
If this new angle does not increase the energy [as given by the
Hamiltonian in Eq. (8)] it is accepted. If the new angle in-
creases the energy it is accepted only if p < exp (−β∆E),
where p ∈ [0, 1] is drawn with uniform probability and
∆E > 0 is the change in energy. Each complete time evo-
lution following the entire annealing schedule constitutes one
run. For the nth run out of a total of Nr runs we obtain a
set of angles {θ(n)

j }, which is interpreted in terms of a state

in the computational basis according to the sign of cos(θ
(n)
j ),

i.e., if 0 ≤ θ
(n)
j ≤ π/2 then it is the |0〉 state, whereas if

π/2 < θ
(n)
j ≤ π then it is the |1〉 state.

We note that our ME simulations have only one adjustable
parameter, κ, an effective, dimensionless system-bath cou-
pling strength [defined in Appendix E 3]. The SSSV model,
has two: the temperature and the number of Monte Carlo up-
date steps. In addition, as we discuss in detail below, it re-
quires the addition of stochastic noise to the local fields and
couplings in order to match the ME and the experimental re-
sults, which introduces a third free parameter in the form of
the noise standard deviation. When we discuss the effect of
cross-talk in the next section, both the SSSV model and the
ME will require the susceptibility χ as an additional free pa-
rameter.

We now present our first set of numerical findings, where
we do not include the cross-talk correction discussed in
Sec. III, but focus instead on the role of the stochastic noise
on the local fields and couplings. The results in this section
will help to clarify the roles played by these various sources
of imperfection in the experiment.

A. Ratio of the populations of the isolated state to the cluster
states

Figure 6 shows the distribution of cluster states and isolated
state for the entire range of α values. First, we observe that
in the absence of noise on {hi, Jij} the behavior of the iso-
lated state is strikingly different between SSSV and the ME.
Whereas SSSV shows a monotonic increase with decreasing
α, the ME result for the isolated state is non-monotonic in α;
see Fig. 6(a). Initially, as α is decreased from its largest value
of 1, the ratio of isolated to cluster state population increases
and eventually becomes larger than one, i.e., the population of
the isolated state becomes enhanced rather than suppressed.
For sufficiently small α, the ME isolated state population turns
around and decreases towards 1.

Thus, the SSSV model captures the suppression of the iso-
lated state at high α but does not capture the ground state
population inversion at low α (as we discuss below, this con-
clusion changes after noise on h and J is included). On the
other hand, we note that SA correctly predicts an enhanced
isolated state at low α but does not predict the suppression at
high α (see Appendix F). This observation led us to consider
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FIG. 6. (Color online) Distribution of the ground states forN = 8 for (a) ME with no noise on {hi, Jij}, (b) SSSV with no noise on {hi, Jij},
and (c) SSSV with {hi, Jij} noise using σ = 0.085. The cluster states are labeled by their Hamming distance H from the isolated state, and
by their multiplicity M for a given value of H . The vertical axis is the final probability p of a given (H,M) set, divided by its multiplicity
and the total ground state probability. The data symbols (◦, etc.) are the mean values of the bootstrapped [31] distributions, and the error
bars are two standard deviation below and above the mean representing the 95% confidence interval. Note that the SSSV model prefers the
|1111 0000〉 cluster state, whereas the ME gives a uniform distribution over all cluster states. SSSV parameters are T = 10.56mK and 1×105

Monte Carlo step updates per spin (“sweeps”). The same parameters are used in all subsequent SSSV figures. These results do not include the
cross-talk correction.

classical models that interpolate between SSSV at high α and
SA at low α. These models exploit the fact that in SA the
qubits are replaced by fully incoherent, classical Ising spins,
while in SSSV each qubit is replaced by a “coherent” O(2)
rotor.4 Therefore a natural way to interpolate between SSSV
and SA is to “decohere” the O(2) rotors over an α-dependent
timescale τα, and two natural decoherence models we consid-
ered are discussed in Appendix G. However, these models do
not reproduce the behavior of the ME.

In order to understand what contributes to the increase in
the isolated state population as α is lowered, it is useful to
study the time evolution of the population in the lowest 17 en-
ergy eigenstates according to the ME. An example is shown in
Fig. 7, for α = 0.1, i.e., close to the peak of the isolated state
population. This figure clearly shows how the relative ratio of
the isolated state population to the mean cluster state popula-
tion PI/PC becomes > 1. The sixth energy eigenstate (red)
evolves to become the isolated ground state, while the other
16 eigenstates evolve to become the cluster (purple). Dur-
ing the time evolution, the population in the sixth eigenstate
grows slightly larger than that of the cluster (red curve ends
up above the purple one), which explains why PI/PC > 1.
In more detail, we observe that (around t/tf = 0.4) the sixth
eigenstate acquires population (via thermal excitations) from
the lowest five eigenstates (blue). Somewhat later (around
t/tf = 0.6) the sixth eigenstate loses some population due
to thermal excitations, which is picked up in part by the high-
est 11 eigenstates (green). Finally, thermal relaxation returns

4 Recall that SU(2) is (locally) isomorphic to SO(3), so a qubit can always
be mapped to an SO(3) rotor. (Strictly, SO(3) is isomorphic to SU(2)/Z2.)
The restriction to O(2) rotors is heuristically justified by SSSV via the ob-
servation that the QA Hamiltonian contains only x and z components.
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FIG. 7. (Color online) Time evolution (according to the ME) of en-
ergy eigenstate populations for α = 0.1 and κ = 8.9 × 10−4 (this
relatively large value was chosen here since it results in increased
thermal excitation/relaxation). Pi denotes the population of the ith
eigenstate, with i = 1 being the instantaneous ground state. The
energy eigenstate that eventually becomes the isolated ground state
is i = 6 (dashed red). This state acquires more population at the
end of the evolution than the other 16 eigenstates that eventually be-
come the cluster (solid purple). Inset: The difference of the popula-
tion ratio between the open system and the closed system evolution,
∆(PI/PC) = (PI/PC)Open − (PI/PC)Closed. The deviation from
closed system dynamics starts at t/tf ≈ 0.4, when the i = 6 eigen-
state becomes thermally populated at the expense of the lowest five
eigenstates.

some population to the 17 eigenstates, but the sixth eigenstate
gains more population than the other 16 eigenstates since it
is connected to a larger number of excited states. During this
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FIG. 8. (Color online) Statistical box plot of the probability divided
by the multiplicity of being in a given state with Hamming distance
H and multiplicity M . Shown are the ME isolated state and clus-
ter states for N = 8, with 512 noise realizations applied to the h’s
and J’s [with distribution N (0, 0.06)] at α = 1. The isolated state
(H = 0,M = 1) is suppressed while the cluster states are, on av-
erage, equally populated. The red bar is the median, the blue box
corresponds to the lower and upper quartiles, respectively, the seg-
ment contains most of the samples, and the +’s are outliers [32].
The horizontal axis label indicates the Hamming distance from the
isolated state and the multiplicity of the cluster-states at each value
of H . States that are equivalent up to 90◦ rotations are grouped to-
gether. For example, there are 4 rotationally equivalent cluster-states
that have two adjacent outer qubits pointing down, while the other
two are pointing up. Only theH = 6 case splits into two rotationally
inequivalent sets.

relaxation phase, the system behaves like classical simulated
annealing. The inset shows that deviations from the closed
system behavior occur around t/tf = 0.4, i.e., when the pop-
ulation of the sixth eigenstate first starts to grow (along with
the highest 11 eigenstates) due to excitations from the lowest
five eigenstates.

B. Cluster state populations

The other important feature to note from Fig. 6 is that the
population degeneracy of the cluster states is broken in the
SSSV model, giving rise to a staircase pattern organized ac-
cording to Hamming distance (HD) from the isolated state
[Fig. 6(b)], while the ME exhibits a uniform distribution over
the cluster states [Fig. 6(a)]. Except for very small α, the
SSSV pattern remains fixed as α is decreased. The preference
for the |1111 0000〉 (HD= 4) state and the insensitivity of this
feature to α in the SSSV model can be understood from the
following simple argument.

Consider first the closed system (no thermal noise) case and
note that for t > 0.6tf , the transverse field is almost com-
pletely turned off. Therefore the cluster states’ outer spins

are free to rotate with no energy cost when the core spins are
pinned at Mz

c = cos θc = 1, leading to Mz
o = cos θ0 = 0 (the

c and o subscripts stand for “core” and “outer”, respectively).
However, in the open system case the core spins are not fixed
at Mz

c = 1 due to thermal noise, and Mz
o = −1 becomes

energetically favorable for the outer spins. To see why, con-
sider the case of a single pair of core and outer spins. In this
case, the Ising potential is simply V = −α(hoM

z
o + hcM

z
c +

JocM
z
o M

z
c ) = α(Mz

o −Mz
c −Mz

o M
z
c ). When Mz

c = 1, the
dependence on Mz

o vanishes so the outer spin is free to rotate,
however when Mz

c 6= 1 (as happens when thermal noise is
present), this Ising potential is minimized when Mz

o = −1.
This explains why the SSSV model prefers the |1111 0000〉
cluster state for all α.

Note that this argument depends on |h| = |J |, i.e., it will
not necessarily apply when there is noise on h and J . As an
example, if we add Gaussian noise ∆hi,∆Jij ∼ N (0, 0.085)
so that hi 7→ hi + ∆hi and Jij 7→ Jij + ∆Jij in Eq. (8), as
first shown in Ref. [12], the resulting “noisy SSSV” model is
able to reproduce the non-monotonic behavior of the isolated
state observed for the ME, as shown in Fig. 6(c). However it
maintains its preference and ordering of cluster state popula-
tions.

VI. EXPERIMENTAL RESULTS AND NUMERICAL
SIMULATIONS INCLUDING CROSS-TALK

A. The distribution of cluster states

Having developed an understanding of the role of noise on
the local fields and couplings on the ground state distribution,
we now present experimental results for the DW2 in Fig 9(a),
which we believe to include cross-talk. We immediately ob-
serve a strong discrepancy between the DW2 and both the ME
and SSSV results shown in Fig. 6. This discrepancy implies
that both models require an adjustment. We next introduce
the cross-talk correction. (An alternative model which gives
rise to the breaking of the cluster state symmetry by detun-
ing |h| relative to |J | is discussed in Appendix H; this gives a
less satisfactory fit to the experimental data.) We fit the cross-
talk magnitude χ at α = 1 in order to force both the noisy
SSSV model and the ME to reproduce the correct ordering of
the cluster states at this value of α. However, we refrain from
excessively fine-tuning the models for additional values of α.
That is, we adhere to the idea that a good theoretical model
should have predictive power after its free parameters are fit
to the data once.

Noise on the local fields and couplings has no such effect on
the ME. Indeed, we have checked that introducing noise on the
couplings and the local fields does not, on average, break the
population degeneracy of the ME cluster states, while it does
break the degeneracy for any given noise realization. This
can be seen in Fig. 8. We have also checked that introduc-
ing different system-bath couplings for each qubit (by adding
Gaussian noise to each coupling) does not break the popula-
tion degeneracy of the cluster states.

The ME result [Fig. 9(b)] is now a significantly closer
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(a) DW2, N = 8
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(b) DW2 & ME, χ = 0.015, N = 8
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(c) DW2 & SSSV, χ = 0.035, σ = 0.085, N = 8
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FIG. 9. (Color online) (a) Ground state populations for DW2. Legend: (H,M), corresponding to Hamming distance from the isolated state
and multiplicity respectively. Error bars represent the 95% confidence interval. (b) Cluster state populations for the ME. Solid lines correspond
to the results with no noise on the {hi, Jij}’s, while the data points include gaussian noise with mean 0 and standard deviation σ = 0.025
for 100 noise realizations. The error bars represent the 95% confidence interval. The DW2 data from (a) is also plotted as the shaded region
representing a 95% confidence interval with the dashed lines corresponding to the mean. The inset shows the behavior for the noiseless ME
for small α. (c) Cluster state population for SSSV for N = 8 with the DW2 data plotted as in (b). In contrast to Fig. 6, both the ME and the
noisy SSSV model include the cross-talk correction, Eq. (6), with χ chosen to optimize the fit for the cluster state populations at α = 1. (d)
Only the cluster states with Hamming distance 4 and 8 from the isolated state are shown for DW2, the ME, and SSSV from panels (b) and
(c) in order to highlight their differences. Panel (e) displays the same for N = 20 (excluding the ME, which is too costly to simulate at this
scale). (f) The isolated state populations for DW2, SSSV, and the ME, which highlights the qualitative agreement between the models and
DW2. Experimental data was collected using the in-cell embeddings strategy described in Appendix C. The embedding and gauge-averaging
strategies are also discussed in Appendix C. The color-coding of states is consistent across all panels.

match to the DW2 cluster populations than before [Fig. 6(a)],
over the entire range of α values. The ME captures quanti-
tatively the cluster state populations, while the noisy SSSV
model [Fig. 9(c)], with χ and the noise variance optimized to
match the DW2 results at α = 1, does not capture the cluster
state populations correctly. To highlight this difference, the
same data is plotted in Fig. 9(d) for only two cluster states.
The same conclusions apply for N = 20 spins, as seen in
Fig. 9(e), where we show only the two extremal of the 210

cluster ground states.

The ME’s main discrepancy is in not capturing the full iso-
lated state population, especially the strength of the peak at
small α, and it can only capture qualitatively the behavior
of the isolated state as shown in Fig. 9(f). As illustrated by
the SSSV results in Fig. 6(b) and Fig. 6(c), the inclusion of

noise on the local fields and couplings can have a dramatic
effect on the small α behavior, while keeping the large α be-
havior mostly untouched. Indeed, we have shown in Fig. 8
that noise of a certain magnitude on the local fields and cou-
plings does not significantly alter the cluster state distribution
at α = 1. To study this effect over the entire range of α
would require performing simulations for a large number of
noise samples, which is unfeasible given the high computa-
tional cost of running the ME. However, even for a moder-
ate number of small noise samples, we observe [Fig. 9(f)]
an increase in the strength of the isolated state peak. To in-
crease the population at larger α, increasing the system-bath
coupling would increase the strength of thermal excitations,
which would allow for the isolated state to be further popu-
lated. We believe that an optimization over these parameters,
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(b) SSSV, χ = 0.035, σ = 0.085, N = 8
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(c) ME, χ = 0.015, σ = 0.025, N = 8
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(d) DW2, N = 20
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(e) SSSV, χ = 0.035, σ = 0.085, N = 20

FIG. 10. (Color online) Subset of the first excited state populations for (a) DW2 for N = 8, (b) SSSV for N = 8, and (c) ME for N = 8. In
(b) and (c), the simulations include qubit cross-talk correction with χ chosen as in Fig. 9 to optimize the fit for the cluster state populations at
α = 1. Panels (d) and (e) are for N = 20. The Π symbol denotes all permutations. The SSSV model does not reproduce the correct ordering.
The error bars represent the 95% confidence interval.

albeit at a huge computational cost, could significantly im-
prove the quantitative agreement between the ME and DW2.
However, our focus here has been to illustrate that the ME
captures the behavior of the DW2 data remarkable well with
no significant parameter fitting.

B. The distribution of first excited states

While the results presented in the previous subsection pro-
vide a clear quantitative discrepancy between the noisy SSSV
model and the DW2 results, and demonstrate that the agree-
ment with the ME is quantitatively better, it is important
to provide a clearcut example of a qualitative discrepancy.
To address this we now go beyond the ground subspace
and consider an 8-dimensional subspace of the subspace of
first excited states. We arrange these according to permuta-
tions of the core or outer qubits, i.e., we group the states as
|1111 Π(0001)〉 and |Π(1110) 1111〉, where Π denotes a per-
mutation. As shown in Fig. 10(a), the DW2 prefers the set
|Π(1110) 1111〉. However, the noisy SSSV model prefers the
set |1111 Π(0001)〉, as seen in Fig. 10(b). This discrepancy
becomes observable for α . 0.2, where thermal excitations
start to significantly populate the excited states. This also

helps explain why α ≈ 0.2 played a threshold role in our
ground state analysis. This conclusion persists for N = 20,
as shown in Figs. 10(d) and 10(e).

In Fig. 10(c), we show similar results for the ME for
N = 8. The results qualitatively match the DW2 ordering for
α & 0.15. The error bars are large since it is computationally
prohibitive to run a large number of noise instances, which
also restricted us to a relatively low noise level (σ = 0.025).
It is difficult to conclude much for α . 0.15 because the
high computational cost forces us to truncate the energy spec-
trum in our ME simulations, which predominantly degrades
our ability to compute the excited state populations at low α.

To summarize, we showed in the previous subsection that
with the inclusion of the cross-talk terms in the Hamiltonian
the ME captures the convergence of the cluster state popula-
tions for small α as well, while the noisy SSSV model predic-
tions do not improve relative to the case without the cross-talk
correction. The discrepancy between the noisy SSSV model
and the experimental data is amplified when we consider the
excited states, for which the former predicts the opposite pop-
ulation ordering from the one observed, as shown in Fig. 10.

We note that varying α is not the only way in which a con-
trol parameter for thermal excitations can be introduced. In
Appendix I we discuss the similar effect of increasing the total
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annealing time or the number of spins, along with experimen-
tal results.

VII. GROUND STATE ENTANGLEMENT DURING THE
COURSE OF THE ANNEALING EVOLUTION

Having established that the ME is, at this point, the only
model consistent with the DW2 data, we are naturally led
to ask whether the ME displays other quantifiable measures
of quantum mechanical behavior. We thus use the ME to
compute an entanglement measure for the time-evolved state.
Ground state entanglement was already demonstrated experi-
mentally in Ref. [15] for a different Hamiltonian; here we are
concerned with the time-dependent entanglement as a func-
tion of α, and are relying on the good qualitative match be-
tween the ME and our experimental results to justify this as
a proxy for the actual entanglement. To this end we use the
negativity (a standard measure of entanglement [33])

N (ρ) =
1

2

(
||ρΓA ||1 − 1

)
, (9)

where ρΓA denotes the partial transpose of ρ with respect to a
partition A. Figure 11 shows the numerically calculated neg-
ativity as a function of α along the time evolution for a “verti-
cal” partition of the 8-qubit system, i.e., with an equal number
of core and outer qubits on each side. Both the closed and
open system evolution cases are shown. We observe that in
the case of the closed system evolution there is always a peak
in the negativity for all values of α ≥ 0.01 studied, with an α-
dependent position. This is not surprising since as we change
α, we change the relative position of the fixed ratio value of
A(t)/(αB(t)), and we expect the negativity peak to corre-
spond to the position of the minimum gap of H(t) [34].5 For
the open system case, in contrast, the negativity peak drops
when α is sufficiently small. This can be said to signal a
transition to classicality. The reason for this drop is that as
α decreases the system thermalizes more rapidly towards the
Gibbs state, but the Gibbs state is also approaching the max-
imally mixed state, which has vanishing entanglement. How-
ever, for large α the peak position and value is similar to that
of the closed system case, so that the simulated system ex-
hibits quantum features and has not decohered into a classical
evolution. This can be interpreted as another reason for the
failure of classical models to reproduce the experimental data.

VIII. DISCUSSION AND CONCLUSIONS

Motivated by the need to discern classical from quantum
models of the D-Wave processor, in this work we examined

5 While this peak position does not precisely match the position of the min-
imum gap, the result in Ref. [34] holds in the thermodynamic limit and
predicts a strict singularity; a discrepancy is therefore excepted in the case
of a finite system size.

three previously published classical models of the D-Wave de-
vice (SA, SD [9], SSSV [11]). We studied the dependence of
the annealing process on the energy scale of the final “quan-
tum signature” Hamiltonian. Lowering this energy scale acts
as an effective temperature increase and thus enhances the ef-
fects of thermal fluctuations. While this strategy might ap-
pear counterproductive as a means to rule out classical mod-
els since it promotes a transition to the classical regime, it in
fact presents a challenge for classical models that must now
accurately describe not only the ground subspace but also the
excited state spectrum of a quantized system.

We found that all of the classical models we studied are
inconsistent with the experimental data for our quantum sig-
nature Hamiltonian, covering the range of 8 to 20 qubits (thus
extending beyond the 8-qubit unit cell of the D-Wave Two de-
vice), in a “black-box” setting of a study of the input-output
distribution of the device. The SA and SD models were al-
ready rejected based on such inconsistency in earlier work
[6, 7, 10] and the present evidence supports and strengthens
these conclusions. The SSSV model was of particular interest
since it matches the ground state success probabilities of ran-
dom Ising model experiments on the DW1 device [11]. While
it is possible that with additional fine-tuning a better match
can be achieved with a classical model, an adiabatic quan-
tum master equation [13] which we have examined is capa-
ble of reproducing most of the key experimental features with
only one free parameter (the effective system-bath coupling
κ). Our most complete and accurate model for the D-Wave
device accounts for qubit cross-talk and local field and cou-
pling noise, where we demonstrated that the ME captures all
the features in the experimental data, in contrast to the noisy
SSSV model (Fig. 9). We have thoroughly analyzed and ex-
plained these findings.

It is important to stress that the master equation exhibits
decoherence not in the computational basis but in the energy
eigenbasis. Such decoherence is not necessarily a detriment
to quantum annealing since it is consistent with maintaining
computational basis coherence in the ground state.

How can the rejection of the classical SSSV model by our
experimental data on quantum signature Hamiltonian prob-
lem instances of up to 20 qubits be reconciled with the con-
clusions of Ref. [11], which demonstrated a strong correla-
tion between success probabilities of the SSSV model and
the DW1 device for random Ising problem instances of 108
qubits? One obvious consideration is problem size, though
we have found no evidence to suggest that the agreement with
experiment improves for the SSSV model as the number of
qubits increases. More pertinent seems to be the fact that the
quantum signature Hamiltonian experiment probes different
aspects of the quantum annealing dynamics than the random
Ising problem instances experiment. The former is, by de-
sign, highly sensitive to the detailed structure of the ground
state degeneracy and the manner in which this degeneracy
is dynamically generated, and these aspects are different for
quantum and classical models. In this sense, it is a more sen-
sitive probe than the random Ising experiment [7], which did
not attempt to resolve the ground state degeneracy structure.
While Ref. [11] established that the SSSV model correlates
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FIG. 11. (Color online) Time-dependence of the negativity [Eq. (9)] for (a) a closed system evolution and (b) an open system evolution of
N = 8 qubits (modeled via the ME with κ = 1.27× 10−4), as a function of α. The rapid decay of negativity for small α in the open system
case signals a transition to classicality. However, for large α the closed and open system negativity are similar, suggesting that the system is
quantum in this regime. The apparent jaggedness of the closed system plot near α = 0 is due to our discretization of α in steps of 0.01.

very well with the experimental success probability distribu-
tion for random Ising instances, and even better with SQA,
our results suggest the possibility that a closer examination
would reveal important differences between the SSSV model
and QA also for the random Ising experiment. For exam-
ple, Ref. [7] presented additional evidence for quantum an-
nealing by also considering excited states and correlations be-
tween hardness and avoided level crossings with small gaps.
Specifically, we conjecture that a detailed study of the ground
state degeneracy for random Ising instances would determine
the suitability of the SSSV model as a classical model for
QA in this setting as well. Such a study might also circum-
vent an important limitation of our quantum signature Hamil-
tonian approach: the exponential degeneracy of the cluster
states (2N/2) makes gathering statistically significant data pro-
hibitively time-consuming for N & 20.

Clearly, ruling out any finite number of classical models
still leaves open the possibility that a new classical model can
be found that explains the experimental data. Nevertheless, in
the absence of a strict no-go test such as a Bell inequality vio-
lation, ruling out physically reasonable classical models while
establishing close agreement with a quantum model (the adi-
abatic master equation), is a strategy that should bolster our
confidence in the role played by quantum effects, even if it
falls short of a proof that all classical models are inconsistent
with the experiment.

Finally, we stress that the results reported here do not ad-
dress the scaling of the performance of the D-Wave devices
against state-of-the-art classical solvers, or whether this scal-
ing benefits from a quantum speedup [35]. Recent work has
highlighted the importance of the choice of the benchmark
problems [36]. Moreover, a careful estimate of the scaling
performance of the D-Wave devices must take into account
the effects of limited connectivity and precision in setting the

intended problem [37, 38].
The presence of quantum speedup is possible only if the

device displays relevant quantum features and defies a classi-
cal description. Our work rules out plausible classical mod-
els while at the same time showing consistency with an open
quantum system description. For small values of α our master
equation predicts that entanglement rapidly vanishes, signal-
ing a transition to classicality as the effective temperature be-
comes high enough, though a quantized energy spectrum per-
sists. This observation can be of practical importance in the
case of optimization problems where one expects that classi-
cal annealing can be more efficient than quantum annealing
[35, 36]. In this case one might obtain a performance im-
provement by allowing the device to work in the classical,
thermal region. The possibility of such “thermally assisted”
quantum annealing has been indeed demonstrated experimen-
tally in [5], in the case of a specific toy problem. It is in-
teresting to more generally characterize the potentially ben-
eficial role played by thermal effects in affecting the perfor-
mance of quantum annealing and adiabatic quantum comput-
ing [28, 39]. Apart from being a practical issue for the D-
Wave device, thermal excitations present a fundamental obsta-
cle for any adiabatic algorithm [26, 27, 40]. This issue must
be addressed by adding error correction to quantum annealing
[41, 42], or by exploiting thermal noise as a computational re-
source [43]. Future work shall revisit these questions using
new tests and larger system sizes.
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Appendix A: The D-Wave Two device

All our experiments were performed on the D-Wave Two
(DW2) “Vesuvius” processor located at the Information Sci-
ences Institute of the University of Southern California. De-
tails of the device have been given elsewhere [2–4], and we
only provide a brief overview here. As shown Fig. 12, the
device is organized into an 8× 8 grid of unit cells, each com-
prising eight qubits arranged in a K4,4 bipartite graph, which
together form the “Chimera” connectivity graph [44] of the
entire device. Of the 512 qubits 503 were calibrated to within
acceptable working margins in the DW2 processor used in
our experiments. Figure 12 also gives a schematic representa-
tion of the most general problem Hamiltonian [as specified in
Eq. (2)] that can be implemented in the device.

Appendix B: Enhancement vs suppression of the isolated state
in SA vs QA

Here we review and generalize the detailed argument given
in Ref. [6] for the enhancement of the isolated state in SA vs
its suppression in QA.

1. Classical master equation explanation for the enhancement
of the isolated state for general N

We first explain why SA predicts an enhancement of the
isolated state for general (even) N . To do so we closely
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FIG. 12. Qubits and couplers in the D-Wave Two device. The
DW2 “Vesuvius” chip consists of an 8 × 8 two-dimensional square
lattice of eight-qubit unit cells, with open boundary conditions. The
qubits are each denoted by circles, connected by programmable in-
ductive couplers as shown by the lines between the qubits. Of the 512
qubits of the device located at the University of Southern California
used in this work, the 503 qubits marked in green and the couplers
connecting them are functional.

follow the arguments from Ref. [6] concerning the N = 8
case. Consider a signature Hamiltonian with N = 2n
qubits. As depicted in Fig. 3, n of these are the ferro-
magnetically coupled “core” qubits (Jij = 1), while the
other n “outer” qubits are each ferromagnetically coupled
to a single core qubit (Jij = 1). The local fields applied to
the core qubits are hi = 1, while hi = −1 for the outer qubits.

Under our classical annealing protocol the system evolves
via single spin flips. That is, at each step of the evolution a
state can transfer its population only to those states which are
connected to it by single spin flip. Thus the rate of population
change in a state depends only on the number of states it is
connected to via single spin flips. Let the index j run over all
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the states connected to state a; the Pauli master equation for
the populations can then be written as

ṗa =
∑
j

f(Ea − Ej)pj − f(Ej − Ea)pa, (B1)

where we have assumed that the transfer function f(∆E) does
not depend on j and satisfies the detailed balance condition.
For a derivation starting from the quantum master equation
see Ref. [6] (Supplementary Information).

We shall now derive a classical rate equation for the
generalization to N spins of the clustered and isolated
states given in Eq. (3). Let PI denote the population
in the isolated state |11 · · · 1︸ ︷︷ ︸

n outer

11 · · · 1︸ ︷︷ ︸
n core

〉, and let PC =

2−n
∑
c Pc denote the average population of the cluster-states

{|00 · · · 0 00 · · · 0〉 , . . . , |11 · · · 1 00 · · · 0〉}. For the isolated
state, flipping either a core spin or an outer spin creates an
excited state. An outer-spin flip changes the core-outer spin-
pair from |11〉 to |10〉. This flip has an associated cost of 4
units of energy, and there are n such cases. A flip of one of
the core qubits changes the core-outer spin-pair from |11〉 to
|01〉. This results in two unsatisfied links in the core-ring, rais-
ing the energy by 4 units. However, the flip leaves the energy
of the given core-outer spin-pair unchanged. There are again
n such cases. Thus, for the isolated state, the rate equation is

ṖI = 2n[f(−4)P4 − f(4)PI] (B2)

where P4 is the population in the excited states which are 4
units of energy higher than the ground states.

The derivation of the rate equation for the cluster-states is
somewhat more involved. We note first that a flip of any of the
outer spins involves no energy cost, so all the excited states
created from the cluster-states arise from flipping a core spin.
Depending on the state of the outer spin when the core qubit
is flipped, we have two different cases.

• If the outer is spin |0〉, the configuration of the core-
outer pair changes from |00〉 to |10〉. This transition
involves a change of 4 units of energy. Moreover, this
creates a pair of unsatisfied links in the core-ring, at the
cost of another 4 energy units. Overall, it takes 8 units
of energy to accomplish this flip. To count the total
number of such excited states connected to all cluster-
states, let us consider a cluster-state with l outer spins
in |0〉 and n − l outer spins in |1〉. There are

(
n
l

)
such

cluster-states. In each of these states, we can choose
any of the l core spins to flip. Thus, the overall number
of all such possible excited states connected to cluster-
states is

∑n
l=0 l

(
n
l

)
= n2n−1.

• If the outer is spin |1〉, the configuration of the core-
outer pair changes from |01〉 to |11〉. This core-outer
transition involves no change of energy. However, this
creates a pair of unsatisfied links in the core-ring, at
a cost of 4 energy units. The counting argument for
number of these excited states is same as in the previ-
ous case. Thus, the number of all such possible excited
states connected to cluster-states is again n2n−1.

We assume that all cluster-states have the same population,
equal to the average population. The rate equation of the av-
erage cluster-states population is then

ṖC =
n2n−1

2n
([f(−8)P8 − f(8)PC] + [f(−4)P4 − f(4)PC])

(B3a)

=
n

2
[f(−8)P8 − f(8)PC + f(−4)P4 − f(4)PC] ,

(B3b)

where P8 is the population in the excited states that are 8 units
of energy above the ground states.

For most temperatures of interest, relative to the energy
scale of the Ising Hamiltonian, the dominant transitions are
those between the cluster and states with energy −4. Tran-
sitions to energy 0 states are suppressed by the high energy
cost, and transitions from energy 0 states to the cluster-states
are suppressed by the low occupancy of the 0 energy states.

ṖC ≈
n

2
[f(−4)P4 − f(4)PC] (B4)

In classical annealing at constant low temperature starting
from arbitrary states (that is, the high energy distribution),
probability flows approximately ṖI/ṖC ≈ 4 times faster into
the isolated state initially, and it gets trapped there by the
high energy barrier. To show that ṖI ≥ ṖC for slow cool-
ing schedules, assume that this is indeed the case initially.
Then, in order for PC to become larger than PI, they must
first become equal at some inverse annealing temperature β′:
PI(β

′) = PC(β′) ≡ Pg , and it suffices to check that this im-
plies that PI grows faster than PC. Subtracting the two rate
equations at this temperature yields

ṖI − ṖC =
3n

2
(f(−4)P4 − f(4)Pg) (B5a)

=
3n

2
f(−4)Pg

(
P4

Pg
− P (g → 4)

P (4→ g)

)
, (B5b)

where in the second line we used the detailed balance con-
dition, and P (4 → g) denotes the probability of a transition
from the excited states with energy 4 units above the ground
state to the ground state g. Now, because the dynamical SA
process we are considering proceeds via cooling, the ratio be-
tween the non-equilibrium excited state and the ground state
probabilities will not be lower than the corresponding ther-
mal equilibrium transition ratio, i.e., P4

Pg
≥ P (g→4)

P (4→g) = e−4β′ .
Therefore, as we set out to show,

ṖI − ṖC ≥ 0 , (B6)

implying that at all times PI ≥ PC.
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2. Perturbation theory argument for the suppression of the
isolated state in QA for general N

We consider the breaking of the degeneracy of the ground
state of our N spin benchmark Ising Hamiltonian by treating
the transverse fieldHX = −∑N

i=1 σ
x
i as a perturbation of the

Ising Hamiltonian (thus treating the QA evolution as that of
a closed system evolving backward in time). As pointed out
in the main text, the ground state is 2N/2 + 1-fold degener-
ate. According to standard first order degenerate perturbation
theory, the perturbation P̂g of the ground subspace is given by
the spectrum of the projection of the perturbationHX onto the
ground subspace.

Π0 = (|1〉 〈1|)⊗N + (|0〉 〈0|)⊗N/2 (|+〉 〈+|)⊗N/2 , (B7)

where the first term projects onto the isolated state, and we
have written the state of the outer qubits of the cluster in terms
of |+〉 = (|0〉+ |1〉)/

√
2. We therefore wish to understand the

spectrum of the operator

P̂g = Π0

− N∑
j=1

σxj

Π0 . (B8)

The isolated state is unconnected via single spin flips to any
other state in the ground subspace, so we can write P̂g as a
direct sum of the 0 operator acting on the isolated state and
the projection onto the space Π′0 = Π0 − (|1〉 〈1|)⊗N =

(|0〉 〈0|)⊗N/2 (|+〉 〈+|)⊗N/2 of the cluster

P̂g = −0⊕Π′0

− N∑
j=1

σxj

Π′0 (B9a)

= −0⊕

− N∑
j=N/2+1

σxj

 , (B9b)

where the sum is over the outer qubits.

This perturbation splits the ground space of HI, lower-
ing the energy of |00 · · · 0 + + · · ·+〉, and the N/2 permu-
tations of |−〉 = (|0〉 − |1〉)/

√
2 in the outer qubits of

|00 · · · 0 + + · · ·+−〉. None of these states overlaps with the
isolated ground state, which is therefore not a ground state of
the perturbed Hamiltonian. Furthermore, after the perturba-
tion, only a higher (the sixth forN = 8) excited state overlaps
with the isolated state. The isolated state becomes a ground
state only at the very end of the evolution (with time going
forward), when the perturbation has vanished. This explains
why the isolated state is suppressed in a closed system model.
A numerical solution of the ME agrees with this prediction for
sufficiently large values of the problem energy scale α.

Appendix C: Experimental data collection methodology

Our data collection strategy was designed to reduce the ef-
fects of various control errors. In this section we explain the
main sources of such errors and our methods for reducing
them. These methods are distinct from, and complementary
to other error correction methods [45], inspired by stabilizer
codes, that have been previously proposed and implemented
[41, 42].

Each time (programming cycle) a problem Hamiltonian
is implemented on the DW2 device, the values of the local
fields and couplings {hi, Jij} are set with a Gaussian distri-
bution centered on the intended value, and with standard error
of about 5% [29]. To average out these random errors we
ran several different programming cycles for the same prob-
lem Hamiltonian as described in subsection C 1. Differences
among the individual superconducting flux qubits can con-
tribute to systematic errors. To average out these local bi-
ases, we embedded our Hamiltonian multiple times in parallel
on the device using different flux qubits, as also explained
in subsection C 1. Furthermore, we implemented different
“gauges”, a technique introduced in Ref. [6]. A gauge is a
given choice of {hi, Jij}; a new gauge is realized by ran-
domly selecting ai = ±1 and performing the substitution
hi 7→ aihi and Jij 7→ aiajJij . Provided we also perform the
substitution σzi 7→ aiσ

z
i , we map the original Hamiltonian to

a gauge-transformed Hamiltonian with the same energy spec-
trum but where the identity of each energy eigenstates is re-
labeled accordingly. In total, there are 2N different gauges
for an N -spin problem. We averaged our data using different
programming cycles, embeddings, and gauges, as explained in
subsection C 2. In addition we checked for errors due to cor-
relations between successive runs (subsection C 3) and found
these to be negligible. Finally, we describe a new method
for correcting control errors that assumes that the degenerate
cluster states should ideally have the same population (sub-
section H 1).

1. Data collection strategies

We used two different data collection strategies that re-
sulted in perfectly consistent results.

Strategy A: Random parallel embedding. As illustrated in
Fig. 13, 50 different parallel embeddings of the 8-spin prob-
lem Hamiltonian were generated randomly in such a way that
an embedding is not necessarily limited to a unit cell. We
thus solved 50 different copies of the same 8-spin problem in
parallel during each programming cycle. We generated two
such parallel embeddings containing 50 copies each. For each
embedding, we performed 100 programming cycles and 1000
readouts for the runs with annealing time tf = 20µs, 200µs;
200 programming cycles and 498 readouts for the runs with
annealing time tf = 2000µs; 500 programming cycles and
48 readouts for the runs with annealing time tf = 20000µs.
An example set of randomly generated embeddings for the 16
spin Hamiltonian is shown in Fig. 14.

Strategy B: In-cell embeddings. We utilized 448 qubits to
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FIG. 13. Embedding according to the random parallel embeddings
strategy for 8 spins. An example of 15 randomly generated different
parallel copies of the 8-spin Hamiltonian. Our data collection used a
similar embedding with 50 different copies.

program 56 parallel copies of the 8-spin problem Hamilto-
nian, with an identical gauge for all copies, with one copy per
unit cell. All possible 256 gauges were applied sequentially.
For a given annealing time tf , the number of readouts was
min(1000, b5 × 105/tfc). For example, 1000 readouts were
done for tf = 20µs and 100 readouts for tf = 5000µs. One
such copy of an in-cell embedding is shown in Fig. 15. No in-
cell embeddings are possible for problems involving N > 8
spins.

Strategy C: Designed parallel embedding. For N = 40,
we utilized 320 qubits to program 8 parallel copies of the 40-
spin problem Hamiltonian. The 40-qubit Hamiltonian was
designed with three different embeddings spread across the
Chimera graph. Each embedding occupied 6 different unit
cells. 100 random gauges were chosen out of the 240 possible
gauges and were identically applied to all 8 copies. To collect
significant statistics, we performed 200 programming cycles
with 10000 readouts for every gauge. The annealing time was
tf = 20µs.

2. Data analysis method

The following method was used to analyze the data. Let us
denote the number of gauges by NG and the number of em-
beddings by NE. For a given embedding a and gauge g, the
number of total readouts (number of readouts times the num-
ber of programming cycles) for the ith computational state is
used to determine the probability pa,g(i) of that computational
state. The gauge-averaged probabilities for the ith computa-

FIG. 14. Embedding according to the random parallel embeddings
strategy for 16 spins. An example of 10 randomly generated different
parallel copies of the 16-spin Hamiltonian. Our data collection used
a similar embedding with 93 different copies.
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FIG. 15. Embedding according to the “in-cell embeddings” strategy.
An example of a randomly generated in-cell embedding.

tional state pGA
a (i) of the ath embedding are determined by

averaging over the gauges for a fixed embedding:

pGA
a (i) =

1

NG

NG∑
g=1

pa,g(i) , a = 1, . . . , NE . (C1)

Let us now consider a function of interest F , for example
PI/PC or the trace-norm distance D(ρDW2, ρGibbs). Using
the raw probabilities pa,g(i), we can calculate Fa,g . For ex-
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FIG. 16. Some representative autocorrelation tests at tf = 20µs showing the standard error of the mean ∆x as a function of binning size, for
different values of α. Each curve is the result of the binning test for a different state. The relatively flat lines for all states suggest that there
are no significant autocorrelations in the data.

ample, if F = PI/PC, we have:

Fa,g =

(
PI

PC

)
a,g

=
16pa,g(I)∑16

i=1,i∈C pa,g(i)
. (C2)

For a fixed embedding a, we calculate the standard deviation
σG
a associated with the distribution of F using the raw proba-

bilities values over the NG gauges, i.e.

σG
a = std

[
{Fa,g}NG

g=1

]
. (C3)

For each embedding, we also calculate FGA
a using the gauge-

averaged probabilities, e.g.,

FGA
a =

(
PI

PC

)GA

a

=
16pGA

a (I)∑16
i=1,i∈C p

GA
a (i)

. (C4)

Therefore, for each embedding, we now have the follow-
ing sets of data {(FGA

a , σG
a )}NE

a=1. We refer to this as the
gauge-averaged data, of which we have NE data points. We
then drew 1000 bootstrap [31] data samples from the gauge-
averaged data (giving us a total of 1000 × NE data points),
which we denote by FGA

a,b where a = 1, . . . , NE, b =
1, . . . , 1000. In order to account for the fluctuations in the
gauge data, for a fixed bootstrap sample b, we add noise (nor-
mally distributed with the standard deviation σG

a ) to every
FGA
a,b in the bootstrap sample. For each of the 1000 bootstrap

data samples, we calculated the mean:

F̄GA
b =

1

NE

NE∑
a=1

FGA
a,b , b = 1, . . . , 1000 . (C5)

Therefore we now have a distribution of 1000 means. The
mean of the 1000 means corresponds to the data points in our
plots, and twice the standard deviation of the 1000 means is
the error bar used in the plots in the main text.

3. Autocorrelation Tests

Correlations between the outputs of different runs on the
device could be a result of errors on the device (such correla-
tions were reported in [7]) in that the results of each run are
not completely independent. This can in turn affect the ground
state populations by preferentially picking the first state ob-
served. To test for this possibility, we use a binning test, which
is a simple method to test for autocorrelations in statistical
data [46]. Consider a list of n uncorrelated binary numbers
{xi} with P (xi = 1) = p. The standard error of the mean for
this dataset is ∆x ≡

√
Var[x]/n =

√
p(1− p)/n. We bin

together the average of consecutive pairs in this list to pro-
duce a new list yi of n/2 numbers such that yi ∈ {0, 0.5, 1}.
Since P (yi = 1) = p2, P (yi = 0.5) = 2p(1 − p) and
P (yi = 0) = (1 − p)2, the error in the mean of this derived
list is ∆y =

√
p(1− p)/n = ∆x. If however, the list were

correlated such that P (xi+1 = 1 | xi = 1) = q 6= p, then
∆y =

√
(p+ q − p2 − q2)/(2n) 6= ∆x. The idea of the bin-

ning test easily follows: keep on binning data with larger bin
sizes until the error in the means converges to a constant value.
The minimal bin size where this occurs is the autocorrelation
length, ξ.

We used the binning test on all 256 different states for the
N = 8 problem. For each state, we generated a list of 1000 bi-
nary numbers {xi} such that xi = 1 when that state was read
from the D-Wave device and xi = 0 otherwise. The proba-
bility of occurrence of the state is denoted by x̄ and ∆x is its
error. We found that the error in the mean does not change
appreciably with the size of bins used. This indicates that the
autocorrelation length for any state in our system is zero, and
there are no significant autocorrelations in our data. Figure 16
shows a few representative cases from the data collected using
the “in-cell embeddings” strategy for various choices of α and
random gauge choices.

The Wald-Wolfowitz runs test is a standard statistical test for
autocorrelations. We tested the null hypothesis, H0, that the
sequence in consideration was generated in an unbiased man-
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ner. The Wald-Wolfowitz test relies on comparing the number
of “runs” in the dataset to a normal distribution of runs. A
run is defined as consecutive appearance of same state. In our
dataset of binary valued sequences, a run occurs every time
there is a series of either 0’s or 1’s. For example, the sequence
011100100111000110100 contains 6 runs of 0 and 5 runs of
1. The total number of runs is 11. LetR be the number of runs
in the sequence,N1 be the number of times value 1 occurs and
N0 be the number of times value 0 occurs. (In our example,
R = 11, N1 = 10 and N0 = 11.) It can be shown that if the
sequence were unbiased, the average and the standard devia-
tion of the number of runs would be given by [47]

R̄ =
2N1N0

N1 +N0
+ 1, (C6)

σ2
R =

2N0N1(2N1N0 −N1 −N0)

(N1 +N0)2(N1 +N0 − 1)
(C7)

The test statistic is Z = R−R̄
σR

. At 5% significance level, the
test would reject the null hypothesis if |Z| > 1.96 (in this case
the obtained value of the number of runs differs significantly
from the number of runs predicted by null hypothesis).

We applied the Wald-Wolfowitz test to the binary sequences
used in the binning test. We found that for each value of α,
fewer than 0.01% of the sequences failed the Wald-Wolfowitz
test. For example, 112 sequences for α = 1, 343 sequences
for α = 0.35 and 195 sequences for α = 0.1 failed the test.
The total number of such sequences tested for each value of α
were 256 × 56 × 256 ≈ 3.6 × 106. This suggests once more
that autocorrelations do not affect our dataset significantly.

Appendix D: Kinks in the time dependence of the gap

Here we explain the origin of the kinks in the time depen-
dence of the gap seen in Fig. 4. First, just as in Fig. 4 but
for different values of α, we show in Fig. 18(a) how as α is
decreased, the minimal gap occurs at a later time in the evolu-
tion and decreases in magnitude. The kinks that appear in both
Fig. 4 and Fig. 18(a) are a consequence of energy level cross-
ings apparent in the evolution of the spectrum, as shown in
Fig. 18(b)-(d) for the same values of α as in Fig. 18(a). There
are energy eigenstates that become part of the 17 degenerate
ground states that “cut” through other energy eigenstates.

Appendix E: Simulation details

1. Simulated Annealing

We describe here our implementation of classical simulated
annealing. As the state of system at any given step is a clas-
sical probability distribution, we can represent it by a state
vector ~p, where the component pi of the vector denotes the
probability of finding the system in the ith state with energy
Ei. We initialize in the maximally mixed state (infinite tem-
perature distribution), i.e., pi = 1/2N ∀i. Note that the ini-
tial Gibbs state of the quantum annealer also has a uniform
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FIG. 17. Simulated annealing shows quantitatively similar behav-
ior for various annealing schedule. The schedules are: exponen-
tial T (k) = T (0)(T (K)/T (0))k/K , linear T (k) = T (0) +
k
K

(T (K) − T (0)), and constant T (k) = T (K), with K = 1000,
with kBT (0)/~ = 8 GHz and kBT (K)/~ = 0.5 GHz.

probability distribution over all computational states, so this
choice for the classical initial state is well motivated. The
system then evolves via single spin flips. The transition prob-
ability between two states with energy difference ∆E is given
by 1

N min(1, exp(−β∆E)), the Metropolis update rule [48].
The transition matrix has elements

T(i→ j) =
1

N
min(1, exp(−β(Ej − Ei))) . (E1)

The system is evolved for 1000 steps by acting with the transi-
tion matrix on the state vector ~p. At each step, the temperature
is adjusted so as to reduce thermal excitations. If the temper-
ature is reduced slowly enough and to low enough energies,
simulated annealing can find an optimal solution. The choice
of temperature schedule to follow for simulated annealing is
often motivated by experimental circumstances, and in the
main text we used β−1B(t) (as shown in Fig. 1) as the sched-
ule with β−1/~ = 2.226 GHz. Here we tested three other
different temperature schedules. As shown in Fig. 17, we find
that the qualitative features of the simulation results do not
depend on a particular choice of temperature schedule. While
the numerical values of the ratio of the isolated state and clus-
ter populations changes, the ratio is always greater than unity.
The ground state population curves are indiscernible regard-
less of the temperature schedule used.

2. Spin Dynamics

In the O(3) spin-dynamics (SD) model, qubits are replaced
by classical spins ~Mi = (sin θi cosφi, sin θi sinφi, cos θi).
This is a natural semi-classical model since it amounts to the
saddle-point approximation of the path integral for the spin
system (the derivation is presented in section J) and can be in-
terpreted as describing coherent single qubits interacting clas-
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sically. This model is closely related to one that was proposed
and analyzed by Smolin & Smith [9] in its planar, O(2) ver-
sion, i.e., ~Mi = (sin θi, 0, cos θi) (a spin in the x − z plane).
While the SD model was already shown to be inconsistent
with the experimental data in the context of correlations with
DW1 spin glass benchmarks in Refs. [7, 10], the SD model
was shown in Ref. [9] to give the same suppression of the iso-
lated state prediction as QA for α = 1, and hence the evidence
in Ref. [6] alone does not suffice to rule out the SD model as a
classical description of the D-Wave device. In this subsection
we shall demonstrate that similarly to SA, the SD model is
also inconsistent with the ME results we obtain when we tune
the energy scale factor α of the quantum signature Hamilto-
nian.

As shown in section J 2, the SD model with thermal fluctu-
ations is described by a (Markovian) spin-Langevin equation
[49, 50] with a Landau-Lifshitz friction term [50, 51],

d

dt
~Mi = −

(
~Hi + ~ξ(t) + χ ~Hi × ~Mi

)
× ~Mi , (E2)

with the Gaussian noise ~ξ = {ξi} satisfying

〈ξi(t)〉 = 0 , 〈ξi(t)ξj(t′)〉 = 2kBTχδijδ(t− t′) , (E3)

and

~Hi = 2A(t)x̂+ 2B(t)

hi +
∑
j 6=i

Jij ~Mj · ẑ

 ẑ , (E4)

where x̂ and ẑ are unit vectors. For the nth run out of a to-
tal of Nr runs we obtain a set of angles {θ(n)

j }, which are
interpreted in terms of a state in the computational basis by
defining the probability of the |0〉 state for the jth spin (out of
N ) as cos2(θ

(n)
j /2). Therefore, we define:

PC =
1

16Nr

Nr∑
n=1

N∏
j=N/2+1

cos2
(
θ

(n)
j /2

)
(E5a)

PI =
1

Nr

Nr∑
n=1

N∏
j=1

sin2
(
θ

(n)
j /2

)
, (E5b)

where the product over the last N/2 spins in PC is 1 if and
only if all the core spins are in the |0〉 state, i.e., a cluster
state, and likewise the product over allN spins in PI is 1 if and
only if all the spins are in the |1〉 state, i.e., the isolated state.
To incorporate the α-dependence we simply rescale B(t) to
αB(t).

3. Master Equation

We used an adiabatic Markovian master equation in or-
der to simulate the DW2 as an open quantum system. De-
tails of the derivation of the master equation can be found in
Ref. [13]. The derivation assumes a system-bath Hamiltonian

of the form:

H = HS(t) +HB + g
∑
α

Aα ⊗Bα , (E6)

where Aα is a hermitian system operator acting on the αth
qubit and Bα is a hermitian bath operator. We restrict our-
selves to a model of independent baths of harmonic oscilla-
tors, i.e., each qubit experiences its own thermal bath, with a
dephasing system-bath interaction,

Aα = σzα ; Bα =
∑
k

(
bk,α + b†k,α

)
, (E7)

where bk,α and b†k,α are lowering and raising operators and k
is a mode index. We use the double-sided adiabatic master
equation without the rotating wave approximation [13]:

d

dt
ρS(t) = −i [HS(t), ρS(t)]

+ g2
∑
αβ

∑
ab

Γαβ(ωba(t)) [Lab,β(t)ρS(t), Aα]

+ h.c. , (E8)

where ωba = εb(t)−εa(t) are differences of instantaneous en-
ergy eigenvalues given by HS(t) |εa(t)〉 = εa(t) |εa(t)〉 and

Lab,α(t) = 〈εa(t)|Aα |εb(t)〉 |εa(t)〉〈εb(t)| = L†ba,α(t) ,

(E9a)

Γαβ(ω) =

∫ ∞
0

eiωt〈e−iHBtBαeiHBtBβ〉 dt

=
1

2
γ(ω) + iS(ω) , (E9b)

γαβ(ω) =

∫ ∞
−∞
〈e−iHBtBαeiHBtBβ〉 dt , (E9c)

Sαβ(ω) =

∫ ∞
∞

dω′γαβ(ω′)P
(

1

ω − ω′
)
dω′ , (E9d)

where P denotes the Cauchy principal value. Under the as-
sumption of Ohmic independent baths, we have:

γαβ(ω) = δαβ
2πg2ηω

1− e−βω e
−|ω|/ωc , (E10)

where β is the inverse temperature, η is a parameter (with
units of time squared) characterizing the bath, and ωc is an
ultraviolet cut-off, which we set to 8πGHz to satisfy the as-
sumptions made in deriving the master equation [13]. Note
that the only remaining free dimensionless parameter is

κ ≡ g2η/~2 (E11)

(we have reintroduced the factor of ~ here), which controls the
effective system-bath coupling. We choose to work with the
master equation in Eq. (E8) instead of its counterpart in (com-
pletely positive) Lindblad form because it is numerically more
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FIG. 18. (a) Time-dependence of the gap between 18th excited state and the instantaneous ground state, for different values of the energy scale
factor α. (b)-(d) Time-dependence of the lowest 56 energy eigenvalues for different values of α. Note that the identity of the lowest 17 energy
eigenvalues changes over the course of the evolution.

efficient to calculate the evolution. Although it does not guar-
antee positivity of the density matrix, we always make sure to
work in a parameter regime where we do not observe any vi-
olations of positivity. In the ME simulations presented in the
text, we truncate the spectrum to the lowest 56 instantaneous
energy eigenstates to keep computational costs within reason.
We have checked that increasing this number for the smallest
alpha regime does not substantially change our conclusions.

Appendix F: Comparing the models in the noiseless case

In this section we present additional numerical findings for
simulated annealing (SA) and spin-dynamics (SD) in the ab-
sence of noise on the local fields and couplings. The SD
model is explained below.

Since we presented evidence in the main text that noise and
cross-talk play an important role in the experimental DW2 re-

sults, the results presented in this section are limited to a com-
parison between the models, which behave quite differently in
the ideal case. We may expect the ME results to match a fu-
ture quantum annealer with better noise characteristics and no
cross-talk. Therefore we present our findings by contrasting
each of the classical models in turn with the ME simulations.

1. SA

The main result showing the dependence of PI/PC as a
function of the energy scale α forN = 8 qubits is summarized
in Fig. 19. We note first that the total ground state probability
PGS = PI + 16PC decreases monotonically as α is decreased.
This reflects an increase in thermal excitations, whereby the
ground state population is lost to excited states, and confirms
that α acts as an effective inverse temperature knob.

However, in contrast to SA, the ME result for PI/PC is



22

,
0 0.2 0.4 0.6 0.8 1

P
I=

P
C

0

0.5

1

1.5

SA
SD
SSSV
ME

(a)

,
0 0.2 0.4 0.6 0.8 1

P
G

S

0

0.2

0.4

0.6

0.8

1

SA
SD
SSSV
ME

(b)

FIG. 19. Numerical results distinguishing the quantum ME and classical SA, SD, and SSSV models. (a) Results for the ratio of the isolated
state population to the average population in the cluster-states (PI/PC), and (b) the ground state probability (PGS), as a function of the energy
scale factor α, at a fixed annealing time of tf = 20µs. The error bars represent the 95% confidence interval. Two striking features are the
“ground state population inversion” between the isolated state and the cluster (the ratio of their populations crosses unity), and the manifestly
non-monotonic behavior of the population ratio, which displays a maximum. At the specific value of the system-bath coupling used in our
simulations (κ = 1.27× 10−4), it is interesting that the ME underestimates the magnitude and position of the peak in PI/PC but qualitatively
matches the experimental results shown in Fig. 9(a), capturing both the population inversion and the presence of a maximum even in the
absence of noise. In contrast to the ME results shown, the SA, SSSV, and SD results for the population ratio are not in qualitative agreement
with the ME. Specifically, all three classical models miss the population inversion and maximum seen for the ME. Simulation parameters can
be found in section E.

non-monotonic in α; see Fig. 19(a). Initially, as α is de-
creased from its largest value of 1, the ratio PI/PC increases
and eventually becomes larger than one, i.e., the population of
the isolated state becomes enhanced rather than suppressed.
For sufficiently small α, the ME PI/PC ratio turns around and
decreases towards 1. The SA results also converge to 1 as
α→ 0 but do not display a maximum.

A close examination of Fig. 19(a) shows that even in the
“relatively classical” small α region (α . 0.1) the curvature
of PI/PC for the ME results (d2(PI/PC)/dα2 < 0) is incon-
sistent with the curvature of the SA result (d2(PI/PC)/dα2 >
0), as seen in Fig. 19(b). We can show that the positive curva-
ture of SA is a general result as long as the initial population
is uniform. To see this, we expand the SA Markov-chain tran-
sition matrix [Eq. (E1)] in powers of α:

T(α) = T0 + αT1 + . . . , (F1)

where the SA state vector ~p(K) at the Kth time-step is given
by ~p(K)T = ~p(0)TT(α)K , where the T superscript denotes
the transpose.

At α = 0, all transitions are equally likely, so (T0)ij =
1/N . The first order term satisfies:

(T1)i→j = min (0,−β (Ej − Ei)) , i 6= j , (F2a)

(T1)i→i = −
∑
j

min (0,−β (Ej − Ei)) . (F2b)

The first order term has the property that
∑
j (T1)ij = 0.

Therefore, applying the transition matrix K times, we have to
first order in α:

~p(K)T = ~p(0)T (T0)K+α~p(0)T
K−1∑
i=0

(T0)K−1−iT1(T0)i+. . .

(F3)
Using the fact that we start from the uniform state pi(0) =
1/N , we have ~p(0)TT1 = 0, but also that

(T1T0)ij =
1

N

∑
k

(T1)ik = 0 . (F4)

Therefore,

~p(K) = ~p(0) +O(α2) . (F5)

This in turn implies that for SA,

PI

PC
= 1 + α2f +O(α3) . (F6)

Since we showed in section B 1 that this quantity is greater
than or equal to 1 for SA, this implies that f ≥ 0, and hence
the curvature d2(PI/PC)/dα2 at α = 0 is positive.

However, we emphasize that this argument for the positivity
of the initial curvature of PI/PC requires that the initial state
be uniform. If a non-uniform initial state is chosen, there will
be a non-zero linear term in α for PI/PC, which prevents us
from concluding anything about the curvature.
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2. Results for the SD model

Using the DW2 operating temperature and annealing sched-
ules for A(t) and B(t), we find that the SD model does not
match the ME data. This can be seen in Fig. 19(b), where
the SD population ratio (the dashed blue line) fails to repro-
duce the qualitative features of the ME result, in particular the
ground state population inversion peak. Another illustration
of the same failure of the SD model is given in Fig. 20(a),
which shows the distribution of Mz for the core and outer
qubits for different values of α. We expect the core spins to
align in the |1111〉 state for sufficiently small α (i.e., to each
have Mz = −1), when the isolated state becomes enhanced.
However, as can be seen from Fig. 20(a) the median of the
core spins is in fact never close to Mz = −1 for small α val-
ues, so that the enhancement of the isolated state is missed by
the SD model. Furthermore, the model shows a preference for
a particular cluster-state, the one with all of the outer spins in
the |1111〉 state (Mz = −1). In the inset of Fig. 20(a), this
can be seen in that the median of the data occurs always below
Mz = 0. The explanation is provided in section J 2.

3. Results for the SSSV model

To test whether this model matches the results of our quan-
tum signature Hamiltonian we use similar parameters as given
in Ref. [11], apart from the annealing schedule, for which
we used that of the DW2. Ref. [11] found the best agree-
ment with the DW1 data from Ref. [7] for a temperature of
10.6mK, lower than the 17mK operating temperature of the
DW1, and for a total of 1.5 × 105 Monte Carlo update steps
per spin (sweeps). We found negligible differences when we
used the operating temperature of the DW2 (17mK) for the
SSSV model, or when we varied the number of sweeps. As
can be seen in Fig. 19, the SSSV model does not reproduce the
ground state population inversion and maximum seen in the
experimental data. In fact the SSSV results are quantitatively
similar to the SD model, even in showing a preference for a
specific cluster-state, as shown in Fig. 20(b). Furthermore, the
SSSV model does not reproduce the ground state population
inversion even after the number of qubits is increased to 40
[see Fig. 31(d)], which is particularly significant as it shows
that the essential quantum features that result in the disagree-
ment are retained beyond the initial “small” N = 8 problem
size.

Appendix G: ME vs Modified SSSV models with “decoherence”
from O(2) rotors to Ising spins

In this section we consider variants of the SSSV model
where the O(2) rotors are first mapped to qubits and then al-
lowed to decohere. The rationale is that the SSSV “qubits”
may be too coherent, and we wish to account for single-qubit
decoherence effects.

1. Strongly decohering SSSV model

Because of the large deviation of SSSV from the ME at
small α observed in Fig. 19(a), we propose to modify the
model to fix this. In order to raise the PI/PC value, we
note that SA, which uses effectively incoherent qubits, has
PI/PC ≥ 1. Therefore, we might consider the scenario where
the qubits become more incoherent as α becomes smaller,
until in the limit of vanishing α they fully decohere and be-
come Ising spins in the computational basis, we might be
able to reproduce similar behavior. To model this we re-
place the x-component of the magnetization vector of each
spin by Mx

i = e−t/τα sin θi and leave the z-component un-
changed, i.e., Mz

i = cos θi. This is equivalent to a model
of single-qubit dephasing in the computational basis, via the
mapping to the density matrix ρi = 1

2I + ~Mi · ~σ, where
~Mi = (Mx

i , 0,M
z
i ) and ~σ = (σxi , σ

y
i , σ

x
i ). This can be visu-

alized as a gradual squashing of the Bloch sphere (restricted
to the x − z plane) into an ellipsoid (ellipse) with major axis
in the z-direction and a shrinking minor (x-)axis. It is also
equivalent to replacing the transverse field amplitude A(t) in
Eq. (8) by A(t)e−t/τα while leaving the magnetization un-
changed, i.e., decreasing the time-scale over which the trans-
verse field plays a role.

Next we ensure that τα is monotonically increasing with
α. In this manner, for t � tf the range is almost that of
the fully “coherent” SSSV, while for t . tf the range is re-
stricted to that of the “incoherent” SA. The “decoherence”
time τα dictates how quickly this transition from one extreme
to the other occurs, and to incorporate its α-dependence we set
τα = 1/2γα(0), where γα(0) = 2πg2η(αβ)−1 is the dephas-
ing rate used in our ME calculations [the general expression
for γ(ω) is given in Eq. (E10)], with a rescaled inverse tem-
perature, i.e., αβ instead of β, to capture the idea that α acts
to rescale the energy, or equivalently the inverse temperature.
Thus in this model τα = α β

4πg2η . Note that we only replaced
β by αβ here and not anywhere else in the simulations, so the
physical temperature is still given by β−1.

Figure 21 presents the results of this “strongly decohering
SSSV” model. The results are similar to the original SSSV
model. Thus, “decoherence” of the coherent O(2) spins fails
to improve the agreement with the ME results.

2. Weakly decohering SSSV model

We can consider a weaker version of this dephasing model,
which attempts to mimic dephasing in the energy eigenba-
sis of the ME model. When the transverse field Hamiltonian
dominates over the Ising Hamiltonian, the dephasing occurs
in the z-component of the magnetization, and when the Ising
Hamiltonian dominates over the transverse field Hamiltoni-
ans, the dephasing occurs in the x-component of the magne-
tization. Explicitly, this translates to replacing the magnetiza-
tion components of the spin by

Mx
i = sin θi , M

z
i = e−t/τα cos θi , (G1)
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FIG. 20. Statistical box plot of the average z component for all core qubits (main plot) and all outer qubits (inset) at t = tf = 20µs. (a) The
SD model. The data is taken for 1000 runs with Langevin parameters kBT/~ = 2.226 GHz (i.e., 17mK, to match the operating temperature
of the DW2) and ζ = 10−3. In section J 2 we show that the results do not depend strongly on the choice of ζ. (b) The SSSV model. The data
is taken for 1000 runs with parameters kBT/~ = 1.382 GHz (i.e., T = 10.56mK, as in Ref. [11]) and 5× 105 sweeps.
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FIG. 21. “Forced” and strongly or weakly “decohering” SSSV mod-
els. Shown are the results for the ratio of the isolated state population
to the average population in the cluster-states (PI/PC) as a function
of the energy scale factor α, for N = 8 and at a fixed annealing time
of tf = 20µs. The error bars represent the 95% confidence inter-
val. For reference the plot also includes the curves for the ME from
Fig. 19(a). Additional parameters for the modified SSSV models:
g2η = 10−6 for the strongly decohered model and g2η = 2.5×10−7

for the weakly decohered and forced models.

if A(t) ≥ αB(t) and by

Mx
i = e−(t−tc)/τα sin θi , M

z
i = e−tc/τα cos θi , (G2)

if A(t) < αB(t), where tc is the transition time satisfying
A(tc) = αB(tc). As can be seen in Fig. 21, this model also
fails to capture the ME results.

3. A modified SSSV model with a forced transition from O(2)
rotors to Ising spins

To try to get better agreement of a classical model with the
ME we finally consider a somewhat contrived model which
simply forces a transition to SA with Ising spins. To imple-
ment this, instead of uniformly drawing θi ∈ [0, π] as in the
SSSV model, we draw θi ∈ [0, π2 e

−t/τα ] ∪ [π − π
2 e
−t/τα , π],

where τα is selected just as in the decohered SSSV model
(Section G). This can be visualized as a restriction of the range
of angles to gradually shrinking top and bottom parts of the
Bloch sphere (again restricted to the x − z plane). We call
this a “forced SSSV” model since it does not originate from a
natural model of decoherence.

Figure 21 also presents the results of this forced SSSV
model. In contrast to the original SSSV model result
[Fig. 19(b)], the population ratio now rises to 1 for α > 0.
In this regard the forced SSSV model qualitatively captures
the tendency toward ground state population inversion. How-
ever, it does not exhibit a pronounced ground state population
inversion, and this appears to be a robust feature that is shared
by other forced SSSV models we have tried (with different
“forcing” rules). Furthermore, it exhibits a noticeable drop
in PI/PC at α ≈ 0.1, and the fraction of ground state popu-
lation is almost one in the ground state population inversion
regime, in contrast to the ME. In this sense even the forced
SSSV model does not agree with the ME data, and further
evidence to this effect is presented in the next subsection.
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FIG. 22. Trace-norm distance of the ME, SA, SD, SSSV, weakly
and strongly decohered SSSV, and forced SSSV states from the
T = 17mK Gibbs state at tf = 20µs and N = 8. The error
bars represent the 95% confidence interval. Three regions are clearly
distinguishable for the ME: (1) 1 ≥ α & 0.3, where D is decreas-
ing as α decreases; (2) 0.3 & α & 0.1, where D is increasing as
α decreases; (3) 0.1 & α ≥ 0, where D is again decreasing as α
decreases. Both SA and SD lack the minimum at α ≈ 0.3.

4. Distance from the Gibbs state

How well does the system thermally equilibrate? In this
section we consider how distinguishable the final density ma-
trix ρ(tf ) is from the thermal Gibbs state at tf , using the stan-
dard trace-norm distance measure [52]

D (ρ(tf ), ρGibbs) =
1

2
‖ρ(tf )− ρGibbs‖1 , (G3)

where ρGibbs = e−βH(tf )/Z with Z = Tre−βH(tf ) the parti-
tion function, and ‖A‖1 ≡ Tr

√
A†A (the sum of the singular

values of the operator A). Note the fact that in the Gibbs state
all ground states are equiprobable, so that PI/PC = 1. This
simple observation helps to explain many of the experimental
results.

The trace-norm distance result is shown in Fig. 22 for the
ME, and the six classical models. Although most of the mod-
els exhibit a peak in the trace-norm distance like the ME, none
of the six classical models exhibits a minimum like the ME
does at the corresponding value of α, thus confirming once
more that there is a strong mismatch between these classi-
cal models and the ME. This is particularly noticeable for the
“forced” SSSV model, which as discussed above exhibited the
best agreement with the ground state features among the clas-
sical models (Fig. 21), but poorly matches the excited state
spectrum at low α, as can be inferred from Fig. 22. Indeed,
this model is designed to transition to SA at low α, and it
does so at α ≈ 0.1. It then deviates from SA at even lower
α values, presumably since there is no transverse field at all
in SA, but the transverse field remains active in the “forced”

SSSV model at any α > 0. Furthermore, we observe that the
“weakly decohering SSSV” model has a higher trace-norm
distance than all other models even at high α, and this is due
to its strong preference for a particular cluster state, which is a
failure mode of the SD and SSSV models that was discussed
earlier (see Fig. 20).

Let us now focus on the ME results and explain the three
regions seen in Fig. 22.

Large α, region (1): As α decreases from 1 to ≈ 0.3,
since α is relatively large, thermal excitations are not strong
enough to populate energy eigenstates beyond the lowest 17
that eventually become the degenerate ground state. There-
fore, the system is effectively always confined to the subspace
that becomes the final ground state, as can also be seen from
the PGS data in Fig. 19(a). However, recalling that the iso-
lated state has overlap with excited states higher in energy
than the cluster-states for t < tf (see section B 2), thermal
excitations populate the isolated state. Thus as α decreases,
PI/PC approaches 1, which is also the ratio satisfied by the
Gibbs state, and hence D decreases as observed. At the same
time, Fig. 19(b) shows that at α = 0.3 both the SD and SSSV
models have PI/PC ≈ 0, i.e., these models fail to populate the
isolated state. This therefore suggests that the quantum spec-
trum makes it easier for the system to thermally hop from one
eigenstate to another.

Intermediate α, region (2): Fig. 19(a) shows that PGS be-
gins to decrease from 1 at α ≈ 0.3, meaning that thermal exci-
tations are now strong enough to populate energy eigenstates
beyond the lowest 17. A loss in ground state population to
excited states results, and the growth of PI/PC beyond 1 seen
in Fig. 19(a) results in the increase of D observed in Fig. 22.
At α ≈ 0.1, the maximum distance from the Gibbs state is
reached. Beyond this value of α, the energy scale of the Ising
Hamiltonian is always below the temperature energy scale, as
shown in Fig. 1.

Small α, region (3): As α → 0 there is only a transverse
field left, which is gradually turned off. Thus the system ap-
proaches the maximally mixed state (which is the associated
Gibbs state). In light of this, for 0.1 & α ≥ 0 the energy gaps
are sufficiently small that there is a large loss of population
from the ground state; thermal excitations become increas-
ingly more effective at equilibrating the system, thus pushing
it towards the Gibbs state.

Appendix H: An alternative model for breaking the symmetry
of the cluster states

1. The effect of an h vs J offset

Under a closed system evolution all the cluster states end up
with an identical population. The same is true if we compute
the populations using the ME for an independent bath model.
In the main text we discussed how cross-talk breaks the sym-
metry between the cluster states. In this section we discuss
another mechanism, of making |J | and |h| unequal, that also
breaks the symmetry between the cluster states. This is shown
in Fig. 23 using the ME, where the population of the cluster-



26

0 0.2 0.4 0.6 0.8 1
0

0.02

0.04

0.06

0.08

0.1

0.12

t/tf

P
o
p
u
la
ti
o
n
s
in

1
7
Is
in
g
g
ro
u
n
d
st
a
te
s

 

 

HD= 8
HD= 7
HD= 6
HD= 5
HD= 4
HD= 0

FIG. 23. Master equation results for the populations of the 17 Ising
ground states, with α = 1, |h| = 0.981|J |, tf = 20µs, and κ =
1.27 × 10−4. The cluster-states split by Hamming distance from
the isolated state (bottom curve), in agreement with the experimental
results shown in Fig. 24(a).

state splits by Hamming distance from the isolated state. Thus
this can be viewed as an alternative explanation for the cluster
state distribution observed on the DW2, although as we will
show, the fit to the experiment is not as good as the cross-talk
model discussed in the main text.

To understand the origin of this phenomenon, consider the
following perturbation theory argument for the N = 8 case.
Assume that all the local fields are perturbed by δh > 0 so that
for the outer spins hi = −1 + δh (1 ≤ i ≤ 4) and for the core
spins hi = 1 − δh (5 ≤ i ≤ 8). Therefore |hi| < |Jij | = 1
and the perturbation to HI [Eq. (2)] can be written as:

V = −δh
(

4∑
i=1

σzi −
8∑
i=5

σzi

)
(H1)

All the cluster states have their core spins in the |0〉 state, so
V increases all their energies by 4δh. The perturbation act-
ing on the outer spins, however, breaks the degeneracy by
Hamming weight. The contribution from this term is given
by−(n0−n1)δh where n0 or n1 is the number of outer spins
in the |0〉 or |1〉 state, respectively. Therefore the energy of
the |0000 0000〉 state is unchanged (it becomes the unique
ground state), while the energy of the |1111 0000〉 state in-
creases by 8δh, so it becomes the least populated among the
cluster states. Consequently the final population of the cluster
states becomes ordered by Hamming distance from the iso-
lated state |1111 1111〉.

Interestingly, the experimental data for the final populations
of the cluster-states displays a pronounced “step” structure,
clearly visible in Fig. 24(a). The observed steps correspond
to an organization of the cluster-states in terms of their Ham-
ming distance from the isolated state, and agrees with the or-
dering observed in Fig. 23 and the perturbation theory argu-
ment. Thus, the step structure can be explained if, in spite of
the fact that for all gauges we set |hi|/|Jij | = 1, in reality
there is a systematic error causing |hi| < |Jij |. Such an error

|hi| |Jij | % Change Absolute Change
1 0.9810 -1.90 -0.0190

6/7 0.8440 -1.53 -0.0131
5/7 0.7040 -1.44 -0.0103
4/7 0.5655 -1.04 -0.0059
3/7 0.4265 -0.48 -0.0021
2/7 0.2850 -0.25 -0.0007
1/7 0.1420 -0.60 -0.0009

TABLE I. Optimized |Jij | values for a given |hi| value, yielding
the flat population structure shown in Fig. 24(b). The systematic
corrections are of the order of 1%, smaller than the random control
errors of 5% at α = 1.

would arise if the ratio of B(t)|hi| and B(t)|Jij | is not kept
fixed throughout the annealing, where B(t) is the annealing
schedule shown in Fig. 1. Moreover, such an error would not
be unexpected, as the local fields (an inductance) and couplers
(a mutual inductance) are controlled by physically distinct de-
vices [2].

A natural question is whether we can mitigate this type of
error. To do so we introduce a simple optimization technique.
Specifically, we can compensate for |hi| < |Jij | and fine-tune
the values of h and J to nearly eliminate the step structure
for each value of the energy scale factor α. We show this
in Fig. 24(b). The corresponding optimized values are given
in Table I, where the compensation reverses the inequality to
|hi| > |Jij |. We have further checked that the same fine-
tuning technique suppresses the step structure seen for larger
N , as shown in Fig. 24(c). The step structure in the N = 16
case is even more pronounced than in the N = 8 case. By ad-
justing the value of J while keeping |h| = 1 we can reduce the
step structure, as shown in Fig. 24(d). (We note that this gives
rise to the interesting possibility of using this “step-flattening”
technique to more precisely calibrate the device.) This control
error has little effect on the suppression/enhancement of the
isolated state, as can be seen in Fig. 25.

2. Using the distribution of cluster states to rule out the noisy
SSSV model

As we saw in Figs. 24, without the Table I correction, the
DW2 results at α = 1 exhibit a non-uniform distribution over
the cluster states. We now demonstrate that the noisy SSSV
model is incapable of correctly capturing this aspect of the
experimental results. We do so for various scenarios differing
in how we treat the control error.

a. Population ordering correction at α = 1

The noisy SSSV and ME results after calibrating h and J
so as to match the DW2 ordering of the distribution of cluster
states at α = 1 are shown in Fig. 26(a) and 26(b), respectively.
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FIG. 24. Statistical box plot of the gauge-averaged ground states population (a,c) before and (b,d) after optimization of Jij as per Table I, for
(a,b) N = 8 and (c,d) N = 16, α = 1 and tf = 20µs. Only the N = 8, H = 6 case splits into two rotationally inequivalent sets. Note
the clear step structure in the cluster-states (H > 0) in (a,c), while in (b,d) the population of the cluster-states is fairly equalized (less so in
the N = 16 case since Table I is optimized for N = 8). (a) Data taken with the random parallel embeddings strategy. (b) Data taken using
the in-cell embeddings strategy, with the optimized values of the couplings given in Table I. The same optimization removes the step structure
from data taken with the random parallel embeddings strategy (not shown).

Like the DW2, the ME cluster state populations converge as
α goes to zero, whereas the SSSV populations converge up to
α ≈ 0.3 and then diverge again. Therefore, with this calibra-
tion, the noisy SSSV model fails to capture the DW2 cluster
state populations at low α.

We can understand the equalization of the cluster state pop-
ulations in the ME as follows: as α is made smaller the spac-
ing of the quantized, discrete energy levels (when the Ising
Hamiltonian dominates) shrinks with α. Thermal excitations
between the levels will be less suppressed, allowing for a re-

distribution of the population. We check this intuition with a
generalization of our perturbation theory argument that was
used explain the suppression of the isolated state in the closed
system setting [see section B 2]. We diagonalize the Hamilto-
nian:

H = α(HI + 0.01HX) + η (H2)

where HI is the detuned Ising Hamiltonian, η is gaussian
noise (independent of α) introduced on the couplings and lo-
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FIG. 25. Ratio of isolated state population to average cluster-state
population as a function of the energy scale factor α, for tf = 20µs
and N = 8. Shown are the ratios calculated with both uncorrected
and corrected values of J (as per Table I), the latter tuned to flatten
the steps seen in the population of the cluster states. Error bars repre-
sent the standard error of the mean value of the ratio estimated using
bootstrapping.

cal fields, and HX is the transverse field, whose small mag-
nitude models the end of the annealing evolution. We then
populate the lowest 17 energy eigenstates of this Hamilto-
nian by a Boltzmann distribution, i.e., pn = e−βEn/Z, where
Z =

∑256
n=1 e

−βEn . We pick β/~ = 10.7nsec and choose a
calibration of h and J in order to best match the DW2 results
at α = 1. The cluster state populations are then extracted
from their overlap with these Boltzmann populated 17 energy
levels. As shown in Fig. 26(c), this perturbation theory argu-
ment reproduces the behavior of the ME for the cluster states
very well: it shows the cluster state populations converging to
an equal population as α goes to zero. This at least suggests
that the intuition presented above is consistent. However, this
method does not reproduce all the data. The isolated state
shows a very large population (it is off the scale of the graph),
which does not match the ME or the DW2 results. This is not
entirely surprising since the Boltzmann distribution of course
does not take into account the annealing evolution.

The reason that the ME does not exhibit a uniform pop-
ulation on the cluster states for small α [as seen in the
DW2 results of Fig. 9(a)] was addressed in Sec. III, where
we discussed a cross-talk mechanism that generates an α-
dependence of h and J . With this dependence the ME re-
produces this feature of the DW2 data as well.

b. Population equalizing correction at α = 1 or α = 0.2

As an example of a different calibration procedure, we can
calibrate the DW2 and the noisy SSSV model to have equal
populations at α = 1. As shown in Fig. 27(a) and 27(b), we
observe that initially as α is decreased, both SSSV and DW2

behave in a similar manner whereby the cluster state popula-
tions diverge, but whereas DW2 converges again for small α
and is almost uniform at α ≈ 0.15, the noisy SSSV model
populations do not start to reconverge until much closer to
α = 0. Therefore, once again, we find a qualitative differ-
ence between the noisy SSSV model and the DW2. We note
that for this calibration (i.e., having the cluster states equal at
α = 1), the ME would not need to be offset and would be as
shown in Fig. 6(a).

Since the no-offset DW2 results [Fig. 9(a)] show the cluster
state populations equalizing at α ≈ 0.2 we can alternatively
attempt to calibrate the noisy SSSV model to match the no-
offset DW2 results at this value of α, i.e., we can choose an
offset for SSSV such that it has an almost equal population
at α = 0.2. This is shown in Fig. 27(c). The cluster states
continue to diverge as α decreases, while they diverge in the
opposite order as α grows. If we continue this procedure, i.e.,
make the populations equal for smaller and smaller α, this re-
quires a larger offset while will make the staircase structure
at α = 1 even further pronounced, further increasing the mis-
match with the DW2 in this regime.

c. Excited states ordering

As in the main text, we now go beyond the ground sub-
space and consider an 8-dimensional subspace of the subspace
of first excited states. We arrange these according to permu-
tations of the core or outer qubits, i.e., we group the states
as |1111 Π(0001)〉 and |Π(1110) 1111〉, where Π denotes a
permutation. As shown in Fig. 28, the DW2 prefers the set
|Π(1110) 1111〉, and the perturbation theory analysis based on
the noisy quantum signature Hamiltonian [Eq. (H2)] agrees.
However, for all values of the offset considered in the pre-
vious two subsections, the noisy SSSV model prefers the set
|1111 Π(0001)〉, as seen in Fig. 28(b)-28(d).

Appendix I: Effect of varying the annealing time or the total
number of spins

In the main text we discussed the effect of varying the en-
ergy scale α of the final Hamiltonian as a means to control
thermal excitations. In this section we consider two alterna-
tive approaches, namely varying the annealing time or the to-
tal number of spins and provide our experimental results.

1. Increasing the total annealing time tf

As reported in Ref. [6] (which only studied the α = 1 case),
increasing the annealing time reduced the suppression of the
isolated state, which is consistent with the effect of increased
thermal excitations. To understand this, note that in general
the requirement of high ground state fidelity generates a com-
petition between adiabaticity (favoring long evolution times)
and suppression of thermal effects (favoring short evolution
times) [27]. Since the shortest annealing time of the DW2
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FIG. 26. (a) Noisy SSSV, (b) ME, (c) perturbation theory [Eq. (H2)] with a population ordering correction (offset of h vs J) at α = 1. The
error bars represent the 95% confidence interval. The SSSV model now has the right ordering of the cluster states but clearly disagrees with
the DW2 result [Fig. 9(a)] for α . 0.3, near where the isolated state has its maximum. The ME result is in qualitative agreement with the
DW2 result except that the cluster state populations do not equalize for small α, which is a consequence of not including the α-dependence of
the offset.

�
0 0.2 0.4 0.6 0.8 1

�
��

�
�
�

�
�

0

0.02

0.04

0.06

0.08

0.1

0.12

0 0.2 0.4 0.6 0.8 1
0

0.02

0.04

0.06

0.08

0.1

0.12

α

p
/
(M

p
G
S)

 

 

(0, 1)

(4, 1)
(5, 4)

(6, 4)

(6, 2)
(7, 4)

(8, 1)
0 0.2 0.4 0.6 0.8 1
0

0.02

0.04

0.06

0.08

0.1

0.12

α

p
/
(M

p
G
S)

 

 

(0, 1)

(4, 1)
(5, 4)

(6, 4)

(6, 2)
(7, 4)

(8, 1)
0 0.2 0.4 0.6 0.8 1
0

0.02

0.04

0.06

0.08

0.1

0.12

α

p
/
(M

p
G
S)

 

 

(0, 1)

(4, 1)
(5, 4)

(6, 4)

(6, 2)
(7, 4)

(8, 1)
0 0.2 0.4 0.6 0.8 1
0

0.02

0.04

0.06

0.08

0.1

0.12

α

p
/
(M

p
G
S)

 

 

(0, 1)

(4, 1)
(5, 4)

(6, 4)

(6, 2)
(7, 4)

(8, 1)

(a) DW2, offset J = 0.981h

,
0 0.2 0.4 0.6 0.8 1

p
=(

M
p
G

S
)

0

0.02

0.04

0.06

0.08

0.1

0.12

(b) SSSV, offset h = 0.988J

,
0 0.2 0.4 0.6 0.8 1

p
=(

M
p
G

S
)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

(c) SSSV, offset h = 0.94J

FIG. 27. (a) DW2 and (b) noisy SSSV model with a population equalizing correction at α = 1. (c) Noisy SSSV model with offset chosen to
equalize the cluster state populations at α = 0.2. The error bars represent the 95% confidence interval.

(20µs) is already much longer than the inverse of the minimal
gap (∼ (25 GHz)−1 at α = 1; see Fig. 4), increasing the an-
nealing time does not suppress non-adiabatic transitions, but
does increase the probability of thermal fluctuations. Fig-
ure 29 shows that, as expected, an increase in the annealing
time is consistent with stronger thermalization, and indeed,
over the range of α where we observe suppression of the iso-
lated state (PI/PC < 1), this suppression is weaker for the
larger total annealing time. The ME result is in qualitative
agreement with the experimental data: the larger annealing
time curve is the higher of the two, and the peak values of
PI/PC at the two different annealing times coincide, which
also agrees with the experimental result, within the error bars.

2. Increasing the number of spins N

There are two important effects to keep in mind when con-
sidering larger numbers of spins N (even). First, increas-

ing the number of spins does not change our previous argu-
ment that the instantaneous ground state has vanishing sup-
port on the isolated state towards the end of the evolution.
We showed this explicitly using first order perturbation the-
ory in section B 2. This means that we should still expect
that PI/PC < 1 for QA, unless thermal excitations dominate.
Second, the degeneracy of the instantaneous first excited state
grows with N , while the energy gap to the ground state re-
mains fixed with N . The latter is illustrated in Fig. 30. Con-
sequently there is an enhancement of the thermal excitation
rate out of the instantaneous ground state into the first excited
state, eventually feeding more population into the instanta-
neous excited states that have overlap with the isolated state.
Thus we expect PI/PC to grow with N (as we indeed find
experimentally – see Fig. 31).

We have studied the simplest extensions beyond N = 8
(examples are shown in Fig. 3) with 12, 16 and 40 spins. We
expect the same qualitative features observed for N = 8 to
persist, and this is confirmed in Fig. 31, which displays the
same qualitative non-monotonic behavior as a function of α.
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The main difference is that the enhancement of the isolated
state (when PI/PC > 1) becomes stronger as N is increased.
This is a manifestation of the growth, with N , in the number
of excited states connected to the isolated state as compared to
the number connected to the cluster-states. This implies that
the excitation rate due to thermal fluctuations is proportionally
larger for the isolated state than for the cluster states.

Going to even larger N on the DW2 is prohibitive, since
it requires the number of readouts to be O(2N/2) in order to
collect a statistically significant amount of data. This is due
to the growth of the number of cluster states as described in
Eq. (4).

Appendix J: Derivation of the O(3) spin-dynamics model

1. Closed system case

Here we present the standard path integral derivation of the
O(3) model, which is closely related to the O(2) SD model of
Ref. [9]. Let us introduce the tensor product state of coherent

spin-1/2 states

|Ω(t)〉 = ⊗i
(

cos(θi(t)/2) |0〉i + sin(θi(t)/2)eiφi(t) |1〉i
)
.

(J1)
We consider the amplitude associated with beginning in
|Ω(0)〉 = ⊗i |Ωi(0)〉 and ending in |Ω(tf )〉:

A = 〈Ω(tf )|T+e
− i

~
∫ tf
0 H(t)dt |Ω(0)〉 , (J2)

where T+ represents time-ordering. We write the integral in
terms of a Riemann sum:∫ tf

0

H(t)dt = lim
ν→∞

ν−1∑
n=0

H(tn)∆t, (J3)

where ∆t = tf/ν and tn = n∆t, and then perform a Trotter
slicing:

T+e
− i

~
∫ tf
0 H(t)dt =

ν−1∏
n=0

e−
i
~H(tn)∆t +O(∆t2) (J4)
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FIG. 30. Numerically calculated instantaneous energy gap between
the ground and first excited state for the 8, 12 and 16 spin Hamilto-
nians. The gap vanishes since the first excited state becomes part of
the 2N/2 + 1-fold degenerate ground state manifold at t = tf .

We now introduce an overcomplete set of spin-coherent states
(J1) between the Trotter slices

1 =

∫
dΩ|Ω〉〈Ω|, (J5)

where for general spin S

dΩ =
∏
i

2S + 1

4π
sin θidφidθi, (J6)

so that we have:

A =

∫
dΩ1 · · ·

∫
dΩν−1

ν∏
n=1

〈Ωn| e−
i
~Hn−1∆t |Ωn−1〉

+O(∆t2) , (J7)

where we have denoted Ων ≡ Ω(tf ), Ω0 ≡ Ω(0), and Hn ≡
H(tn). To the same order of approximation we can write:

〈Ωn| e−
i
~Hn−1∆t |Ωn−1〉 = (J8a)

〈Ωn|
(
1− i

~
Hn−1∆t

)
|Ωn−1〉+O(∆t2) = (J8b)

〈Ωn|Ωn−1〉
(

1− i∆t

~
〈Ωn|Hn−1 |Ωn−1〉
〈Ωn|Ωn−1〉

)
+O(∆t2).

(J8c)

Let us assume differentiability of the states Ωn and the Hamil-
tonian Hn so that we can write:

|Ωn−1〉 = |Ωn〉 −∆t∂t |Ωn〉+O(∆t2) (J9a)

Hn−1 = Hn −∆t∂tHn +O(∆t2). (J9b)

Using this differentiability on the overlap, we have:

〈Ωn|Ωn−1〉 = 〈Ωn| (|Ωn〉 −∆t∂t |Ωn〉) +O(∆t2) (J10a)

= 1−∆t 〈Ωn| ∂t |Ωn〉+O(∆t2) (J10b)
= exp (−∆t 〈Ωn| ∂t |Ωn〉) (J10c)

Likewise, using this differentiability on the matrix element of
the Hamiltonian, we have:

∆t 〈Ωn|Hn−1 |Ωn−1〉 = (J11a)

∆t 〈Ωn| (Hn −∆t∂tHn)(|Ωn〉 −∆t∂t |Ωn〉) +O(∆t2) =
(J11b)

∆t 〈Ωn|Hn |Ωn〉+O(∆t2) (J11c)

Putting these results together, we have for the amplitude:

A =

∫
dΩ1 · · ·

∫
dΩν−1× (J12a)

e
i
~ ∆t

∑ν
n=1(i~〈Ωn|∂t|Ωn〉−〈Ωn|Hn|Ωn〉) +O(∆t2) (J12b)

=

∫
DΩ exp

[
i

~

∫
dt (i~ 〈Ω| ∂t |Ω〉 − 〈Ω|H(t) |Ω〉)

]
(J12c)

=

∫
DΩ e

i
~S[Ω] (J12d)

where we have taken the continuum limit such that Ωn →
Ω(t) and introduced the action

S[Ω] =

∫
dtL =

∫
dt (i~ 〈Ω| ∂t |Ω〉 − 〈Ω|H(t) |Ω〉) .

(J13)
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(d) N = 40

FIG. 31. Ratio of the isolated state population to the average population in the cluster-states (PI/PC) as a function of the energy scale factor
α, for different values of N , at a fixed annealing time of tf = 20µs. The non-monotonic dependence of the population ratio on α is observed
for all values of N . The growth of the PI/PC peak with increasing N is consistent with the discussion presented in Sec. I 2. The increasingly
large error bars are due to the smaller amount of data collected as N grows. For N = 12, 16, 20 data was collected using the “random parallel
embeddings” strategy and for N = 40 using the “designed parallel embedding” strategy (see section C 1 for details). Error bars are one
standard deviation above and below the mean.

For simplicity, let us now work in units of ~ = 1. Using
Eq. (J1) we can write the first term in the action as:

i 〈Ω| ∂t |Ω〉 = −1

2

∑
i

(1− cos θi)
dφi
dt

(J14)

The Euler-Lagrange equations of motion

d

dt

(
∂L
∂φ̇i

)
− ∂L
∂φi

= 0 , (J15a)

d

dt

(
∂L
∂θ̇i

)
− ∂L
∂θi

= 0 (J15b)

extremize the action and yield the semi-classical saddle point
approximation:

1

2
sin θi

d

dt
θi −

∂

∂φi
〈Ω|H(t) |Ω〉 = 0 , (J16a)

−1

2
sin θi

d

dt
φi −

∂

∂θi
〈Ω|H(t) |Ω〉 = 0 . (J16b)

These are the equations of motion for the O(3) model, where
〈Ω|H(t) |Ω〉 plays the role of a time-dependent potential.

For a Hamiltonian of the form of Eq. (2), the equations of
motion (J16) become, in terms of the magnetization ~M =
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FIG. 32. Evolution of a core (blue) and outer (green) spin with tf = 20µs, subject to the O(3) spin-dynamics model with α = 1. All spins
start with Mx = 1, My = Mz = 0, i.e., point in the x direction. (a) Closed system case given by Eq. (J17). (b) Open system case given by
Eq. (J19). Rapid oscillations at the beginning of the evolution in (a) are because the initial conditions used are not exactly the ground state of
the system [because of the finite B(0)]. In (b), Langevin parameters are kBT/~ = 2.226 GHz and ζ = 10−6.
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(b) Outer spins

FIG. 33. Distribution of Mz at the end of the evolution for all (a) core and (b) all outer spins for α = 1. Langevin parameters are kBT/~ =
2.226 GHz and ζ = 10−3. Data collected using 1000 runs of Eq. (J19).

Tr (~σρ),

d

dt
~̇Mi = − ~Hi × ~Mi (J17a)

~Hi ≡ 2A(t)x̂+ 2αB(t)

hi +
∑
j 6=i

Jij ~Mj · ẑ

 ẑ ,

(J17b)

where we have already included the α dependence. Using the
DW2 annealing schedule in Fig. 1 we plot the evolution of
the spin system in Fig. 32(a). This figure shows that the sys-
tem evolves to a cluster state. Namely, the core spins have

Mz = 1, i.e., are in the |0〉 state, and the outer spins have
Mz = 0. Since the outer spins have eigenvalues ±1 under
σz with equal probability, having the average equal zero is
consistent with having an equal distribution among the cluster
states. This suppression of the isolated state result is consis-
tent with the QA evolution, and was used in Ref. [9] to critique
the conclusion of Ref. [6] that the experimental evidence is
consistent with quantum evolution. In the next subsection we
discuss the effect of adding thermal noise and a dependence
on the energy scale factor α.
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2. Open system case: Langevin Equation

Now that we have our “classical” model, we introduce a
thermal bath by extending the equations of motion to an ap-
propriately generalized (Markovian) spin-Langevin equation
[49, 50],

d

dt
~Mi = −

(
~Hi + ~ξ(t)− ζ d

dt
~Mi

)
× ~Mi , (J18)

with the Gaussian noise ~ξ satisfying 〈ξi(t)〉 = 0 and
〈ξi(t)ξi(t′)〉 = 2kBTζδ(t−t′). One can simplify Eq. (J18) by
perturbatively inserting d

dt
~Mi = − ~Hi× ~Mi into the “friction”

term to get:

d

dt
~Mi = −

(
~Hi + ~ξ(t) + ζ ~Hi × ~Mi

)
× ~Mi , (J19)

which gives rise to a “Landau-Lifshitz” friction term [50, 51]
and is the evolution equation (E2).

An example of the resulting evolution for α = 1 is shown
in Fig. 32(b). Note that the Mz value of the outer spins does
not converge to 0, unlike the closed system case shown in
Fig. 32(a). This is not accidental: while the core spins pre-
fer the |0〉 state [Mz = 1, Fig. 33(a)], the outer spins prefer
the |1〉 state, i.e., the median occurs at Mz < 0, as is clearly

visible in Fig. 33(b). An explanation in terms of the effective
Ising potential between a core-outer spin pair is given in the
main text (Sec. V) for the noisy SSSV model, but the same
applies to the SD model.

The dependence on α is given in Fig. 20. We observe that
as α is decreased, the median value of the core spins and
outer spins does not significantly change. However, we do
observe a very slow decrease away from Mz = 1 for the core
spins. A larger effect is the appearance of more outliers as
α decreases, which is consistent with the system being able
to explore states away from the cluster states. However, we
emphasize that the majority of the states observed are cluster
states and not the isolated state (in contradiction with the ME
results).

We have checked the dependence of our results on the fric-
tion parameter ζ. In Fig. 34(a) we see for sufficiently large ζ
(> 10−3), the median values are not affected significantly by
changing ζ. For sufficiently small ζ [Fig. 34(b)] we observe
that the median value of the core spins does not deviate very
far from 1, and the median of the outer spins appears to shift
even further towards Mz

o = −1.
We have also checked the dependence on the annealing

time. As shown in Fig. 35, there is no significant change in
the median for either the core or the outer spins, suggesting
that (over the range of annealing times studied) the system
does not fully thermalize.
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FIG. 34. Statistical box plot of the z component for all core qubits (main plot) and all outer qubits (inset) at t = tf = 20µs. The data is
taken for 1000 runs of Eq. (J19) with Langevin parameters kBT/~ = 2.226 GHz (to match the operating temperature of the DW2) and (a)
ζ = 10−1 and (b) ζ = 10−5. The ζ = 10−3 is shown in Fig. 20(a). This illustrates that the results do not depend strongly on the choice of ζ.
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FIG. 35. Distribution of Mz at the end of the evolution for all core and all outer spins (i.e. the values of all core spins and all outer spins are
included in each respective box plot) for α = 2/7. Langevin parameters are kBT/~ = 2.226 GHz and ζ = 10−3. Data collected using 1000
runs of Eq. (J19). Note that the tf -axis scale is not linear.
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