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We propose to produce five-partite entanglement via cascaded four-wave mixing in a high-Q mi-
croresonator that may become a key to future one-way quantum computation on chip. A theoretical
model is presented for the underlying continuous-variable entanglement among the generated comb
modes that is expansible to more complicated scenarios. We analyze the entanglement condition
when the van Loock and Furusawa criteria are violated, and discuss the device parameters for po-
tential experimental realization that may be utilized to build an integrated compact five-partite
entanglement generator. The proposed approach exhibits great potential for future large-scale inte-
grated full optical quantum computation on chip.

PACS numbers: 03.67.Lx, 42.65.Wi, 42.65.Yj, 03.65.Ud.

I. INTRODUCTION

Quantum computation (QC) is expected to provide
exponential speedup for particular mathematical prob-
lems such as integer factoring [1] and quantum system
simulation [2]. However, any practical QC system must
overcome the inevitable decoherence problem and achieve
scalability. The traditional “circuit” QC model keeps
quantum information in a physical system where quan-
tum memory units undergo precise controlled unitary
evolution simultaneously, leading to serious scalability is-
sue. To circumvent this challenge, an “one-way” quan-
tum computation model was proposed [3], where quan-
tum information exists virtually in a cluster state [4] and
one can perform any desired quantum algorithm by con-
ducting a sequence of local measurements. With this
approach, the most challenging part is now transferred
from conducting the unitary operation in a large scale
into the generation of a cluster state, or more generally,
a universal multipartite entangled state. The aim of this
paper is to investigate the possibility of a novel integrated
approach for generating multipartite entangled states.

Optical frequency combs (OFCs) have been shown to
be capable of preserving cluster states [5, 6]. An OFC
is a light source composed of equally spaced discrete fre-
quency components, as illustrated in Fig. (1 a). Actual
OFCs might extend to an extremely broad band with
hundreds of frequency components [7, 8], each of which
corresponds to a comb mode (marked by a mode number,
say m). OFCs are favorable for QC for their robustness
to decoherence [6], since photons are less likely to inter-
act with the environment compared with other physical
systems such as atoms [5].

OFCs have already been utilized in many applications
such as frequency metrology, telecommunications, opti-
cal and microwave waveform synthesis, and molecular
spectroscopy [7, 8]. Conventionally, OFCs are generated
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in mode-locked lasers that are usually bulky, difficult to
operate, and susceptible to environmental perturbations
[6]. Tt is recently reported that OFCs can also be gen-
erated from monolithic microresonators [9, 10] through
cascaded four-wave mixing (FWM).

In a high-Q microresonator with appropriate disper-
sion, an intense pump wave launched into a cavity mode
would excite four-wave mixing processes among differ-
ent cavity modes via the optical Kerr effect [10]. There
are dominantly two types of FWM, degenerate and non-
degenerate, which are illustrated in Fig. (1b). Due to the
momentum conservation among the interacting photons,
a degenerate process converts two identical photons in
a same mode at m into two dissimilar photons at modes
m—1 and m+1, respectively. Similarly, a non-degenerate
process converts two photons from modes m and m + 1
into two new photons at modes m — 1 and m + 2. The
iteration of these two processes thus produce an optical
frequency comb [10], with a spectral extent determined
by the group-velocity dispersion of the device.

The beauty of such scheme lies in the nature of high-
Q microresonators. First, the optical field is strongly
confined inside a small volume, leading to significantly
enhanced nonlinear optical interactions. Second, due to
the exceptionally high quality factors (@) of microres-
onators, the photon life time inside the cavity is much
longer than that in those traditional cavities so that dif-
ferent frequency components have enough time to entan-
gle with each other. Finally, the integrated chip-scale
platform of microresonators exhibit great potential for
eventually realizing a large-scale integrated full optical
quantum computer [11].

These facts inspire us to explore the potential of
OFCs for producing multi-partite entangled states in-
side a microresonator. Although two-mode quantum
squeezing has been intensively investigated for para-
metric processes [12-21], the quantum properties of
microresonator-based frequency comb generation has not
yet been fully addressed. On the other hand, there have
been both theoretical analysis [22-25]and experimental
investigation [26-30] on photon pair generation inside mi-
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FIG. 1. (a) The spectrum of an ideal frequency comb is dis-
crete, equally spaced, and covers a wide band. (b) Energy
level diagram of degenerate (left) and non-degenerate (right)
FWM.

cro/nanophotonic devices. Yet all of them focused on the
bipartite discrete-variable entanglement whose method-
ology cannot be applied to the analysis of entanglement
among three or more frequency components. In this
paper, we present a theoretical model to describe the
five-partite continuous-variable entanglement among fre-
quency comb modes. We solve the Fokker-Planck equa-
tion in P representation and analyze the entanglement
condition when van Loock and Furusawa criteria are vi-
olated.

The rest of this paper is arranged as follows: in Sec-
tion II, we present a system model to describe the cascade
four-wave mixing process in a high-Q microresonator. We
then analyze the quantum fluctuations of the cavity fields
and the five-partite entanglement in Section III-V. We
discuss the resulting quantum fluctuations on the cavity
output and their dependence on the cavity parameters
and operation conditions in Section VI. The main con-
clusions are summarized in Section VII.

II. SYSTEM MODEL

We consider a generic scheme of comb generation, as
shown in Fig. 2, where a continuous-wave pump wave is
launched into a microresonator to excite FWM process.
The resulting frequency comb output from the cavity is
then separated into individual frequency components for
analysis [31].

In general, the number of comb mode produced is de-
termined by the device dispersion, pump power as well
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FIG. 2. OFC generator with a Calcium Fluoride cavity and
angle-polished fiber couplings. CW, continuous-wave; PC,
polarization controller; AWG, arrayed waveguide grating.

as the cavity detuning [11, 32, 33]. We consider here
a simple frequency comb that consists of five modes, as
shown in Fig. 1la. Such a comb number can be achieved
by engineering the group velocity dispersion to limit the
phase matching bandwidth of the FWM process.

The FWM process governing the comb generation orig-
inates from the optical Kerr effect. With an electric
field composed of five frequency components, the inter-
action Hamiltonian of the Kerr effect is given by [34-36]
V ="n(g/2): (ap + as1 + ai1 + as2 + a2 + H.c.)* :, where
“:...:” stands for normal ordering and g is coupling coef-
nghwgc

vn?

tive index that characterizes the strength of the optical
nonlinearity, ng is the linear refractive index of the ma-
terial, ¢ is the speed of light in the vacuum, and V is the
effective mode volume [11, 34]. The coupling coefficient
is assumed to be independent of frequency, because the
difference between the frequency of neighbouring combs
are neglectable [34]. Consequently, the Hamiltonian for
the comb generation system is found to be

ficient given as g = , where ny is nonlinear refrac-

H = Hfrcc + Hpump + Hintv (1)

Hireo = thkalak, Hpump = ihea;; +He, (2
k

Hing = Zghz CLLCLLCLkak + ighz alazatak
k k#t
Figh(alyal,a? + alyalyanay +alyahana,

+a22a;a§1 + a;-f2a;;af1) +He, (3)

where k,t = p,sl,s2,i1,72 and € is the pump field that
enters the resonator which is described classically because
of its intense amplitude [34].

The interaction Hamiltonian in Eq. (3) consists of
three parts responsible for self-phase modulation, cross-
phase modulation, and four-wave mixing, respectively.
It is easy to verify that the first two parts automati-
cally vanish in the P representation [12]. For the cas-
caded FWM, the pump wave produce the sl and il
modes via degenerate FWM, 2w, — ws1 + wj1, which
in turn produces s2 and ¢2 by hyper-parametric os-
cillation dominantly via the following FWM processes:
2Ws1 = Wp FWs2, 2wi1 —> Wy Wi, Wel + Wy — Wit + wWsa,
and w;1 +wp — w1 +wie. Compared to these processes,



2w, — wso + wio and w1 + wio play minor roles due to
larger phase mismatch and the smaller intensities of sl
and 71 compared to the pump. Although theyx might
help the phase locking mechanism, they are less dom-
inant compared to others. We thus neglect these two
processes in our analysis.

A microresoator is an open system since it not only ex-
hibits intrinsic scattering loss with a photon decay rate
of vio (for mode k), but also couples waves to the cou-
pling waveguide with an external coupling rate of .. To
describe such an open system, we introduce the loss and
out-coupling terms as

Lkp = yk(ZakpaL — CLLCLkp - pa/]iak% (4)

in which p is the density matrix of the five xmodes under
consideration. vx = Yro~+7ke stands for the damping rate
of the loaded cavity. The output fields are determined by
the well-known input-output relations given as [37]

bout - bzn - ﬁav (5)

where b is the boson annihilation operator for the bath

field outside the cavity.

IIT. EQUATIONS OF MOTION FOR THE FULL
HAMILTONIAN

With the system model developed in Section II, we can
now obtain the master equation for the five cavity modes
as

. 5
op i
E — _ﬁ[Hpump + Hintap] + E Lkp (6)
k=1

The free Hamiltonian does not show up in Eq. (6) because
of the rotating-wave approximation [37] a — e~ “*tay.

The master equation above can be converted into the
equivalent c-number Fockker-Planck equation in P rep-
resentation, which can be written as a completely equiv-
alent stochastic differential equation as [12]

da
2 _riBy 7
a , (7)
— * * T
where o = [apa Qg1, Q1 , A2, (32, O[;;, O‘:l ) aila 0652, O‘;Q] )

and F = [f, f*]7 is the main part of the system’s evolu-
tion in which f is given by

* * * 2 * 2 *
€ — YpQp — 200505101 — GOig Us2051 — GO Qi2Qs1 + GO Qgy + O3 Oty
2 %
—Ys10s1 + GO0l + g1 oy — gasgaila; — 2gapasa0,
*
f= —Yi1Qiq1 + gag oy + gOs10p050 — gai2asla; — 2gopainogy

* 2
—Vs20s2 + gaslapail + gaslap

*

5
—YizQi2 + gai1ap gy + gag oy,

Matrix B contains the coefficients of the noise terms
which is obtained through BBT = D in which the diffu-
sion matrix D is given by

d 0
!

where d is a matrix with the form of

2051001 — Qa1 —Qe1QGe 2 mad
—Q201  — 20000 04127 0 Q10
d=g — Qg1 02 ag —20p052 Q10 0
a?, 0 Qs10p 0 0
a? ;10 0 0 0
In Eq' (7)7 n = [771 (t)v T2 (t)v 13 (t)v N4 (t)v 5 (t>a 'C']T

c )
where 7); are real noise terms characterized by (n;(¢)) =0
and (n;(t)n;(t)) = di;0(t —t').

IV. LINEARIZED QUANTUM-FLUCTUATION
ANALYSIS

To solve Eq. (7), we decompose the system variables
into their steady-state (classical) values and quantum
fluctuations as a; = A; + da;. Since the quantum fluc-
tuations are much smaller than the steady-state values,
we can thus apply the linearization analysis to find the
spectra for the cavity outputs. To simplify the analy-
sis, we assume that the five comb modes exhibit a same
photon decay rate and a same external coupling rate
(Fyk = Vs Vke = Yer VO = F)/ka = p7517527i17i2)7 since
their frequencies are not far from each other. Noticing
that the symmetry between the signal photons (s1 and
s2) and their idlers counterparts (i1 and i2) because of
the conjugate nature of the FWM process, we may use
the same variable to denote the c-number of a pair, i.e.,
A = Agq = A, and App = Ao = Ay

The steady state of the comb generation can be found
by setting da/0t in Eq. (7) to be zero, which results in



a pump threshold of

€th = ’Y\/’%- (8)

When € < ¢, the steady-state cavity fields are given by
A, =¢/vand A; = 0(i = il,s1,i2,s2). When € > ¢,
the steady states become

e+e2+(3v3) /g

A, = 9

P 3,}/ ) ()
A [T

A=A =A, = 4g(l gAZQ)), (10)
2

A= A = Ay = 204a gy

In the present scheme we only consider the situation for
the field modes to oscillate above the threshold. Note

2 2
that the v is of the order of 10° s™!, 4, = EVE ”2;38” <

¢/~ is actually much smaller than €, so our non-depletion
assumption is self-consistent.

With the steady-state solution, we can not find the
equations of motion governing the quantum fluctuations
of the comb modes as

%60( = Mo + Bn, (12)

where dax = [6o¢p,5a51,5ai1,5o¢52,5ai2,H.c.]T. M is the
drift matrix given by

mi Mo
M - * * 9
my My

-y -G -G —gA2 —gA2
G —y 0 —39A4,A, 0
my = G 0 —y 0 —3gA,A,
gAZ 3gA,A, 0 —y 0
gA? 0 39A,A, 0 —
—2A2  —A A, —A.op A2 A2
—AAy —2A,4 Af, 0 A4,
mo =g | —Asap AZQ, —24,A4, AA, O ,
A2 0 AlA, 0 0
A2 AJA, 0 0 0
where

G =—gA Ay — 29A,A, +29A,As.
|

3(3) = V(Xsl —

For the linearized quantum-fluctuation analysis to be
valid the fluctuations must remain small compared to the
mean values. If the requirement that the real part of the
eigenvalues of —M stay non-negative is satisfied, the fluc-
tuation equations will describe an Ornstein-Uhlenbeck
process [38] for which the intracavity spectral correlation
matrix is

Sw)=(—M +iwl) 'D(-M" —iwI)~*. (13)
All the correlations required to study the measurable ex-
tracavity spectra are contained in this intracavity spec-
tral matrix. We have checked the stability numerically
for the rest of discussion.

In order to investigate the multipartite entanglement,
we define quadrature operators for each mode as

X =ar + az, Y. = —i(ak — CLL), (14)

with a commutation relationship of [X}, Y] = 2i. Based
on such definition, V(X}) < 1 will indicate a squeezed

state, where V(A) = (A?) — (A)? denotes the variance of
operator A. Accordingly, by use of Eq. (5), the spectral
variances and covariances of the output fields have the
general form

(15)

St (w) =1+ 27eSx; (w)
Sg(UtX ( ) = 2’705X17Xj (w)

Similar expressions can be derived for the Y quadratures.

V. FIVE-PARTITE ENTANGLEMENT
CRITERIA

The condition proposed by van Loock and Furusawa
(VLF) [39], which is a generalization of the conditions for
bipartite entanglement, is sufficient to demonstrate mul-
tipartite entanglement. We now demonstrate how these
may be optimized for the verification of genuine five-
partite entanglement in this system. Using the quadra-
ture definitions, the five-partite inequalities, which must
be simultaneously violated, are

Sy =V(Xp + Xs1) + V(=Y + Ya1 + gaYir + gs2Ys2 + gi2Viz) > 4, (16)
Seay =V(Xp + Xi1) + V(=Y + gaYa + Yi + gs2Ye2 + gi2Vi2) > 4, (17)
Xs2) +V(gpYp + Y1 + girYir + Yo + giaYia) > 4, (18)
Xi1) + V(gpYp + gs1Ys1 + Yir + gs2Yso + Vi) > 4, (19)

8(4) = V(Xlg

where the g, (k = p, sl,s2,i1,42) are arbitrary real pa-
rameters that are used to optimize the violation of these

inequalities. It is important to note that in the uncor-



related limit these optimized VLF criterion approach 4.
Due to the symmetry relation between signal and idler
photons, Eq. (16) and Eq. (17) are equivalent. So are
Eq. (18) and Eq. (19). Thus, we only need to calculate
S(l) and 5(3).

VI. OUTPUT FLUCTUATION SPECTRA

According to Eq. (8-11), the stable solution is com-
pletely determined by three parameters: total damp-
ing rate 7, coupling coefficient g, and pumping power
€, which in turn determine the drift matrix M, the dif-
fusion matrix D, and the intracavity spectral correlation
matrix S. Finally, the intra- and extracavity spectral
correlation matrix are related by a parameter v, through
Eq. (15). We thus conclude that these four parameter
fully describe the extracavity spectral correlation. There-
fore, we investigate in this section how these parameters
affect the extracavity entanglement. We find that the ex-
tracavity entanglement is completely determined by three
parameters: €/en, ve/v and w/7.

A. Effect of the Total Damping Rate

To begin with, we rewrite Eq. (8) as

£ — < /2, (20)

v Eth g

Substitute Eq. (20) into Eq. (9-11), we obtain

JE = (5 + /&7 +3) /3

%Aa = i(l - %)a (21)

JEA = 2(,/24,)(, /2 40)?

\/gAk (k = p,a,b) are

only determined by &/e4,. Using them in D, M, and
Eq. (22), we can find

We find that the stable solutions

. — T . —
S(w)= (& +igD) ' 2(-M —igr)~t. (22)
With this result together with Eq. (15), we can see that
Seut is completely determined by €/esp, ve/v and w/7.
Therefore, the variance S;(w/v) (as a function of w/7)
is solely determined by the parameters /e, and ~./v
rather than ¢, v, and €. This conclusion is verified nu-
merically. If we decrease the values of ny and v by half
simultaneously while keeping /ey, constant, the noise
spectrum will remain unchanged, except for a scaling fac-
tor in the frequency axis.

B. Effect of the External Coupling Rate

From now on, we numerically calculate the values of
VLF inequalities according to the results obtained above.

We assume that the resonator is a spherical CaF5 cavity.
Note that the theoretical model and analysis are univer-
sal and can be easily applied to other device platforms.
For CaF,, the refractive index is ng = 1.43, Kerr coeffi-
cient is ng = 3.2 x 10720 m2/W. We assume the CaFq
resonator has a radius R of 2.5 mm, corresponding to an
effective mode volume of V5 = 6.6 x 10712 m3. Light
is critically coupled to the device with a loaded quality
factor Qo = 3 x 10° (corresponding to a central modal
bandwidth Awg = 7, ~ 27 x 64 kHz [11]), with a pump
launched at a wavelength of \g = 1560.5 nm.

we first fix g, v and €, the three parameters that deter-
mines the evolution inside the cavity and vary the ~./v
ratio to see how it affects the observed entanglement. In
Fig. (3), we plot the minimum of the variances versus the
analysis frequency normalized to v when ~, takes a por-
tion of 0.34,0.57,0.8,1 of the total damping rate. The
blue dashed lines stand for S(;), while the green solid
ones stand for S(3).

It can be seen from the plot that when . = 0.34~,
there is no entanglement between any two of the field
modes. As we increase the out-coupling coefficients, the
sl and 71 begin to entangle with the pump photons
around the center frequency, but it is not until when
ve/y = 0.57 that the s2 and i2 begin to entangle with
s1 and 71, respectively. Eventually the variance converge
to Fig. (3d). Thus we conclude that the entanglement
among output modes are improved as the 7./ ratio in-
crease, i.e., the entanglement is better when the cavity
has higher @ therefore lower intracavity loss, and higher
extracavity coupling coefficient. This can be interpreted
naturally if we see the coupling as a beam splitter which
extract squeezed quantum noise to the output[37], so the
higher portion the coupling coefficient takes in the to-
tal damping rate, the less consumed entangled pair of
photons are wasted in the internal loss. For that consid-
eration, we will ideally fix 79 = 0 in the following analy-
sis, so that the effect of output transfer is suppressed to
minimum.

C. Effect of the Pump Power

We plot the minimal variance throughout the noise
power spectrum as a function of the pump power (nor-
malized by ey) in Fig. (4) and six typical spectrums in
Fig. (5).

It can be inferred from the graphs that both vari-
ance first descend as the pump power increases, then
ascend. S(3) and S(4) reaches their global minimum at
€ = 1.15¢;,. Considering that they are the short slabs of
the whole entanglement system, we conclude that 1.15¢,
is the optimal pump power. The other turning point
in Fig. (4) is around 1.ley,, when, as we can see in
Fig. (5b) and (5c¢), the variances in the center frequency
begin to decrease dramatically and become the minimum
which was once achieved in the side band, as showed in
Fig. (5a).
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FIG. 3. Extracavity variance versus frequency of pump plots when . is 0.34,0.57, 0.8, 1 times as great as v (from left to right
and top to bottom). v = 4.02 x 10°s7%, g = 221 x 107471, € = 1.15e, = 1.97 x 10971, The blue dashed curve stand for
S(1) and S(9), whereas the green solid ones stand for S(3y and S(4). The pump power is fixed at 1.15¢¢5.

FIG. 4. Minimum extracavity variance as a function of pump
power.

VII. CONCLUSIONS

In conclusion, we presented a theoretical model for the
five-partite continuous-variable entanglement among five

field modes based on cascaded four wave mixing process.
By solving Fokker-Planck equation in P representation,
we analyzed the entanglement condition when van Loock
and Furusawa criteria are violated. We presented the
design parameters for experimental purpose, and they
might also be utilized to build integrated compact five-
partite entanglement generator. We analytically related
the threshold of pump power with cavity parameters. We
found that the degree of entanglement was totally deter-
mined by w/v, €/€e, and ~y./7. This result filled the the-
oretical gap for the entanglement analysis of OFCs gen-
erated from high-Q resonator, therefore would pave the
way for future optical quantum computation on chip.
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