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We introduce an efficient scheme for quantum state transfer that uses a parity-based mirror inversion technique. We design efficient circuits for 
implementing mirror inversion in Ising, σXσX and σYσY coupled systems, and show how to analytically solve for system parameters to implement 
the operation in these systems. The key feature of our scheme is a three-qubit parity gate, which we design as a two-control, one-target qubit gate. 
The parity gate operation is implemented by only varying a single control parameter of the system Hamiltonian, and the difficulty of 
implementing this gate is equivalent to that of a controlled-NOT (CNOT) in a two-qubit system. By applying a sequence of N+1 parity-based 
controlled-unitary operations between nearest-neighbor qubits, where all qubits in an N-qubit chain function either as controls or targets, we are 
able to reverse the order of all qubits along the array. These operations are accomplished by varying only a single control parameter per data 
qubit. The control parameter depends on the physical system under consideration, and on the choice of the designer. Since every qubit 
participates in the mirror inversion process functioning either as a control or target, all nearest neighbor couplings are used. Therefore, we do not 
need additional measures to cancel the effect of any unwanted interactions, and the quantum cost of our scheme does not increase in systems that 
do not have the ability shut off couplings. Moreover, our scheme does not require additional ancillas, nor does it use a pre-engineered mirror-
periodic Hamiltonian to govern the evolution of the system. Using our mirror inversion scheme, we also show how to implement a swap gate 
between two arbitrary remote qubits, move a block of qubits, and implement efficient computing between two remote qubits in nearest-neighbor 
layouts. 
 
PACS numbers: 03.67.Hk, 03.67.Lx, 03.67.Ac 

 
 

I. INTRODUCTION 
 

Many proposed implementations for a physical quantum computer use a one-dimensional line of qubits with nearest-neighbor 
(NN) interactions [1-11], called linear nearest-neighbor (LNN) arrays, where a qubit interacts only with the two qubits adjacent to it. 
As such, to perform an operation between two “remote” qubits along the array, that is, between qubits that are not nearest-neighbors 
(non-NNs), often additional swap gate operations are required to first bring the qubits adjacent to each other. Since each swap gate 
comprises of three CNOT gates [12], the overall computational overhead can be high. Thus, increasing the efficiency of implementing 
quantum circuits in LNN architectures is an active and important area of research. In fact, it has been shown that if a quantum circuit 
can be realized efficiently using an LNN architecture, it can be implemented in other architectures as well [13]. 

The study of efficient realization of quantum circuits on LNN architectures can be broadly classified into two types. The first type 
of research involves finding methods of translating general quantum circuits into equivalent NN circuits efficiently, where worst-case 
synthesis costs for implementing a general unitary matrix under the NN-restriction are investigated. The second type of research, 
which is the focus of this paper, involves the development of protocols for transmitting quantum states. In any multi-qubit quantum 
system, efficient quantum state transfer is necessary to allow quantum information to be moved around within a quantum processor. In 
[ 14 ], Bose proposed a scheme to use a spin chain as a channel for short distance quantum communication. Here, communication is 
achieved by encoding a quantum state to be transmitted on a spin at one end of the chain, and waiting for a specific amount of time 
after which the state propagates to the other end. However, due to dispersion of quantum information along the chain, the transport 
fidelities were less-than-perfect [14−21]. As a result, several methods of improving the transport fidelity have been investigated. It has 
been found that perfect transport can be achieved along a spin chain if the nearest-neighbor couplings in the quantum channel are set 
to very specific values [19, 20, 22−25]. By encoding the quantum information into low-dispersion wavepackets, or by 
encoding/decoding via conditional quantum logic across multiple quantum channels/wires, near perfect transport can be achieved [15, 
21, 26-29]. Other possibilities include using teleportation of the quantum information along the quantum wire by measurements [30 ], 
encoding into soliton-like excitations [31], or use quantum cellular automata concepts [32, 33]. Besides the transport of single qubits, 
methods to transport entire qubit registers via ‘quantum mirror wires’ have also been investigated [24, 34-41. Here, an unknown multi-
qubit quantum state, when encoded at one end of the wire is transmitted to the other end, in reverse order [34-38], and the process is 
called “mirror inversion” (MI) One method of implementing MI processes in spin chains is by pre-engineering spin-spin couplings 
with a specific pattern. Another method is to repeatedly apply global signal pulses to the system during its dynamical evolution [39-
41]. The advantage of such globally-controlled MI schemes is that a regular uniformly coupled spin chain can be used, without the 
necessity to manipulate individual couplings between qubits. Since in some schemes using global control, special block encoding of 
qubits using additional ancillary qubits are required, the storage density can be less than unity. 

In this paper, we present an efficient scheme for quantum state transfer that uses a parity-based MI technique that can be 
implemented in Ising (σZσZ), σXσX and σYσY coupled systems. There are several key features of our scheme. First, we show how to 
implement a three-qubit parity gate in an Ising coupled system where the gate operation is realized by varying only a single control 
parameter of the system Hamiltonian. This is achieved by designing the parity gate as a two-control, one-target qubit gate. Since the 
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difficulty of implementing our gate is equivalent to that of implementing a CNOT gate in a two-qubit system, for all practical 
purposes, the parity gate can be considered as an elementary gate. (Under a CNOT gate, the target qubit flips its state from |0〉 to |1〉, 
and vice versa, only if the control qubit is in the |1〉 state).  Next, we show how to use the parity gate to generate efficient circuits for 
MI as a sequence of controlled-unitary operations between NN qubits. We analytically solve for system parameters for implementing 
these operations. We next design circuits for implementing MI in σXσX and σYσY coupled systems, and analytically show that the 
same values of the parameters that were calculated for implementing an MI in an Ising coupled system, can be used for realizing MI in 
these systems. That is, using our scheme, MI can be implemented in σXσX and σYσY coupled systems using the same set of parameters 
for which they can be implemented in an Ising coupled system, without requiring any additional gate operations, which is significant. 

 Our scheme has several advantages from a practical implementation standpoint. The MI of an N-qubit chain is accomplished in 
only “N+1” computational steps (a computational step comprises one or more elementary gates applied in parallel). The scheme is 
efficient since each computational step is accomplished by varying a single control parameter on all target qubits. The control 
parameter depends on the physical system under consideration, and on the choice of the designer. For instance, when implementing 
our MI scheme in an Ising coupled system, we choose to vary the biases on individual qubits since they are relatively easy to control. 
As we will subsequently show, the biases resemble clock pulses, and the bias pulses on alternate qubits along an LNN array (with the 
exception of the first and last qubits) are identical. This symmetry can be used in a practical implementation to reduce the number of 
control lines, wherein the bias lines for qubits having identical pulse sequences can be tied together. In general, the control circuitry 
can be reduced to 3 bias control lines if N is odd, and 4 bias control lines are required if N is even. Another important feature of our 
scheme is that since every qubit participates in the MI process functioning either as a control or target, all NN couplings are used. 
Therefore, we do not need additional measures to cancel the effect of any unwanted interactions, especially in systems with untunable 
couplings. Also, no additional computational overhead is introduced through the use of additional ancillas for implementing the MI 
operation. Neither do we require a pre-engineered Hamiltonian to implement MI. 

The paper is organized as follows. In section II, we introduce the three-qubit parity gate, which is the basic building block of our 
MI process. We show how to implement this gate in a 3-qubit Ising-coupled system by varying only a single parameter of the system 
Hamiltonian. In Section III, we show how to construct circuits for implementing MI in N-qubit linear arrays using “N+1” 
computational steps. We also show how to extend these circuits to σXσX and σYσY coupled systems by using the same parameters 
derived for the Ising coupled system. In section IV, some applications of MI are presented, which included moving a block of data in 
1D and 2D arrays efficiently. In section V, the effects of unwanted couplings, parameter mismatches and rise/fall times on the 
performance of our MI scheme are discussed. In discussing the effects unwanted couplings, we consider a physical quantum system of 
superconducting qubits. In Section VI, we present the conclusions.  

 
II. THREE-QUBIT PARITY-BASED MIRROR INVERSION IN AN ISING COUPLED SYSTEM 

 
We define the three-qubit parity gate, which we will represent as C2(P), as a two-control, one-target qubit gate, which computes 

the parity of three qubits. Under this gate operation, the target qubit inverts its state from |0〉 to |1〉 or vice versa, only if the two control 
qubits are in opposite states. That is, the linear transformation under the C2(P) gate can be represented as: 
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Here, |q1, q2, q3〉, represents a joint state of qubits Q1, Q2 and Q3, which is one of the eight computational basis states, |000〉 through 
|111〉. Qubits Q1 and Q3 are controls, while qubit Q2 is the target.  Also, q2′ (or q3′) represents the complement of q2 (or q3), i.e., if q2 = 
0, then q2′ = 1, and vice versa.  Note that the C2(P) gate is equal to two CNOT gates, one each between qubits Q1 and Q2, and qubits 
Q2 and Q3, respectively, with qubit Q2 as the target qubit for both gates (Fig. 1(a)). However, since in this paper we devise a method of 
implementing the C2(P) gate as a single gate by only varying a single control parameter of the system Hamiltonian, without the need 
to decompose it into two CNOT gates, hereafter, we will represent the C2(P) gate as shown in Fig. 1(b).  Here, the vertical line 
connecting qubits Q1, Q2 and Q3 shows that the gate operation involves all three qubits. To distinguish between the two controls and 
the target, a square with the letter “P” in placed on the target qubit. This indicates that after the gate operation, the state of the target 
qubit (Q2) will hold the parity of the three qubits, while the states of the two control qubits (Q1 and Q3) remain unchanged (Eq. (1)). 
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FIG. 1. (a) Two successive CNOT gate operations, which perform the C2(P) gate operation as given by Eq. (1). For both gates, qubit Q2 is the target 
qubit. (b) Our representation of the C2(P) gate as a single elementary gate operation. Here, the vertical line connecting qubits Q1, Q2 and Q3 shows 
that the gate operation involves all three qubits. To distinguish between the two controls and the target, a square with the letter “P” in placed on the 
target qubit. This indicates that after the gate operation, the state of the target qubit (Q2) will hold the parity of the three qubits, while the states of the 
two control qubits (Q1 and Q3) remain unchanged (Eq. (1)). 
 

We will now show how the C2(P) gate can be used to perform an MI operation in a 3-qubit LNN system where the qubits are 
arranged along a line in the order Q1, Q2, Q3, with interactions only between qubits Q1 and Q2, and between qubits Q2 and Q3. There is 
no interaction between qubits Q1 and Q3, and they are called “next-to-nearest-neighbor” qubits. Note that performing an MI operation 
in this system is equivalent to swapping the states of the two next-to-nearest-neighbors Q1 and Q3. To do so, if we were to use 
conventional methods of applying successive swap gates between adjacent qubits, where each swap operation comprises of three 
CNOT gates [12], we would require a total of 9 CNOT gates. (Note that when making this comparison we are not considering XY 
coupled and Heisenberg interaction systems, where the natural gate operation is the swap). Fig. 2(a) shows the circuit. However, using 
the C2(P) gate, we require only a total of 6 gates as shown in Fig. 2(b): 4 CNOT and 2 C2(P) gates.  Moreover, since the two CNOT 
gates between qubits Q1 and Q2 and qubits Q2 and Q3 can be applied in parallel, we can combine these two gates into a single 
computational step, assuming both the CNOT gates require the same time duration.  We will, hereafter, refer to these double CNOT 
gate operations as the D gate operation. Thus, by combining the operation times of gates in parallel, the total number of operations can 
be further reduced to 4. Observe that the circuit shown in Fig. 2(a) does not have this advantage since none of the gates can be applied 
in parallel.   
 

 
FIG. 2.  Swapping the states of qubits Q1 and Q3 in a one-dimensional LNN arrangement. (a) Conventional method of using swap gates between 
adjacent qubits, where each swap comprises of 3 CNOT gates. The total gate count of the circuit is 9. Also, since none of the gates can be applied in 
parallel, the number of computational steps cannot be further reduced by applying gate operations in parallel. (b) Our method of implementing a 
swap operation between qubits Q1 and Q3 using the C2(P) gate instead of swap gates. The overall gate count is 6 gates. However, since each pair of 
CNOT gates following a C2(P) gate can be applied in parallel, the number of computational steps can be further reduced to 4.   

 
The overall linear transformation under the circuit shown in Fig. 2(b) is: 
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From Eq. (2), we can see that the states of qubits Q1 and Q3 are interchanged. This method of using C2(P) gates in conjunction 

with CNOT gates can be extended to implement swap operations between arbitrarily-separated qubits in NN arrays as we will show in 
the next section. 

To demonstrate how to implement a C2(P) gate operation, consider a 3-qubit Ising-coupled NN system with Hamiltonian: 
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Here, εi and Δi are the bias and tunneling parameters for qubit Qi, and σXi, and σZi, for i = 1, 2, 3 are the corresponding Pauli spin 
matrices for each qubit. The nearest-neighbor couplings between qubits Q1 and Q2, and qubits Q2 and Q3, are assumed to be equal in 
magnitude (ξ), and are diagonal in the interaction basis. The Hamiltonian model given by Eq. (3) can be used to represent physical 
systems with and without tunable couplings [43-45]. For instance, in charge qubits with fixed interactions [44], the coupling between 
qubits will be a fixed capacitance between adjacent boxes. In a tunable coupling system as in [45], where nearest-neighbor charge 
qubits are coupled through loop-shaped electrodes with Josephson-junctions at the loop intersections, the coupling between two qubits 
is varied by varying the bias current through the Josephson-junction loop.  

To implement the C2(P) gate operation, we use the pulsed bias scheme proposed in [46] and [47], which is a scheme for 
implementing controlled-unitary operations. In this scheme, only a single pulse is applied on the target qubit (in this case, Q2), and no 
operation is performed on the control qubits (Q1 and Q3) [46, 47]. The magnitude and the duration of the pulse depends upon the gate 
operation that is performed, and also on whether the system is operating in the weak (ξ < Δ) [46] or strong (ξ1 > Δ) [47] coupling 
regime. Suppose the couplings are strong. Then, by setting the biases on the two control qubits to any arbitrary value, including zero, 
such that it does not cancel the effect of the couplings, we can essentially freeze their dynamics, wherein each qubit only undergoes Z-
precessions at rates determined by the magnitudes of the couplings [47]. As a result, 2 × 2 reduced Hamiltonians can be written for the 
target qubit Q2 in a subspace |ψ〉, where |ψ〉 corresponds to a joint state of qubits Q1 and Q3, which is |00〉, |01〉, |10〉, or |11〉 [47]: 

 

 
( )

( )
2 2 2 1 3

1 1 3 3

ψ ε ξ ψ ψ ξ ψ ψ

ε ψ ψ ε ψ ψ

= Δ + + +

+ +
X Z Z Z

Z Z

H σ σ σ σ

σ σ I
 (4) 

 
Here, the subscript “2” in the Hamiltonian, represents qubit Q2, and I is the 2 × 2 identity matrix. Since |ψ〉 can be one of 4 states, 
there are four reduced Hamiltonians for qubit Q2. Integrating the Hamiltonian using the Schrödinger equation, we obtain the following 
unitary matrix for the evolution of qubit Q2 in subspace |ψ〉:   
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Equation (5) describes the unitary evolution of the target in subspace |ψ〉. Here, we have normalized the Planck’s constant to 1. Also, 
by appropriately choosing the values of the biases on Q1 and Q3, the phase in a subspace as given by Eq. (8) can be made zero (or an 
integer multiple of 2π).  

Under the C2(P) gate, we want qubit Q2 to invert its state when Q1 and Q3 are in opposite states. This means that in the |01〉 or |10〉 
subspaces, we need the effective bias, E, to be zero, which allows qubit Q2 to undergo Rabi oscillations between its |0〉 and |1〉 states at 
a rate “2πΔ2t” in these subspaces. From Eq. (6), since the two coupling terms, being equal in magnitude, completely cancel each other 
in these subspaces, to implement the C2(P) gate, we simply need to make the bias, ε2,  on Q2 zero, for a time step, T, such that   
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where P is an integer [46, 47]. From Eq. (9), qubit Q2 undergoes a quarter-cycle oscillation, wherein it inverts its state in the |01〉 and 
|10〉 subspaces. Note that, in the |00〉 and |11〉 subspaces, qubit Q2 only undergoes Z precessions, since the bias ε2 does not cancel out 
the effect of the strong couplings. The values of the couplings can be chosen such that these precessions result in identity gate 
operations on the target qubit in the |00〉 and |11〉 subspaces [46, 47].  One set of parameters in the strong coupling regime, which we 
have used in our simulations, are Δ1 =  Δ2 = Δ3 = 25MHz, T = 10ns, ε1 = ε3 = 3GHz, ξ = 1GHz, and ε2 = 0. (The tunneling parameter is 
assumed to be fixed at the same magnitude for all qubits, even though methods to tune the tunneling have been experimentally 
demonstrated [48]). Initially, the bias on target qubit Q2 is 3GHz. To implement the gate, the bias on qubit Q2 is made zero for a time 
step of T = 0.25 Δ (for Δ = 25 MHz, T = 10 ns), after which it is raised to its initial value (3GHz) once again. Simulations confirmed 
the gate operation, and the average fidelity was 100%.  In calculating the average fidelity, simulations were run for each of the eight 
basis states, |000〉 through |111〉, the fidelity was calculated for each input state, and then an average was computed.  The following 
equation was used to compute the fidelity [12]:  
 

( )F trace ρσ ρ=  (10) 

where σ is the density matrix of the desired state, and ρ is the density matrix of the final state obtained after simulation. Fig. 3 shows 
an example of simulation results when the initial state is an equal superposition of the |001〉 and |101〉 states, respectively. The plot 
shows the evolution of probabilities of the different basis states of the system (except for those states whose probabilities remain zero 
throughout). From the plots we can see that, under the gate operation, the |101〉 initial state remains in the same state, while the |001〉 
initial state changes to |011〉, confirming the C2(P) gate operation. 
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FIG. 3.  Simulation results for the C2(P) gate when the initial state is an equal superposition of the |001〉 and |101〉 states, respectively. The plot shows 
the evolution of probabilities of the different basis states of the system (except for those states whose probabilities remain zero throughout). From the 
plots we can see that, under the C2(P) gate, the |101〉 initial state remains in the same state, while the |001〉 initial state changes to |011〉, confirming 
the C2(P) gate operation.  

 
Next, to implement the MI operation between qubits Q1 and Q3, we simulated the circuit shown in Fig. 2(b). Assuming ideal 

pulses, the simulation was divided into 4 time steps of duration T = 0.25 Δ (in our simulations, we used Δ = 25 MHz, wherein T = 
10ns). When the qubits were idle and no gate operations were performed on them, the bias on the qubits was 3GHz. The value of the 
bias was randomly chosen such that ε >> Δ. (Simulations have shown that the final state is obtained with high probability (greater than 
99% if ε is atleast 10Δ. However, larger the value of the bias, closer is the fidelity of the gate operation to unity). The first and third 
time steps correspond to the C2(P) gate operations, where the bias on qubit Q2 is made zero for T = 0.25 Δ. The second and fourth time 
step corresponds to two pairs of CNOT gate operations during which the bias on target qubits Q1 and Q3 are each lowered to “ξ” 
(which is 1GHz) for T = 0.25 Δ [46, 47], while the bias on the control qubit Q2 is kept high at 3GHz. Simulations confirmed the gate 
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operation with fidelity of 99.97%.  Fig. 4 shows simulation results when the initial state is |110〉, where the probabilities in the |1〉 state 
of each qubit has been plotted. The final state is |011〉, which confirms the MI operation between qubits Q1 and Q3. 
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FIG. 4. Simulation results for the MI operation between qubits Q1 and Q3 in a 3-qubit LNN system using the circuit shown in Fig. 2(b). The initial 
state of the system is |110〉, where the probabilities in the |1〉 state of each qubit has been plotted. The final state is |011〉, which confirms the swap 
operation between qubits Q1 and Q3. 

 
 

 
III. PARITY-BASED MIRROR INVERSION IN LINEAR CHAINS OF NEAREST NEIGHBOR QUBITS WITH N>3 

 
We will now show how to construct efficient circuits for MI in LNN arrays using the results of Section II. Since we will be 

primarily using an Ising coupled system in our simulations, throughout this section, we compare the performance of our circuits to one 
that uses successive applications of swap gates (3 CNOTs) between adjacent qubits. As we will subsequently show, all the methods 
presented here can be easily extended to σXσX and σYσY coupled systems, by simply exchanging the magnitudes of the bias and 
tunneling parameters. (Note that even though we do not consider Heisenberg interactions where the natural gate is the swap, our 
scheme can be extended to NN systems with anisotropic Heisenberg interactions when the transverse coupling terms are much smaller 
than the diagonal coupling terms).  

Consider Fig. 5, which shows a system of N qubits arranged along a one-dimensional array with interactions only between nearest 
neighbors. The qubits are represented as circles, and have been labeled as Q1, Q2,…., QN. The couplings have been represented by 
squares, and each qubit only interacts with its nearest neighbors. The couplings may or may not be switchable, depending upon the 
physical system under consideration. In this system, under an MI, the order of the qubits changes to QN, …Q2, Q1. Fig. 6 shows the 
symbol that we will use for MI, which comprises of a rectangular box with “M” in it.  

 

 
 

FIG. 5.  LNN arrangement of qubits N qubits (represented as circles) with each qubit coupled only to its immediate neighbors (couplings represented 
as squares). The couplings may or may not be switchable. Qubits are labeled as Q1, Q2,…., QN. 
 
 

Q1 Q2 Q3 QN-1 QN 
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FIG. 6.  Symbol for an MI operation, where the states of qubits Q1 through QN are reversed. 
 
We will now introduce four new operations that are each constructed using CNOT and C2(P) gates applied in parallel. All N 

qubits are involved in these operations, where some of them function as controls and the rest as targets. Each operation corresponds to 
a single computational step, where we define a “computational step” as a single operation comprising of one or more gates applied 
simultaneously in parallel, and within the same time duration. A computational step is analogous to the “depth” of a circuit, where 
depth is a measure of the number of layers of gates in a circuit. However, we are using the term “computational step” since in addition 
to all gates being applied in parallel, they also are realized within the same time interval. Since we are interested in maximizing the 
performance of our circuits by lowering both the depth and the quantum cost (number of elementary gates in the circuit), the number 
of computational steps will be used as a performance measure.  

Following are the four operations, the circuit representations for which have been shown in Fig. 7: 
 
P operation: We define a P operation as a computational step comprising only of C2(P) gates applied in parallel. Fig. 7(a) shows a 

P operation for N = 7 qubits. 
 
CNOT-P-CNOT operation: We define a CNOT-P-CNOT operation as a computational step comprising of C2(P) gates and two 

CNOT gates (one at each end of the array) applied in parallel. The CNOT gates are between qubits 1 and 2 and qubits N−1 and N, 
with qubits 1 and N functioning as targets, and qubits 2 and N−1 functioning as controls. Fig. 7(b) shows a CNOT-P-CNOT operation 
for N = 7 qubits. 

 
P-CNOT operation: We define a P-CNOT gate as a computational step comprising of C2(P) gates and one CNOT gate applied in 

parallel. The CNOT gate is between qubits N−1 and N, with qubit N as the target and qubit N−1 as the control. Fig. 7(c) shows a P-
CNOT operation for N = 6 qubits. 

 
CNOT-P operation: We define a CNOT-P gate as a computational step comprising of C2(P) gates and one CNOT gate applied in 

parallel. The CNOT gate is between qubits 1 and 2, with qubit 1 as the target and qubit 2 as the control. Fig. 7(d) shows a CNOT-P 
operation for N = 6 qubits. 

 

    
FIG. 7.  (a) P, (b) CNOT-P-CNOT, (c) P-CNOT, and (d) CNOT-P operations  

 
 
Each of the four operations shown in Fig. 7 can be implemented by only varying a single control parameter per target qubit. Since 

the bias on a qubit is relatively easy to control, throughout this paper, we will use the bias on individual qubits as our control 
parameters. Also, as we will shortly show, in our MI scheme, the bias pulses on alternate qubits are identical. Therefore, the bias 
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control lines of alternate qubits along the array can be tied together to a common bias control line. As such, the overall control 
circuitry can be greatly simplified.  

We will now show how each of the 4 operations shown in Fig. 7 can be used for constructing efficient circuits for MI when N > 3. 
We will first focus on an LNN array as that shown in Fig. 5, and later extend our scheme to 2D arrays. Using the 4 operations shown 
in Fig. 7, we can construct a simple circuit for implementing an MI in only “N+1” computational steps. Each computational step 
comprises of one of the 4 operations – P, P-CNOT, CNOT-P, and CNOT-P-CNOT. If N is even and N > 2, we alternately apply the P-
CNOT and CNOT-P operations. If N is odd and N > 3, we alternately apply the P and CNOT-P-CNOT operations. As examples, Figs. 
12(a) and (b) show circuits for implementing an MI when N = 6 and N= 7, respectively.  

 

 
   

FIG. 8.  Circuits for parity-based MI where the order of qubits along an N-dimensional array are completely reversed using only N+1 computational 
steps. If N is even, we alternately apply the P-CNOT, CNOT-P gates.  If N is odd, we alternately apply the P and CNOT-P-CNOT gates. (a) Circuit 
for N = 6, and  (b) circuit for N= 7. Since all gate operations in a computational step can be simultaneously implemented, the overall circuit 
complexity, and the computational overhead greatly reduces.   
 

To prove that the circuits in Fig. 8 indeed accomplish MI, we show the equivalence of our circuit to the one presented in [40] by 
considering a 4-qubit system. In [40], the authors’ showed how to implement MI using a series of controlled-Z and Hadamard (H) 
gates. Figure 9(a) shows how to implement MI using our scheme. In Fig. 9(b), we replace each of the five P-CNOT and CNOT-P 
operations by Controlled-Z and H gates. Since the H gate is self-inverse, two successive H gates cancel each other, and we obtain the 
reduced circuit shown in Fig. 9(c). Figure 9(d) shows the circuit presented in [40] for MI in a 4-qubit system. Note that Figs. 9(c) and 
(d) are equivalent. Figure 9(c) presents the circuit for MI when qubits Q1 through Q4 are in arbitrary quantum states. Figure 9(d) 
presents the circuit for MI when qubit Q1 is in an arbitrary quantum state, while qubits Q2, Q3 and Q4 are in the |+〉, |0〉, and |+〉 states, 
respectively. Here, the |+〉 state is the state (|0〉+|1〉)/√2. 

To understand how either of the circuits in Fig. 8 work, consider the circuit shown in Fig. 8(a), for N = 6 qubits. If |qi〉, for i = 1 
through 6, is the state of qubit Qi, the evolution of the states of the 6 qubits under each of the 7 computational steps in Fig. 8(a) is: 
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 (11) 

 
From Eq. (11), we can see that each computational step performs two- or three-qubit exclusive-OR (XOR) operations between 

qubits. The qubits that function as controls during a computational step perform as targets in the next computational step. The process 
of repeatedly applying the P-CNOT and CNOT-P operations in Fig. 8(a) (P and CNOT-P-CNOT operations in Fig. 8(b)) allows us to 
reverse the order of the qubits in only 7 computational steps (8 for Fig. 8(b)). Likewise, we can show that for any N, the order of the 
qubits along the array can be reversed in exactly N+1 steps. If we use successive applications of swap gates between NN qubits are 
used to reverse the order of the qubits, a total of “3(2N−3)” computational steps are required for N ≥ 2 (assuming none of the qubits 
are ancillas, since a swap between a data qubit and an ancilla requires 2 CNOTs). Another significant advantage of the scheme 
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presented here is that in these circuits all N qubits are involved in the gate operations (either as controls or targets). As such, all NN 
couplings are used in implementing these operations. Thus, the quantum cost and number of computational steps required to 
implement these operations does not change in systems with untunable couplings because no extra steps are needed to overcome the 
effects of unwanted NN couplings.  

 
   

FIG. 9.  Equivalence of our circuit with the circuit presented in [40] for MI in a 4-qubit system. (a) Circuit for implementing MI using our scheme. 
(b) Replacing each of the five P-CNOT and CNOT-P operations in (a) by Controlled-Z and Hadamard (H) gates. (c) Reduced circuit obtained by 
cancelling two successive H gates (H gate is self-inverse). (d) Circuit presented in [40] for MI in a 4-qubit system. Note that Figs. 9(c) and (d) are 
equivalent. Figure 9(c) presents the circuit for MI when qubits Q1 through Q4 are in arbitrary quantum states. Figure 9(d) presents the circuit for MI 
when qubit Q1 is in an arbitrary quantum state, while qubits Q2, Q3 and Q4 are in the |+〉, |0〉, and |+〉 states, respectively. Here, the |+〉 state is the state 
(|0〉+|1〉)/√2.   

 
For our simulations, we considered an extension of the 3-qubit LNN Ising-coupled Hamiltonian to an N-qubit system:   
 

( )
1

1
1 1

N N

i i i
i i

ε ξ
−

+
= =

= Δ + +∑ ∑Xi Zi Z ZH σ σ σ σ  (12) 

 
where the terms have their usual meaning. The coupling and tunneling parameters were chosen to be the same as that for the 3-qubit 
system (ξ = 1GHz, Δ = 25MHz). The biases on all qubits were initially kept high at 3GHz. For a C2(P) gate, the bias on the target 
qubit was made zero for 10ns. For a CNOT gate, the bias on the target qubit was made 1GHz for 10ns. Since the gate times of both the 
CNOT and the C2(P) gate are the same (10ns),  the duration of each computational step is 10ns, during which the biases on all target 
qubits are simultaneously lowered (to either zero or 1GHz). Fig. 10 shows the sequence of bias pulses on a 7-qubit system for 
implementing the circuit in Fig. 8(b). None of the other parameters of the system were varied (ξ = 1GHz, Δ = 25MHz). In this system, 
simulations confirmed the MI operation with an average fidelity of 99.92%. Note that the biases resemble clock pulses, and the bias 
pulses on alternate qubits along the array (with the exception of qubits Q1 and QN) are identical. That is, the bias pulses on qubits Q2, 
Q4 and Q6 are identical, and the bias pulses on qubits Q3 and Q5 are identical. When N is odd (as in Fig. 8(b)), the bias pulses on the 
first and last qubits (here, qubits Q1 and Q7) are also identical. This symmetry can be used in a practical implementation to reduce the 
number of control lines, wherein the bias lines for qubits having identical pulse sequences can be tied together. In general, the control 
circuitry can be reduced to 3 bias control lines if N is odd, and 4 bias control lines are required if N is even.  

 

(a) 

Q1 
Q2 
Q3 
Q4 

P
P

Q4 
Q3 
Q2 
Q1 

P
P

P

Q1 
Q2 
Q3 
Q4 

Q4 
Q3 
Q2 
Q1 

H H 

H H 

H H 

H H 

H HH H 

H H

H H

H H

H H

H HH H

H H 

H H 

H H 

Q1 
Q2 
Q3 
Q4 

Q4 
Q3 
Q2 
Q1 

H 

H 

H 

H 

H 

H 

H 

H 

H 

H 

H 

H 

H 

H 

H

H

H

H

H

H

|q1〉 
|+〉 
|0〉 
|+〉 

|+〉 
|0〉 
|+〉 
|q1〉 

H

H

H

H

H

H

H

H

H 

H 

H 

H 

H 

H 

H 

H 

(b)

(c) (d)



10 
 

 
 
 

0

1

2

3
Q2, Q4, Q6

0

1

2

3
Q1, Q7

0 0.125 0.375 0.625 0.875 1.125 1.375 1.625 1.875 2.125 2.25
0

1

2

3
Q3, Q5

ε/ξ

Τ/Δ (ns/MHz)  
 
 FIG. 10.  Sequence of bias pulses on qubits Q1 through Q7 under the MI operation. The magnitudes of the bias pulses are in Gigahertz (GHz). Also, 
the first 5ns and the last 5ns do not correspond to any gate operation, during which the biases on all 7 qubits are maintained at 3GHz. 
 

Our scheme for MI can be easily extended to σXσX and σYσY coupled systems by using the same parameters derived for an Ising 
coupled system, with the bias and tunneling terms interchanged (coupling values remain the same as those calculated for an Ising 
coupled system). To demonstrate, consider the Hamiltonian of a 3-qubit σXσX coupled system, which is given as: 

 

( )
3 2

1
1 1

i i i i X i i
i i

Jε +
= =

= Δ + +∑ ∑X Z X XH σ σ σ σ    (13) 

 
where, as before, Δi and εi are the tunneling and bias parameters, respectively, and JX is the magnitude of the σXσX coupling between 
adjacent qubits. Under the MI operation, the state |q1,…,qN〉 maps to |qN,…,q1〉  for all single qubit states (not just basis states). 
Hence, for any single qubit unitary, one can also write U⊗N |q1,…,qN〉 maps to U⊗N |qN,…,q1〉. What this means is that if any 
Hamiltonian HN achieves the MI transformation, so does U⊗N HN U†⊗N. So, for σXσX interactions, we let U be the Hadamard gate, 
which exchanges the roles of σX and σZ. This means that the MI operation is accomplished simply by exchanging the control fields for 
the X and Z magnetic fields. That is, gate operations in the σXσX coupled system can be implemented using the same parameters for 
implementing the C2(P) and D gates, respectively, in an Ising coupled system, with the parameters, Δi and εi, interchanged. The 
magnitude of the coupling parameters are the same as that solved for under the Ising interactions. 

Similarly, for σYσY interactions, we let U = (σY + σZ)/√2, which exchanges the roles of σY and σZ. That is, the same parameters 
that accomplish MI in a σXσX coupled system can be used to implement MI in a σYσY coupled system. 
 

 
IV. APPLICATIONS OF PARITY-BASED MIRROR INVERSION  

 
Swapping the states of remote qubits: To swap the states of the first and last qubits along an array, we can apply two MI 

operations, first between qubits Q1 through QN, and then between qubits Q2 through QN−1. The total number of computational steps is 
2N. The number of computational steps can be further reduced from “2N” to “N+5” by dividing the qubits along the array into two 
groups, and then performing MI on each group as shown in Figs. 11(a) and (b) when N is even and odd, respectively. Simulations 
were carried out in an 7-qubit system, which implemented a swap operation with an average fidelity of 99.8%. Note that using 
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conventional methods of successively swapping adjacent qubits a total of 3N computational steps are required if N is odd and N ≥ 3, 
and 3(N−1) steps are required when N is even and N ≥ 2. 

 
    

 
 FIG. 11.  (a) Circuit for swapping qubits Q1 and QN when N is even (b) Circuit for swapping qubits Q1 and QN when N is odd. Both circuits require a 
total of “N+5” computational steps. In either circuit, the first and last pair of MIs are applied in parallel. (c) Circuit for moving a block of M qubits in 
an N-qubit system. The total number of computational steps is “(N+1) + max{M+1, N−M+1}”. The order of the qubits changes QM+1, QM+2, …, QN, 
Q1, Q2,...., QM−2, QM. (d) Circuits for implementing a CNOT gate between remote qubits Q1 and QN. The qubits are divided into two groups, and MI 
is performed on each group in parallel, both before and after the CNOT gate operation 
 

Moving blocks of qubits in LNN arrays: Consider the circuit shown in Fig. 5. Suppose we want to move a block of qubits, Q1 
through QM, where M < N, such that the order of the qubits changes from Q1, Q2, …, QM, QM+1,….., QN−1, QN to QM+1, QM+2, …, QN, 
Q1, Q2,...., QM−2, QM. That is, the qubits are divided into two blocks on M and N−M qubits, and the block of M qubits simply hop over 
the N−M qubits. Fig. 11(c) shows a generalized circuit for achieving this operation using MI. From the figure, the total number of 
computational steps is “(N+1) + max{M+1, N−M+1}”. (Here, max{x, y} gives the maximum of two numbers x and y). Simulation 
results for a 7-qubit system confirmed the operation with an average fidelity was 99.76%. Note that if conventional swap gates 
between adjacent qubits had been used, 3(N−1) computational steps are required. 

Moving blocks of qubits will become important in two-dimensional (2D) and three-dimensional (3D) layouts of qubits, especially 
in designing quantum memory, where blocks/chains of data will need to be moved around to different locations. Consider Fig. 12(a), 
which shows a 2D layout of qubits, where qubits have been represented as circles and NN couplings between adjacent qubits have 
been represented by dashed lines. In this layout, we are assuming that individual couplings can be switched on/off, and a dashed line 
for the coupling between two qubits means that the coupling is off. A solid line for the coupling between two qubits means that the 
coupling is on. Suppose we want to move the block/chain of qubits WXYZ (black circles in Fig. 12(a)) to the position of the 
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block/chain of qubits PQRS (grey circles). For this, first the NN couplings along the chain of qubits WXYZABPQRS is switched on 
(Fig. 12(b)). Next, an MI is performed along the chain so that the order of the qubits now becomes SRQPBAZXYW (Fig. 12(c)). 
Next, the coupling between qubits A and Z is switched off, which divides the chain into two chains of six (SRQPBA) and four 
(ZXYW) qubits, respectively (Fig. 12(d)). Finally, an MI is performed on each of the two chains, after which qubits WXYZ move to 
the positions of qubits PQRS, respectively, as has been shown in Fig. 12(d). 

Quantum computing between remote qubits: Our MI technique can be used to implement controlled-unitary gate operations 
between remote qubits in NN architectures. Fig. 11 (d) shows a method for implementing a CNOT gate between qubits Q1 and QN 
with qubit Q1 as the control, and QN as the target. The circuit requires only “N+3” computational steps if N is even, and “N+4” steps if 
N is odd. (Using conventional methods of swapping adjacent qubits, “3N−8” steps are required if N is even (N ≥ 2), and “3N−5” steps 
are required if N is odd (N ≥ 5). In a quantum system, if the only method for bringing remote qubits together to perform a gate 
operation is by means of swap gates, our method will provide a significant improvement in lowering the computational overhead).  

It is important to point here that all the operations discussed in this Sections II through IV can be easily extended to 2D-NN (and 
possibly, 3D-NN) layouts. This is because an NN chain of qubits need not be restricted to an LNN array, but can follow a nearest-
neighbor 2D (or 3D) path similar to that shown in Fig. 12. Therefore, since all gate operations in Sections II through IV are designed 
for a chain of qubits with NN interactions, they can easily be extended to 2D and 3D layouts. Also, several unitary operations can be 
applied in parallel along the array by dividing the array into two/more NN chains, with no overlap in qubits between the chains. 

 
 

 
FIG. 12.  Moving a block of qubits in a 2D array. Here, qubits are represented as circles. Switchable NN couplings are represented as dashed lines, 
and are assumed to be off. Solid lines for the NN couplings indicate that the couplings are on. (a) Suppose we want to move the block/chain of qubits 
WXYZ (black circles) to the position of qubits PQRS (grey circles). (b) The NN couplings along the chain of qubits WXYZABPQRS is switched on. 
(c) An MI operation is performed along the chain so that the order of the qubits now becomes SRQPBAZXYW. (d) The coupling between qubits A 
and Z is switched off, which divides the chain into two chains of six (SRQPBA) and four (ZXYW) qubits, respectively. An MI operation is 
performed on each of the two chains, after which qubits WXYZ move to the positions of qubits PQRS, respectively.  
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V. EFFECTS OF UNWANTED COUPLINGS, PARAMETER MISMATCHES, AND FINITE RISE/FALL TIMES ON 
GATE OPERATIONS 

 
Presence of unwanted couplings: Throughout our discussion, we only assumed couplings between NN qubits. However, in some 

systems, unwanted couplings might be present that cannot be switched off. For instance, consider Fig. 13 which shows a linear array 
of three flux qubits [50], where each pair of adjacent qubits is coupled through a DC-SQUID which makes use of the long range 
coupling scheme presented in [52]. The couplings in this system are tunable, and can range between positive and negative values. The 
couplers are labeled X and Y. We will, hereafter, use the label “n” where n = X, Y. The phase difference across the ith junction in 
coupler n is represented by γn,i. The applied flux threading through coupler n, its bias current, and its circulating currents, are 
represented by Φn, In, and Jn, respectively. The critical current, Io, of the JJs in the coupling DC-SQUIDs are all assumed to be the 
same for simplicity. We are able to control the flux independently through each of the coupling DC SQUIDs and the flux qubits.  

The total Hamiltonian of the system is given as: 

( )
1,2,3

1
2 j j ij

j i j

Kε
= ≠

= Δ + −∑ ∑j j i jX Z Z ZH σ σ σ σ  (14) 

Here, εj is the bias energy acting on individual qubits, which depends on the flux threaded through the qubit, and can be independently 
controlled; Δj is the tunneling energy, which can be taken to be fixed during fabrication, even though methods for varying the 
tunneling have been experimentally demonstrated [48]; Kij is the coupling energy between qubits i and j and is given as [53]:  

, ,
, ,

n
ij ij i j n i k j i j

n X Y k X Y k

JK M I I M M I I
= =

∂= −
∂Φ∑ ∑  (15) 

Here, the first term constitutes the direct coupling between qubits, and the other terms constitute the indirect couplings through the 
DC-SQUIDs. Each of the two couplers can be controlled by either applying a bias current (In), and/or a bias flux (Φn). The bias current 
does not depend on the flux. By adjusting these two parameters the coupling between a pair of qubits can be enhanced or reduced, and 
can be varied between positive and negative values [52]. In our scheme, we can either set the couplings at the start of a computation 
and treat them as fixed parameters, or vary them during the course of a computation. To perform gate operations, the bias on 
individual qubits can be varied by controlling the flux threading through the qubit. 

Note that, in addition to direct coupling between NNs, Eq. (14) also shows an unwanted cross-coupling term, K13, due to a next-
to-nearest neighbor interaction between qubits 1 and 3. However, as shown in [52], the magnitude of this cross-coupling term is much 
lower than the direct NN couplings, K12 or K23. For instance, when K12 (or K23) was 1GHz, K13 was found to be around 47MHz or 
lower. Moreover, as shown in [52], the effect of the next-to-nearest-neighbor coupling can be overcome by choosing couplers with 
longer arm lengths, where arm length is roughly the distance two adjacent qubits coupled by a coupler. It was found that the longer the 
arm length of the coupler, lower was the cross-coupling, and for arm-lengths greater than 200μm, the unwanted cross-talk was found 
to be lower than 5MHz [52]. 

To study the effect of this unwanted coupling term on our MI operation, we ran simulations on a 3-qubit system with an 
additional coupling term between qubits 1 and 3, K13 (or ξ13), where we used two values for K13 (47 MHz and 5 MHz) [52]. Further, to 
match our parameter values with those in [52], we used the following values in our simulations: Δj = 1GHz, K12 = K23 = 866 MHz (or 
equivalently, ξ12 = ξ23 = 866 MHz), T = 1.25ns. These values were obtained by scaling up the values obtained in a weak coupling 
regime [42] by multiplying each parameter by a scaling factor of 40.  This is because in increasing Δj from 25MHz (value of tunneling 
solved for in section II and in [42]) to 1GHz we have increased it 40 times. Note that in scaling the time required for each gate 
operation (P gate and DCN gate), we used Eq. (9) with P = 1. (This is because in section II, for Δj = 25MHz we found T to be 10ns for 
P = 0 using Eq. (9). Since Eq. (9) is linear, if we increase Δj to 1GHz, T becomes 250ps, which is a very short pulse. We can use larger 
values of P to increase the value of T, however, simulations showed that the fidelity of either gate operation is decreased if longer 
duration pulses are used by increasing P). For the high value of the bias on control qubits, we used 10 GHz. It was found that higher 
the value of the bias, higher was the fidelity of either gate operation. From our simulations we see that when K13 = 47MHz, the 
average fidelities of the P gate and the DCN gate were found to be 99.47% and 98.18%, respectively. When K13 = 5MHz, the average 
fidelities of the P gate and the DCN gate were found to be 99.47% and 99.74%, respectively. (The average fidelities of the P and DCN 
gates with K13 = 0 were 99.47% and 99.73%, respectively). Note that the cross coupling term K13 affects only the evolution of qubits 1 
and 3 with respect to each other. When realizing the P gate, since high biases are applied on qubits 1 and 3 since they behave as 
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control qubits, the presence of K13 does not have any significant effect on the fidelity of the P gate.  However, during the DCN gate, 
the biases are on both qubits are lowered so that the effect of the cross coupling term can become significant if it is large enough, 
resulting in lowering of the gate fidelity. In addition to lowering the fidelity of the DCN gate, the presence of the cross-coupling term 
introduced unwanted relative phases in the overall MI operation. For instance, when K13 = 5MHz, relative phases of 20° and 35°, 
respectively, were picked up by the |010〉 (and |111〉), and |000〉 (and |101〉) states.  

Effect of rise/fall times: Typically, in an experimental system, pulses are non-ideal with finite rise and fall times. As a result, the 
switching process itself might give rise to non-ideal gate operations wherein the magnitudes of the probability amplitudes can change 
depending on the slope of the rise/fall lines. Also, if the initial state of the system is in a superposition of two/more computational 
basis states, random relative phases may occur in the final state as different phases may be picked up by the different basis states 
during rise and fall times. In [49], the authors’ proposed a NN architecture that uses special encoding between pairs of qubits that is 
immune to random relative phases due to rise/fall times. The change in probability amplitudes can be addressed by decreasing the 
pulse width of the gate operation (from its original value under an ideal pulse, and previously referred to as “T”) to an “adjusted” 
value that takes into account the slope of the rise/fall lines. This new value of the gate time can be found through simulations. For 
instance, in Fig. 2(b), we found that upon introducing rise and fall times of 1ns each, the overall fidelity of the swap gate reduced to 
96.4% (for ideal pulses, it was 99.97%). This is because the fidelity of the first and second gates drops to 98.93% and 99.25%, 
respectively. However, on adjusting the pulse widths of the C2(P) and pair of CNOT gates to 9.3ns and 9.8ns, respectively, the 
fidelities of these gates increased to 99.93% and 99.55%, respectively. As a result, the overall fidelity of the swap gate increased to 
98.97%.  

Likewise, for each of the four operations shown in Fig. 7, we can find ideal pulse widths for a given value of N depending on the 
slope of the rise/fall lines.  

  
Effect of parameter mismatches: Parameter mismatches can be due to fabrication defects, or when tuning a control parameter. 

Since for both the CNOT and C2(P) gates, the time step of the gate operation is proportional to the tunneling parameter (Eq. (9)), any 
mismatches in the tunneling parameter can be overcome by adjusting the pulse width of the bias pulse on the target qubit. Next, 
suppose the couplings between NN qubits in Fig. (5) are mismatched, and are not all equal to ξ. For instance, suppose the couplings 
between qubits Q1 and Q2 is ξ, and the couplings between qubits Q2 and Q3 is “ξ+δ”. In this system, the C2(P) gate between qubits Q1, 
Q2 and Q3, can be implemented with high fidelity by applying two consecutive bias pulses of magnitude “δ” and “−δ” on target qubit 
Q2. Each pulse is applied for duration T as given by Eq. (9). If, however, δ << Δ, we can implement the C2(P) gate as before by 
making the bias on qubit Q2 zero for time step, T. The gate operation thus implemented might not be perfect, and the magnitude of the 
error will depend on the ratio δ/Δ, where smaller the ratio, higher will be the fidelity of the gate operation.   

 
 

 

 
 
 
FIG. 13. Linear array of three flux qubits, where each pair of adjacent qubits is coupled through a DC-SQUID. Each flux qubit is represented by a 
square with three JJs (represented as smaller squares with diagonals in them). Larger squares surrounding the qubits and connected through double 
lines represent couplers between two adjacent qubits. The couplers are labeled X and Y, where coupler X is represented by a solid line, and coupler Y 
by a dashed line. The phase difference across the ith junction in coupler n (where n = X, Y) is represented by γn,i. The applied flux threading through 
coupler n, its bias current, and its circulating currents, are represented by Φn, In, and Jn, respectively. The critical current, Io, of the JJs in the coupling 
DC-SQUIDs are all assumed to be the same for simplicity. 
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VII. CONCLUSIONS 
 

An efficient scheme for quantum state transfer that uses a parity-based MI technique is presented here. The scheme can be 
implemented in Ising, σXσX and σYσY coupled systems, and we show how to analytically solve for system parameters to implement 
the operation in these systems. The key feature of our scheme is a three-qubit parity gate, which we design as a two-control, one-target 
qubit gate. Since the parity gate operation is implemented by only varying a single control parameter of the system Hamiltonian, the 
difficulty of implementing this gate is equivalent to that of a CNOT in a two-qubit system, and therefore, it can be considered as an 
elementary gate for practical implementations. By applying a sequence of N+1 parity-based controlled-unitary operations between NN 
qubits, where all qubits in an N-qubit chain function either as controls or targets, we reverse the order of all qubits along the array. 
Using our MI scheme, we also show how to implement a swap gate between two arbitrary remote qubits, move a block of qubits, and 
implement efficient computing between two remote qubits in nearest-neighbor layouts. 
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