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Based on recently introduced efficient quantum state tomography schemes, we propose a scal-
able method for the tomography of unitary processes and the reconstruction of one-dimensional
local Hamiltonians. As opposed to the exponential scaling with the number of subsystems of stan-
dard quantum process tomography, the method relies only on measurements of linearly many local
observables and either (a) the ability to prepare eigenstates of locally informationally complete op-
erators or (b) access to an ancilla of the same size as the to-be-characterized system and the ability
to prepare a maximally entangled state on the combined system. As such, the method requires
at most linearly many states to be prepared and linearly many observables to be measured. The
quality of the reconstruction can be quantified with the same experimental resources that are re-
quired to obtain the reconstruction in the first place. Our numerical simulations of several quantum
circuits and local Hamiltonians suggest a polynomial scaling of the total number of measurements
and post-processing resources.

I. INTRODUCTION

Quantum process tomography [1–6] is the standard
for the verification and characterization of quantum op-
erations on well-controlled quantum systems. Among
others, recent experimental demonstrations of quantum
simulators of multi-partite quantum systems [7, 8] have
demonstrated that, by now, the number of well control-
lable qubits is in a regime for which conventional tomog-
raphy techniques fail as the required experimental and
numerical post-processing resources scale exponentially
with the number of qubits. While there has been a con-
siderable effort to introduce scalable techniques that al-
low for an efficient reconstruction [9–17] and verification
[18–20] of quantum states, quantum process tomography
still leaves much to be desired.

The most straightforward approach to process tomog-
raphy is based on the idea of probing the quantum chan-
nel with an informationally complete set of states. Af-
ter sending each of these input states through the chan-
nel, the process underlying the dynamics is characterized
by performing full state tomography on all of the out-
put states. The so-obtained map fully characterizes the
channel [1–3]. This strategy is referred to as standard
quantum process tomography (SQPT) and works well as
long as the underlying system is of low dimension. Con-
sidering multi-partite quantum systems, however, reveals
the disadvantages of this technique: Not only the num-
ber of states to be sent through the channel and to be
indentified grows exponentially with the number of sub-
systems n, but also the number of parameters that need
to be determined for each of the output states. There
is, however, a strategy to overcome the exponential scal-
ing of the number of input and output states: Ancilla-
assisted process tomography (AAPT) [4–6, 21]. AAPT
requires an ancillary system of the same size n as the
system itself, the preparation of a maximally entangled
input state |Φ〉 ∝∑i |i〉|i〉 on the combined system, and
full tomography of the resulting state after application
of the channel, %̂E = (1 ⊗ E)(|Φ〉〈Φ|), see Fig. 1. This
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Figure 1. (Color online) Two equivalent ways to obtain the
necessary measurements for the scalable process tomography
scheme. Top row: System and ancilla are prepared in a max-
imally entangled state |Φ〉 ∝

⊗N
i=1[|0〉2i−1|0〉2i + |1〉2i−1|1〉2i]

(with pairwise entanglement indicated by vertical lines), the
channel E is applied on the system, and products of Pauli
observables are measured on all blocks of r consecutive sites
(exemplified for r = 3 and σ̂y2⊗σ̂x3⊗σ̂z4), which serves as input
to reconstruct the resulting state %̂E and thus the channel E .
Bottom row: Equivalently, these expectation values may be
obtained without the ancillary system. The initial states have
eigenstates of Pauli matrices (here, P̂↑x , P̂↓x , so those of σ̂x2 )
on those sites where a Pauli matrix would have been measured
on the ancilla. After application of the channel, the system
part of the ancilla+system measurement is carried out (here,
that of σ̂y1 ⊗ σ̂z2).

method is based on the correspondence between quan-
tum states and quantum processes known as the Choi-
Jamiołkowski Isomorphism [22, 23]. The incorporation
of an ancillary system considerably reduces the complex-
ity of the preparation stage (as opposed to exponentially
many input states in SQPT, only one state has to be pre-
pared and only one output state has to be characterized)
but comes at the cost of needing access to an indepen-
dent ancilla system of the same size as the system that
is to be analyzed. Still, for a complete characterization
of the output state %̂E , a number of measurements expo-
nentially large in n is required [24].
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In this work, we combine recent results from efficient
and scalable state tomography [9, 11] with the idea of
AAPT and discuss how to avoid the need for an an-
cilla system (see, e.g., [25, 26]) as summarized in Fig. 1.
This allows us to formulate a scalable process tomogra-
phy scheme where the number of input and output states,
together with the experimental measurement settings to
characterize the latter, grows only linearly with the num-
ber of qubits.

We restrict our attention to unitary processes and
demonstrate our scalable process tomography technique
with numerical simulations of quantum circuits and of
time evolution under local one-dimensional Hamiltoni-
ans. In Sec. III A, we consider a circuit which prepares
a Greenberg-Horne-Zeilinger (GHZ) state and the quan-
tum Fourier transform. Note that the GHZ circuit is a
limited-depth circuit (as defined below, cf. [27]), which
implies that it has an efficient matrix product opera-
tor (MPO) representation in the sense that the bond di-
mension scales at most polynomially with the number of
qubits. This is exactly the class of processes for which one
would expect methods based on Refs. [9, 11] to work. In
turn, the quantum Fourier transform is a circuit of poly-
nomial depth, but one that admits an approximate effi-
cient simulation with a classical computer [28]. For the
n = 32 qubits considered here, an MPO representation
that approximates the circuit exists and our reconstruc-
tion scheme works well.

In Sec. III B we simulate process tomography for time
evolutions of one-dimensional local Hamiltonians Ĥ and
show how to extract the Hamiltonians from the recon-
structed processes. The reconstruction of a Hamiltonian
on n qubits will require one process reconstruction at
time ∼ 1/‖Ĥ‖ ∼ 1/n (Sec. III B 1) or two process re-
constructions at times t1, t2 separated by no more than
∼ 1/‖Ĥ‖ (Sec. III B 2). In the latter case, the only re-
striction on t1 and t2 is that the process admits recon-
struction at those times. In both cases, the reconstruc-
tion of a Hamiltonian will require roughly ∼n2 measure-
ments of each of the ∼n observables.

The quality of the reconstructed processes may be
quantified using the same experimental resources that
are also required to obtain the reconstruction: For uni-
tary processes, %̂E is guaranteed to be pure such that
certifiability of the reconstruction of E is inherited by
the certifiablity of %̂E [9]; see Ref. [20] for an analogous
mixed-state certificate.

II. SCALABLE PROCESS TOMOGRAPHY

Let us first consider the AAPT scheme and restrict,
without loss of generality, to qubits. Further, we arrange
the ancilla+system as depicted in Fig. 1 with odd sites
representing the ancilla and even sites denoting the sys-
tem itself. In this enumeration, the maximally-entangled
input state |Φ〉 takes the form of a product of Bell states
|φ+〉1,2 ⊗ · · · |φ+〉2n−1,2n, |φ+〉 ∝ |00〉 + |11〉, and hence

only requires local two-qubit manipulations for its exper-
imental generation. The system (i.e., the even sites) is
sent through the channel and state tomography has to be
performed on the resulting state %̂E . Without any prior
knowledge about the underlying quantum channel, full
state tomography is inevitable and one seemingly faces
the notorious curse of dimensionality. A large class of
quantum states, however, may be reconstructed from a
number of measurements and with post-processing re-
sources that both scale only polynomially in n [9–11].

Post-processing with polynomial resources requires an
efficient representation of the state, which, in one dimen-
sion, is provided by matrix product state (MPS) or oper-
ator (MPO) representations [29–31], compare also tree
tensor networks [32] and the multiscale entanglement
renormalization ansatz [33]. There are many examples
of physical states that admit an efficient matrix prod-
uct representation, e.g. ground states of gapped local
Hamiltonians [34–36], thermal states of local Hamiltoni-
ans [36, 37] and entangled states like the GHZ state, the
W state and cluster states.

If the output state %̂E happens to be close to this class
of states with an efficient matrix product representation,
scalable reconstruction of the channel may be achieved.
The input to the scalable state tomography schemes [9–
11] are given by the measurement data of the following
observables (or, alternatively, any other local operator
basis)

P̂k;α1,...,αr
= 11,...,k⊗σ̂α1

k+1⊗· · ·⊗σ̂αr

k+r⊗1k+r+1,...,2n, (1)

for all αi ∈ {x, y, z}, k = 0, . . . , 2n− r, and a fixed r in-
dependent of the size of the system. Here, σ̂xi , σ̂

y
i , σ̂

z
i are

the Pauli matrices for qubit i. There are (2n−r+1)×3r

such operators, i.e., the number of observables that are
required for these reconstruction schemes scales linearly
in n. Note that the restriction to local information is not
mandatory, any output state that is uniquely character-
ized by a number of measurements that scales moderately
with n can be reconstructed by these techniques [11] and,
hence, belongs to the class of states for which our process
tomography procedure is applicable.

Interestingly, the necessary information may also be
obtained without the need of an ancilla (see, e.g., [25,
26]), yet then increasing the demand at the preparation
stage: By virtue of the identity

tr[(Â⊗ Ŝ)%̂E ] =
tr[E(Ât)Ŝ]

2n
, Ât =

∑

i,j

〈j|Â|i〉|i〉〈j|, (2)

which holds for any operator Ŝ (Â) acting on the system
(ancilla), and the fact that each P̂k;α1,...,αr

is of the form
P̂A ⊗ P̂S (A: ancilla, S: system), one may obtain the
necessary expectation values by preparing the eigenstates
of the Pauli matrices in P̂A on the system, sending them
through the channel and measuring P̂S on the resulting
state (see Fig. 1 and Appendix A for details) – a scheme
that requires no ancilla, the preparation of linearly many
states and the measurement of linearly many observables.
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While the preparation/measurement strategy we just
outlined may be favourable from an experimental per-
spective, we will present our scheme in the framework of
AAPT as certain intuitions are particularly transparent
in this setting. In the remainder of this section, we dis-
cuss how unitary operators and the Hamiltonians gov-
erning time evolution can be constructed from %̂E . In
principle, the scheme is applicable to non-unitary chan-
nels as well, as long as the corresponding state %̂E permits
reconstruction.

A. Reconstruction of Unitary Channels

We aim at reconstructing unitary channels, so chan-
nels of the form E(%̂) = Û %̂Û†. For those, it is guaran-
teed that the resulting state is pure, i.e., %̂E = |ψE〉〈ψE |.

The unitary may then be obtained from the identity
〈j|Û |i〉 = 2n/2〈i|〈j|ψE〉. The output of the state recon-
struction algorithms of Refs. [9, 11] provide us with a
pure estimate |ψrec

E 〉 of %̂E given in the form of a matrix
product state (MPS) [29, 30],

|ψrec
E 〉 =

∑

i1,...,i2n

A
(1)
i1
· · ·A(2n)

i2n
|i1, . . . , i2n〉, (3)

where A(k)
ik
∈ CDk−1×Dk with D0 = 1 = D2n and summa-

tion is over all ik = 1, 2; k = 1, . . . , 2n. The Dk are called
bond dimensions. Given this form, the matrix product
operator (MPO) representation of the estimate Ûrec to
Û , 〈j|Ûrec|i〉 = 2n/2〈i|〈j|ψrec

E 〉, may straightforwardly be
obtained by grouping the n pairs of ancilla and system
sites:

Ûrec = 2
n
2

∑

i1,...,i2n

[
A

(1)
i1
A

(2)
i2

]
· · ·
[
A

(2n−1)
i2n−1

A
(2n)
i2n

]
|i2〉〈i1| ⊗ · · · ⊗ |i2n〉〈i2n−1|. (4)

As the input state |Φ〉 can efficiently be represented as an
MPS (given the sites are labeled as depicted in Fig. 1),
the process Û having an efficient MPO representation
will imply that the exact state |ψE〉 has an efficient MPS
representation, and successful reconstruction may be pos-
sible. We now show that circuits with an at most loga-
rithmic depth have an efficient MPO representation. Our
condition is equivalent to the condition given in Ref. [27],
but we give a tighter bound on the bond dimension. Let
a circuit Û be composed of N two-qubit gates,

Û =

N∏

j=1

Ûj , Ûj acts on lj and rj > lj .

We define the depth of the circuit at the bipartition i|i+1
by

di = |{j : lj ≤ i and rj ≥ i+ 1}|

and denote the maximal depth by dmax = maxi di. This
definition is motivated by the fact that an MPO represen-
tation of Û with bond dimension at most 4dmax is easily
obtained from the MPO representations of the Ûj : The
Ûj have bond dimension Di ≤ 4 for lj ≤ i ≤ rj − 1
and Di = 1 everywhere else, and the bond dimen-
sion of the product Û is given, in the worst case, by
Di(Û) =

∏N
j=1Di(Ûj) [31]. If the depth dmax grows at

most logarithmically with n, we obtain an MPO repre-
sentation of the circuit that is efficient in the sense that
it has a number of parameters at most polynomial in n.

B. Hamiltonian Reconstruction

Assume that the quantum process is in fact the time
evolution under a local one-dimensional Hamiltonian,
i.e., Û = e−iĤt, with Ĥ =

∑
i ĥi, where ĥi only acts

on a fixed number of neighbouring sites (we will consider
nearest-neighbour Hamiltonians throughout) and where
‖ĥi‖ ≤ J for a constant J . With the tools to reconstruct
unitary processes at hand, it remains to address the ques-
tion of how to find a valid estimate of the Hamiltonian
Ĥ governing the time evolution. To obtain Ĥ from this
unitary, we will use the identity

x = sin(x)
arccos(cos(x))√

1− (cos(x))2
, x ∈ (−π, π), (5)

together with the power series

arccos(z)√
1− z2

=

∞∑

k=0

ck(z − 1)k, ck =
(−1)k

2k

k∏

j=1

j

j + 1
2

(6)

which converges for |z − 1| < 2 [38]. The basic idea is
that from Û = e−iĤt, we know that 2i sin(Ĥt) = Û†− Û ,
2 cos(Ĥt) = Û†+Û , and Eq. (5) holds up to times limited
by ‖Ĥt‖ < π. While this appears to limit the accessible
time interval for Hamiltonian reconstruction, Sec. III B 2
will explain how to extend this result to longer times.

For practical purposes, we only want to evaluate a fi-
nite number of terms of the series in Eq. (6) and enforce
hermiticity. To this end, we approximate

Ĥrect =
1

2
sin(Ĥrect)

N−1∑

k=0

ck(cos(Ĥrect)− 1)k + h.c. (7)
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for a given N and sin(Ĥrect) and cos(Ĥrect) as above.
This approach has two advantages over using a power
series expansion of the logarithm: It is valid for larger
values of ‖Ht‖ and the series converges much faster. Note
that even if the reconstruction of |ψE〉 is perfect, Ûrec may
differ from Û by a global phase φ, such that Û†receiφÛ = 1

and Eq. (5) imposes ‖Ht − φ1‖ < π. To remedy this
problem, we use Ûrec tr(Ûrec)

∗/| tr(Ûrec)| as our actual
estimate.

The initial state |Φ〉 is an MPS of low bond dimension
and, as under local Hamiltonians quantum correlations
build up in a light-cone-like picture, |ψE〉 will still have
a small bond dimension for small times [39, 40]. More
precisely, at a fixed time, there is an approximate MPO
representation of U with a bond dimension that grows at
most polynomially with the number of qubits [41]. In our
numerical simulations on n ≤ 32 qubits, we observe that
a MPS representation is feasible at times on the order of
1/J .

III. NUMERICAL SIMULATIONS

We carry out numerical simulations as follows: For sev-
eral exemplary channels E , we numerically obtain |ψE〉 as
detailed below and simulate measurements of the local
observables P̂k;α1,...,αr by drawing M times per observ-
able according to |ψE〉. In this way, we take statistical
errors into account, with statistical errors for measure-
ments without ancilla being very similar [42]. The re-
sulting empirical mean values (i.e., the simulated esti-
mates of the weights 〈Π̂s1,...,sr

k;α1,...,αr
〉%̂E of all eigenprojec-

tors Π̂s1,...,sr
k;α1,...,αr

, si = ±1, of P̂k;α1,...,αr
) are then used to

obtain a reconstruction |ψrec
E 〉 of |ψE〉. This is done by

exploiting the singular-value-thresholding-like algorithm
described in [9] to obtain an initial state for the scalable
maximum-likelihood algorithm of Ref. [11]. The result is
an MPS representation of |ψrec

E 〉 which can be converted
into an MPO representation of Ûrec as described above
in Eq. (4).

With the estimate |ψrec
E 〉 and thus the corresponding

operator Ûrec at hand, we then quantify the quality of
the reconstruction scheme by

F = F (Û , Ûrec) = |〈ψE |ψrec
E 〉|2, (8)

and note that this is in one-to-one correspondence to
other distance measures for unitary channels used in the
literature [43–46].

In the case of Hamiltonian reconstruction, we assess
our reconstructed estimates as follows: First, note that
two Hamiltonians Ĥ and Ĥ+λ1, λ ∈ R, are physically in-
distinguishable. Therefore, we measure relative distances
between Hamiltonians according to [47]

D(Ĥ, Ĥ ′) =
minλ∈R ‖Ĥ − Ĥ ′ − λ1‖

minλ∈R ‖Ĥ − λ1‖
, (9)

which is independent of energy offsets in both Ĥ ′ and
Ĥ. We choose the operator norm ‖ · ‖ motivated by its
property

|〈Â(t)〉%̂ − 〈Â′(t)〉%̂| ≤ 2|t|‖Ĥ − Ĥ ′‖‖Â‖,

where Â(t) and Â′(t) are the Heisenberg picture time evo-
lutions of Â according to Ĥ and Ĥ ′, respectively. In other
words, the operator norm distance defines a timescale on
which two Hamiltonians may be considered equivalent.

For all results below, we repeat the whole procedure
of sampling from the simulated state, reconstructing it,
and assessing the quality of the reconstruction several
times. All results shown are mean values of F (Û , Ûrec)

and D(Ĥ, Ĥrec) over a small number of runs, with devi-
ations that are, for the number of measurements per ob-
servable considered, smaller than the size of the markers.
Next, we present numerical results for the reconstruc-
tion of quantum circuits and Hamiltonians and study
the performance as a function of the number of qubits n,
the number M of measurements per observable, and the
block size r of the subsystems on which measurements
are performed. We simulate circuits and Hamiltonians
on up to 32 qubits. Hence, reconstructing the unitary
uses pure state reconstruction on up to 64 qubits.

A. Quantum Circuits

We demonstrate the feasibility of our scalable tomog-
raphy scheme by considering the ĜHZ circuit, which pre-
pares an n-qubit GHZ state from |0 . . . 0〉 and the quan-
tum Fourier transform [1],

ĜHZ = ĈNn−1,nĈNn−2,n−1 · · · ĈN1,2Ĥ1,

Q̂FT =

n∏

k=1

[(
n−k∏

j=1

ĈRk,k+j(π/2j)

)
Ĥk

]
,

(10)

where we use the convention
∏k
j=1 Ûi = Ûk · · · Û1 for

products of non-commuting operators. Here, Ĥk de-
notes the Hadamard gate acting on qubit k, and ĈNi,i+1

(ĈRi,j(φ)) denotes the two-qubit conditional-NOT (con-
ditional rotation) gate [1]. The ĜHZ circuit has depth
dmax = 1 and thus admits an exact efficient MPO rep-
resentation. The depth of the exact quantum Fourier
transform circuit is dmax = bn2

4 c and grows quadratically
with the number of qubits (see Appendix B). However,
one can obtain an approximation Q̂FTc of the quantum
Fourier transform by dropping all conditional rotations
with j > c from the definition in Eq. (10) [48]. This
approximation can be simulated classically with polyno-
mial resources [28]. Using numerical MPO compression
techniques [31], we obtain an approximate MPO repre-
sentation with bond dimension 16 and error bounded by
[2(1 −

√
F )]1/2 < 2 × 10−5 for the n ≤ 32 qubits we

consider.
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Figure 2. (Color online) Reconstruction of the quantum cir-
cuits in Eq. (10). Figures show the fidelity in Eq. (8) of the
exact unitary and its tomographic reconstruction as a func-
tion of the system size n for M =∞ (left) and as a function
of the number M of measurements per local observable for
different n (right). Reconstruction uses measurements on all
blocks of r consecutive qubits only. Lines are guides to the
eye. The numerical data suggest a linear scaling of (1−

√
F )1/2

with system size n and 1/
√
M .

The reconstruction results are summarized in Fig. 2.
The reconstruction of the ĜHZ performs very well. To
discuss the performance of the quantum Fourier trans-
form reconstruction, we note that the distance εc between
the exact quantum Fourier transform and its approxi-
mation Q̂FTc is upper bounded by εc ≤ nπ/2c (see [28]
and Appendix B). We reconstruct Q̂FT with high fidelity
F ≈ 0.99 from measurements on r = 5 consecutive qubits
on the combined system+ancilla (Fig. 1). Naively, one
would expect to be able to reconstruct Q̂FTc only for
c ≤ 2, because r = 5 corresponds to information about
three neighbouring system qubits only. However, the up-
per bound on the approximation error is trivial for c = 2
and 8 ≤ n ≤ 32, and numerical tests show that the ac-
tual approximation error εc is indeed several times larger
than the reconstruction error [2(1−

√
F )]1/2 we achieve.

This shows that there are non-local gates which can be
reconstructed without using the corresponding non-local
information.

B. Hamiltonian reconstruction

1. Short times

We simulate the time evolution Û of time-independent
local one-dimensional Hamiltonians Ĥ with well-
established numerical DMRG/MPO algorithms [49]. Af-
ter obtaining the estimate Ûrec of the time evolution, we
determine an estimate Ĥrec of the Hamiltonian that gov-
erns the time evolution by the series given in Eq. (7)
with N = 3. With this, and the assumption that

minλ∈R ‖Ĥ − λ1‖ = ‖Ĥ‖ [50], one has

D(Ĥ, Ĥrec) ≤ ‖Ĥ−Ĥrec‖
‖Ĥ‖ ≤ 1

140‖Ĥt‖6 +O(‖Ĥt‖8). (11)

Fig. 3 shows results for an isotropic Heisenberg Hamil-
tonian on n ≤ 32 qubits. We have also studied the
critical Ising model and a Hamiltonian with random
nearest-neighbour interaction, which show very similar
behaviour and the corresponding results may be found in
Appendix C. We use tn = 1/‖Ĥ‖ as a time unit and re-
call that the local terms of the Hamiltonian are bounded
by a constant, ‖ĥi‖ ≤ J . This gives us tn ≥ 1/nJ and
tn ∼ 1/n if we additionally assume that the local terms
all have similar norm.

The distance D(Ĥ, Ĥrec) between the reconstructed
and the exact Hamiltonian shown in Fig. 3 displays the
following features: First, the reconstruction is expected
to fail for ‖Ĥt‖ ≥ π (see Eq. (5)) and, indeed, D(Ĥ, Ĥrec)
is large in this area (indicated by the grey background).
Secondly, Eq. (11) suggests that close to ‖Ĥt‖ = π,
D(Ĥ, Ĥrec) should scale as ‖Ĥt‖6/140 = t6/(140t6n)
(thick grey line in Fig. 3). Thirdly, we observe that for
infinitely many measurements per observable, M = ∞,
and fixed t/tn = ‖Ĥ‖t ∼ nt, the distance D(Ĥ, Ĥrec) de-
creases with system size, a behaviour inherited from the
quality of the reconstruction |ψrec

E 〉 (see left of Fig. 3):
The fidelity F (Û , Ûrec) is limited by the amount of block
entanglement in |ψE〉. At a fixed time t, an area law
[36] holds for this entanglement such that it is bounded
even for arbitrarily large systems [39, 40]. For sufficiently
large systems, we hence expect F (Û , Ûrec) at fixed t to be
independent of the system size n. If we keep t/tn ∼ t · n
fixed, we therefore expect F to increase with n. Finally,
let us discuss the dependence of the distance between the
exact and the reconstructed Hamiltonian in Fig. 3 on the
number M of measurements per observable. First of all,
with a finite number of measurements no reconstruction
will be possible at small times, because the signal of the
Hamiltonian in Û ≈ 1 − iĤt will be smaller than the
noise. Further, the data suggests that, for times before
t/tn ≈ π,

D(Ĥ, Ĥrec) ∝
1

t/tn

n√
M
. (12)

This is the behaviour one would expect if one assumes
that the relative error D(Ĥ, Ĥrec) is proportional to the
ratio R/S of a noise amplitude R and the strength of the
signal S = ‖Ĥt‖ = t/tn, in which R = n/

√
M is moti-

vated by the fact that we have measured ∝ n observables,
each of which has been estimated to within a standard
deviation given, for sufficiently large M , by 1/

√
M .

The explanation of the scaling properties together with
the fact that all properties described are the same in
the other Hamiltonians investigated (see Appendix C)
suggest that that the scaling laws apply for many local
Hamiltonians on a linear chain, for a large range of sys-
tem sizes and any sufficiently large (as indicated by the
examples) number of measurements.
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Figure 3. (Color online) Left: Fidelity between exact state |ψE〉 and tomographic estimate |ψrec
E 〉 of a unitary time evolution

Û = e−iĤt, with Ĥ the isotropic Heisenberg Hamiltonian on n qubits. The tomographic estimate is based on complete
measurements on blocks of r = 3 consecutive qubits with M measurements per observable. Right: Inverse relative distance D
between Ĥ and Ĥrec reconstructed from |ψrec

E 〉. The unit of time is tn = 1/‖Ĥ‖ ∼ 1/n, i.e., inversely proportional to the
number of qubits, and the grey area indicates where reconstruction is expected to fail due to Eq. (5). The grey lines without
any markers show the expected behaviour for small times and times near π (see Eq. (11) and the main text). The data indicates
that for M <∞, M/n2 fixed and t/tn fixed and sufficiently small, D(Ĥ, Ĥrec) is largely independent of n. Lines are guides to
the eye.

To summarize, measuring at larger times gives a larger
signal and a smaller error, but we are limited by the con-
dition t/tn < π imposed by Eq. (5). Solving Eq. (12)
for the number of measurements per observable, we ob-
tain M ∝ n2(t/tn)2/D2: A constant relative error D at
a fixed t/tn < π requires M ∝ n2 measurements per
observable, resulting in a total number of measurements
proportional to n3 .

2. Long times

In its present formulation, the reconstruction scheme
is limited to t/tn < π, a restriction that may be overcome
by measuring at two different times t, t′: The times up
to which the fidelity F (Û , Ûrec) is sufficiently high is only
limited by r – increasing r will increase the time up to
which full information about Û may be obtained by mea-
suring on r consecutive qubits. In fact, as can be seen
on the left of Fig. 3, for n = 32 and the relatively small
r = 3, the fidelity F (Û , Ûrec) is still quite high at t/tn = π

while the reconstruction of Ĥ fails for these times. Mea-
suring at t, t′ and obtaining Û = e−iĤt, Û ′ = e−iĤt

′
by

reconstruction, we are only limited by |t′− t| < πtn when
reconstructing Ĥ from Û†Û ′ = eiĤ(t−t′). Fig. 4 shows re-
sults of this reconstruction scheme with t/tn = 3.51 and
t′ > t.

Reconstructing the Hamiltonian from Û(t′−t) = Û†Û ′,
the time difference t′ − t clearly assumes the role of the
time t when reconstructing the Hamiltonian from Û at
time t alone. Therefore, all scaling properties carry over

as long as Ûrec and Û ′rec can be obtained with sufficiently
high fidelity. We simulated measurements on blocks of
r = 5 consecutive sites to satisfy this requirement.

For exact measurements, M = ∞, the relative error
D(Ĥ, Ĥrec) does not approach zero for t′ − t → 0. The
reason is that the error in Ûrec(t

′ − t) remains non-zero
as t′− t→ 0 because Ûrec(t) has a fixed non-zero error at
fixed t. This non-zero error may also become larger than
the signal amplitude ‖Ĥt‖, explaining the increasing er-
ror as t′ − t→ 0 for some of the Hamiltonians.

Note that, from Û(t′ − t), we can also reconstruct
Hamiltonians that are time-dependent for times before t
and nearly constant between t and t′. In this way, strobo-
scopic reconstructions of a time-dependent Hamiltonian
may be obtained after large propagation times. Further-
more, t/tn < π becomes more restrictive as n increases,
thus the usefulness of taking measurements at two times
increases for larger systems.

3. Enforcing a local reconstruction

Of course, making use of additional information can
only improve the scheme. As an example, suppose that
we know that the Hamiltonian is nearest-neighbour only.
One may then project the reconstructed Ĥrec onto a
nearest-neighbour Hamiltonian. As can be seen in Fig. 4,
this reduces the error dramatically.
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Figure 4. (Color online) Quality of the reconstruction Ĥrec for Ĥ the critical Ising (left), isotropic Heisenberg (middle) and a
random nearest-neighbour Hamiltonian (right). Ĥrec was obtained from U(t′ − t) with t/tn = 3.51 fixed and U(t′ − t) = U†U ′

was obtained from tomographic estimates of U = e−iĤt and U ′ = e−iĤt′ . The inverse relative error 1/D(Ĥ, Ĥrec) is shown for
Hrec (diamonds) and for the projection of Hrec onto a nearest-neighbour Hamiltonian (circles). Ĥ acts on n = 32 qubits and
tomographic estimates are based on complete measurements on blocks of r = 5 consecutive qubits with M measurements per
observable. The unit of time is tn = 1/‖Ĥ‖ ∼ 1/n. Most properties are similar to Fig. 3 right where Ĥrec was reconstructed
from an estimate of U(t), with the time difference t′ − t taking the role of the time t. Lines are guides to the eye.

IV. CONCLUSION AND OUTLOOK

We studied in detail the application of recent scalable
state tomography models to quantum process tomogra-
phy. At the hand of unitary channels—quantum circuits
such as logarithmic-depth circuits, the quantum Fourier
transform and unitary time-evolution governed by one-
dimensional local Hamiltonians—favourable scaling with
the number of qubits was numerically demonstrated. The
scheme, as presented, relies on an ancilla system, the
preparation of a maximally entangled state on the com-
bined system, and local measurements after application
of the channel. We also discussed an alternative scal-
able scheme without the need for an ancilla, which dis-
plays the same scaling properties as the ancilla-assisted
scheme. The quality of the reconstructed unitary chan-
nel may be quantified using the certificate introduced in
Ref. [9].

We have also shown how one-dimensional local Hamil-
tonians may be reconstructed from their corresponding
unitary after an evolution time inversely proportional in
the size n of the system and requiring∝ n2 measurements
of each of ∝ n observables. We have discussed and nu-
merically demonstrated how the restriction of these small
evolution times may be relaxed by taking measurements
at two different times. This enables the reconstruction

and verification of a quantum device at arbitrarily large
times for as long as the conditions for efficient state to-
mography are met, even if, intermittently, the device has
passed through highly entangled states. Furthermore,
the knowledge of the Hamiltonian being local may be in-
corporated and has, for the Hamiltonians that we stud-
ied, improved fidelities considerably.

Using the mixed-state tomography methods intro-
duced in Refs. [10, 11], we expect non-unitary channels
to be similarly amenable to the scheme studied here. As-
sessing the quality of such a reconstruction, however, will
rely on the ability to quantify the quality of mixed-state
reconstructions – a goal that is, in particular for many
qubits and sufficient generality, still to be met.
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Appendix A: Technical Details on Ancilla-Assisted Tomography and the Reduction of Experimental Effort

Let

|Φ〉 =
1

2n/2

2n∑

i=1

|i〉|i〉 (A1)

be the maximally entangled state on the combined system. Then

%̂E = (1A ⊗ E)(|Φ〉〈Φ|) =
1

2n

∑

i,j

|i〉〈j| ⊗ E(|i〉〈j|), (A2)

i.e., 〈i|〈j|%̂E |i′〉|j′〉 = 〈j|E(|i〉〈i′|)|j′〉/2n and %̂E thus completely characterizes the channel E . We now review a known
scheme (see, e.g., [25, 26]) for obtaining measurement data on %̂E from measurements that use preperation and
measurement on the system without the ancilla. In addition, we show that the linearly many product observables
required for scalable state tomography schemes [9–11] may be obtained from linearly many simple product preperations
and product measurements. In the simplest case, the schemes require the observables

P̂k;α1,...,αr
= 11,...,k ⊗ σ̂α1

k+1 ⊗ · · · ⊗ σ̂αr

k+r ⊗ 1k+r+1,...,2n with αi ∈ {x, y, z} and k = 0, . . . , 2n− r, (A3)

where σ̂xi , σ̂
y
i , σ̂

z
i are the Pauli matrices on site i. Measuring these observables, we obtain the expectation values of

the eigenprojectors

Π̂s1,...,sr
k;α1,...,αr

= 11,...,k ⊗ Π̂s1
k+1;α1

⊗ . . .⊗ Π̂sr
k+r;αr

⊗ 1k+r+1,...,2n, where Π̂si
k+i;αi

= |αi, si〉〈αi, si|, si ∈ {−1, 1}, (A4)

with Pauli matrix eigenstates defined by σ̂αi |αi, si〉 = si|αi, si〉.
For given Π̂s1,...,sr

k;α1,...,αr
, write Π̂s1,...,sr

k;α1,...,αr
= P̂A ⊗ P̂S with the direct product referring to ancilla (A) vs. system (S).

One finds

〈P̂A ⊗ P̂S〉%̂E = tr[%̂E(P̂A ⊗ P̂S)] =
1

2n

∑

i,j,k,l

〈i|〈j|
[(
|k〉〈l|P̂A

)
⊗
(
E(|k〉〈l|)P̂S

)]
|i〉|j〉

=
1

2n

∑

i,j,k,l

〈i|
(
|k〉〈l|P̂A

)
|i〉〈j|

(
E(|k〉〈l|)P̂S

)
|j〉 =

1

2n

∑

i,j,l

〈l|P̂A|i〉〈j|E(|i〉〈l|)P̂S |j〉

=
1

2n

∑

i,l

〈l|P̂A|i〉tr[E(|i〉〈l|)P̂S ] =
1

2n
tr[E(P̂ tA)P̂S ],

(A5)

http://dx.doi.org/ 10.1016/s0375-9601(01)00640-5
http://arxiv.org/abs/quant-ph/0107108
http://arxiv.org/abs/quant-ph/0107108
http://dx.doi.org/ 10.1103/physreva.71.062310
http://arxiv.org/abs/quant-ph/0408063
http://arxiv.org/abs/quant-ph/0408063
http://dx.doi.org/10.1016/j.physleta.2007.02.069
http://arxiv.org/abs/quant-ph/0701138
http://arxiv.org/abs/quant-ph/0201067
http://dx.doi.org/ 10.1103/physreva.90.012110
http://arxiv.org/abs/1404.2877
http://dx.doi.org/ 10.1103/physrevlett.75.3537
http://dx.doi.org/ 10.1103/physrevlett.75.3537
http://arxiv.org/abs/cond-mat/9503107
http://dx.doi.org/ 10.1103/physrevlett.93.040502
http://dx.doi.org/ 10.1103/physrevlett.93.040502
http://arxiv.org/abs/quant-ph/0310089
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where P̂ tA =
∑
i,l〈l|P̂A|i〉|i〉〈l| is the transpose of P̂A in the basis in which |Φ〉 is entangled. Note that P̂A is, up to a

prefactor, a mixed product state. The expectation value 〈P̂A ⊗ P̂S〉%̂E may thus be obtained by preparing the state
P̂A, sending it through the channel and measuring an appropriate product of Pauli matrices on the output state.

Appendix B: Quantum Fourier Transform Gate Properties

The quantum Fourier transform circuit is given by (cf. Eq. (10) in the main text)

Q̂FT =

n∏

k=1

[(
n−k∏

j=1

ĈRk,k+j(π/2j)

)
Ĥk

]

As one two-qubit gate acts on every pair of qubits, the depth (defined in Sec. II A of the main text) at the split i|i+ 1

is given by di = i(n− i), the maximal depth is dmax = maxi di = bn2

2 c and there is a MPO representation with bond
dimension D ≤ 4dmax = 4bn

2/2c, which is not efficient. However, we can obtain a smaller bond dimension as follows:
The conditional rotation gates are given by ĈRk,k+j(φ) = |0〉k〈0|⊗1k+j+|1〉k〈1|⊗Rk+j(φ) withR(φ) = |0〉〈0|+eiφ|1〉〈1|.
Observe that

n−k∏

j=1

ĈRk,k+j(π/2j) = |0〉k〈0| ⊗ 1k+1,...,n + |1〉k〈1| ⊗Rk+1(π/2)⊗ . . .⊗Rn(π/2n−k).

The two summands on the right-hand side are tensor products and thus have an MPO representation with bond
dimension 1. Therefore, the left-hand side has a MPO representation with bond dimension 2 [31]. Concatenating the
n terms of this form, we obtain an MPO representation of Q̂FT with bond dimension 2n, which still is not efficient.

As mentioned in the main text, an approximation of the quantum Fourier transform can be simulated classically
with polynomial resources [28]. Using numerical MPO compression techniques [31], we obtain a feasible approximate
MPO representation of the quantum Fourier transform circuit on n ≤ 32 qubits: At bond dimension 16, the error is
bounded by [2(1−

√
F )]1/2 < 2× 10−5.

Because the quantum Fourier transform circuit contains many small conditional rotations, one can try to approxi-
mate the circuit by a circuit Q̂FTc obtained by dropping all conditional rotations from Eq. (10) in the main text with
j > c [48]. The operator norm error satisfies (see also [28])

‖Q̂FT− Q̂FTc‖ ≤
n∑

k=1

n−k∑

j=c+1

‖1− ĈR(π/2j)‖ ≤ π
n∑

k=1

n−k∑

j=c+1

1

2j
≤ nπ

∞∑

j=c+1

1

2j
=
nπ

2c

The operator norm error in turn upper bounds our error measure [2(1−
√
F )]1/2: For two unitaries U , U ′ and with

the Frobenius norm ‖M‖F = tr(M†M),

2(1−
√
F ) = min

α∈R
‖|ψU 〉 − eiα|ψU ′〉‖22 ≤ ‖|ψU 〉 − |ψU ′〉‖22 =

‖U − U ′‖2F
2n

≤ ‖U − U ′‖2.

Appendix C: Hamiltonian Reconstruction for Ising and Random Hamiltonians

Fig. 3 in the main text shows the performance of our reconstruction scheme for local Hamiltonians using the example
of the isotropic Heisenberg Hamiltonian. Fig. 5 shows data for the critical Ising model and for a Hamiltonian with
random nearest-neighbour interaction, with matrix elements chosen uniformly from [−1, 1]. Reconstruction works
equally well for the critical Ising model and the randomly chosen nearest-neighbour interaction.
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Figure 5. (Color online) Left: Fidelity between exact state |ψE〉 and tomographic estimate |ψrec
E 〉 for a unitary time evolution

Û = e−iĤt with Ĥ the Hamiltonian of the critical Ising model (top row) and a Hamiltonian with random nearest-neighbour
interaction (bottom row). The Hamiltonians act on n qubits and the tomographic estimate is based on complete measurements
on blocks of r = 3 consecutive qubits with M measurements per observable. Right: Inverse relative distance between Ĥ and
Ĥrec reconstructed from |ψrec

E 〉. The unit of time is tn = 1/‖Ĥ‖ ∼ 1/n. Results are very similar to the isotropic Heisenberg
data shown in Fig. 3 in the main text.
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