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I. INTRODUCTION

Quantum Electrodynamics (QED) is an extremely successful theory and its predictions

have been confirmed experimentally with outstanding precision. This success has corrobo-

rated the general approach originally developed by Feynman, Schwinger, and Tomonaga, and

based on the renormalization theory (see, e.g., the monographs [1–4]). Feynman, Schwinger,

and Tomonaga’s approach was extended by Furry [5] to the description of processes occur-

ring in the presence of some classes of classical, background electromagnetic fields (these

classes exclude, for example, those electromagnetic fields, which render the QED vacuum

unstable under electron-positron pair production, see [6]). The application of the so-called

Furry picture is required when the interaction of electrons (and positrons) with the external

field has to be taken into account exactly. The corresponding mathematical and physical

conditions depend on the structure of the background field. Here, we are interested in pro-

cesses occurring in the presence of a strong laser beam and the controlling parameter is

the so-called classical nonlinearity parameter ξ = |e|F0/mω0, where F0 is the amplitude of

the laser wave and ω0 is its central angular frequency (m and e < 0 are the electron mass

and charge, respectively, and units with c = 1 are employed throughout) [7–10]. If ξ & 1,

it is necessary to include the effects of the laser field exactly in the calculations from the

beginning. Since a realistic laser field has a complex space-time structure, this is in gen-

eral an impossible task as it requires the exact analytical solution of the Dirac equation in

the presence of the background laser field. However, the task has been accomplished by

Volkov in the ideal case of a laser field approximated by a plane wave [11] (see also [2]).

Starting from the seminal paper [12], the corresponding electron wave functions (Volkov

states) have been extensively employed to investigate various strong-field QED processes in

a plane-wave field from the first-order ones as nonlinear Compton scattering [13–27], nonlin-

ear Breit-Wheeler pair production [13, 15, 28–35], nonlinear Bethe-Heitler pair production

[36–42], and electron-positron annihilation [43], to higher-order processes like nonlinear Dou-

ble Compton scattering [44–46] and trident pair production [47, 48]. In order to calculate a

second-order process like nonlinear double Compton scattering, the Green’s function of the

Dirac equation in the presence of a plane wave (Volkov propagator) has to be used [7, 8, 49–

51]. The Volkov propagator is also a useful tool to investigate radiative corrections in the

presence of a laser field like the polarization operator [52] (see also [53]). It is remarkable,
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however, that originally the polarization operator has been determined independently in [54]

by employing the operator technique, which avoids the direct use of the Volkov propagator.

The same operator technique has been employed in [55] to calculate the mass operator in a

plane wave and in [56] to investigate the process of photon splitting in a plane wave. The

representation of the mass operator and of the polarization operator found in [55] and in

[54] via the operator technique has been later widely exploited to study radiative corrections

and vacuum-polarization effects in plane-wave fields [57–62] and the total rate of nonlinear

Breit-Wheeler pair production via the optical theorem [63] (see also [64]).

We emphasize that nowadays the parameter region ξ & 1, where the laser field has to be

taken into account exactly in determining the electron dynamics, can be routinely entered

experimentally by means of optical laser beams. In fact, the threshold ξ = 1 at an optical

laser photon energy of 1 eV requires a laser intensity of the order of 1018 W/cm2 and the

present record intensity achieved in the laboratory exceeds this value by about four orders

of magnitude [65]. On the other hand, we point out that the condition ξ & 1 is not related

to the importance of pure quantum effects like the photon recoil in the emission of radiation

or the creation of an electron-positron pair in laser-photon collision. The importance of

such effects is determined by the ratio of the laser field amplitude F0 and the the so-called

critical field of QED: Fcr = m2/~|e| = 1.3× 1016 V/cm = 4.4× 1013 G [2, 6, 66]. The ratio

F0/Fcr in the laboratory frame is not a Lorentz invariant quantity and therefore it cannot

represent by itself the physical parameter controlling the importance of quantum effects. In

the case of processes primed by an electron with initial four-momentum pµ and colliding

with a plane-wave field, it turns out that the important parameter is the so-called quantum

nonlinearity parameter χ = ((kp)/m2)(F0/Fcr) [7–10], where kµ is the laser photons four-

momentum. The parameter χ represents the amplitude of the laser field in units of the

critical field of QED in the initial rest-frame of the electron. Analogously, in the case of

nonlinear Breit-Wheeler pair production by a photon with four-momentum qµ, the quantum

nonlinearity parameter is κ = ((kq)/m2)(F0/Fcr) [7–10], which corresponds to the amplitude

of the plane-wave field in units of Fcr in the final center-of-momentum frame of the created

electron and positron. Entering the strong-field QED regime where not only ξ & 1 but also

χ & 1 (here, we limit to processes primed by an electron), is a challenging task nowadays

as the amplitude of the critical field of QED largely exceeds available field strengths (the

critical field amplitude corresponds to a laser intensity of the order of 1029 W/cm2). Thus,
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even considering upcoming 10-PW facilities as APOLLON-10P [67] (expected intensities of

the order of 1023 W/cm2) or future lasers like the Extreme Light Infrastructure (ELI) [68]

and the Exawatt Center for Extreme Light Studies (XCELS) [69] (expected intensities of the

order of 1024-1026 W/cm2), this regime can be entered only by employing ultra-relativistic

electrons. In this respect, it is also worth pointing out that the expected intensities are

assumed to be achieved by spatially focusing the laser energy almost down to the diffraction

limit. Unavoidably, also temporal compression of the laser energy into few-cycle pulses is

required but Volkov states and propagators can still be applied for temporally compressed

plane waves. On the contrary, they cannot be employed if the background field is a spatially

focused laser beam. We mention here that the so-far unique experimental campaign on

strong-laser field QED [70, 71] has been carried out with a laser of wavelength of the order

of 1 µm and a relatively large pulse spot area (∼ 60 µm2), such that the experimental results

were well reproduced theoretically within the plane-wave field approximation.

The requirement of tightly focusing the laser energy also in space in order to reach exper-

imentally ultra-high intensities has motivated us to investigate the possibility of determining

analytically the electron wave functions for tightly focused laser fields under certain realistic

approximations (as we have mentioned, the problem in general does not admit an exact ana-

lytical solution) [72]. In [72], we have assumed that the electron is ultra-relativistic and that

its initial energy ε is the largest dynamical energy in the problem [73]. We emphasize that

the formalism employed in [72] and here below does not apply only to the electron but rather

to any charged particle, provided that the dynamical conditions of validity of the approach

are fulfilled (implicitly one also requires, of course, that the particle can be assumed to be

stable for the whole duration of the interaction). In this respect, although below we will

refer for definiteness to the electron and the wave functions will contain the electron charge

and mass, it should be borne in mind that the results can also be employed in principle for

other charged particles. Now, the meaning of the assumption on the initial energy of the

electron being the largest dynamical energy in the problem was to ensure that the electron

is barely deviated from its initial direction, which was chosen as the reference direction

for introducing light-cone coordinates. In the experimentally relevant case of an electron

initially counterpropagating with respect to a tightly focused laser beam, the assumption

implied in particular that although the laser amplitude is such that ξ ≫ 1, as it is envisaged

in planned experiment on strong-field QED, the transverse momentum of the electron in
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the laser field (of the order of mξ) still remains much smaller than ε. Under this approx-

imation, we constructed the electron wave functions within the Wentzel-Kramers-Brillouin

(WKB) approximation, by including terms scaling as 1/ε [74, 75]. We notice that the above

assumption ε ≫ mξ well fits present and near-future experimental conditions envisaged to

test strong-field QED with intense lasers. For example, even at the next-generation facility

APOLLON-10P the quantity mξ will be of the order of 80 MeV [67] and, in order to reach

the threshold χ = 1 where nonlinear QED effects become essential, electron energies of

about 500 MeV are required. Moreover, electron beams with energies of about 4 GeV have

been recently demonstrated experimentally with laser-plasma accelerators [76] (conventional

accelerators provide electron beams with energies even exceeding 200 GeV, see, e.g., [77]). It

is worth pointing out that the results in [72] and those presented here are also valid if ξ ∼ 1.

Now, at ξ ∼ 1 the formation region of strong-field QED processes as nonlinear Compton

scattering and nonlinear Breit-Wheeler pair production in a plane-wave field is of the order

of the laser wavelength [8] and the tight focusing of the laser field is expected to essentially

alter the probabilities with respect to the plane-wave results. On the contrary, in the regime

ξ ≫ 1 the formation region of the mentioned strong-field QED processes in a plane wave has

been found to be ξ times smaller than the laser wavelength [8]. In this regime, one would

expect, for example, that the total probability of the mentioned strong-field QED processes

in a tightly focused laser pulse can be obtained by averaging the probability calculated in

the presence of a constant crossed field, after replacing the latter with the local value of

the tightly focused laser field (local constant-crossed field approximation) [8]. However, it

has been found recently that the local constant-crossed field approximation in some circum-

stances does not reproduce accurately the harmonic structures of radiation emission spectra

in nonlinear Compton scattering [78]. Although the differences might be explained as a

consequence of interference effects among different emission points [8, 79], such interference

effects are non-local and this also calls for a thorough analytical investigation of strong-field

QED processes in the presence of a tightly focused laser beam. Moreover, such an anal-

ysis can also shed light on the accuracy of the local constant-crossed field approximation

at intermediate values of the parameter ξ and for those fields where the local value of the

parameter ξ varies from large values to values of the order of or less than unity.

In the present paper, we continue and extend the investigation started in [72] in the fol-

lowing directions. First, in Section II we present a simpler expression of the wave functions
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found in [72], which is equivalent under the approximations employed. Moreover, we gener-

alize the previous results allowing for a longitudinal direction of light-cone coordinates non

necessarily coinciding with the initial momentum of the electron. Second, in Section III, we

construct the corresponding scalar and spinor propagator under the same approximations.

We note that a general expression of the WKB propagator for a scalar particle has been

obtained in [80], by applying the so-called path-dependent formulation of a gauge theory

based on the path-integral representation of the propagator. Here, we employ the operator

technique, which we have already applied, e.g., in [81, 82] to calculate the electron quasiclas-

sical wave functions and propagator in the presence of a combined atomic and plane-wave

field. After determining the propagator, we show that the found wave functions can be

obtained by applying a limiting procedure to the propagator itself. Finally, in Section IV,

the main conclusions of the paper and possible future investigations are presented.

II. ULTRA-RELATIVISTIC WKB ELECTRON WAVE FUNCTIONS IN A

FOCUSED LASER FIELD

We consider an ultrarelativistic electron moving in a background electromagnetic field,

described by the four-vector potential Aµ(x) in the Lorentz gauge ∂µA
µ = 0. The four-vector

pµ = (ε,p), with ε =
√

m2 + p2, indicates the asymptotic four-momentum of the electron,

i.e., either in the remote past or in the remote future. Even though the considerations

below apply to electromagnetic fields of rather general space-time structure, we have in

mind the case where the background electromagnetic field represents an intense, few-cycle,

and tightly focused laser beam. Thus, we also assume that the field tensor F µν(x) =

∂µAν(x) − ∂νAµ(x) = (E(x),B(x)) is localized on a space and a time region of a few

cubic typical laser wavelengths and a few typical laser periods, respectively, and that it

has a maximum amplitude F0. The typical laser wavelength and period correspond to a

typical laser angular frequency, which is indicated as ω0 and which is such that the classical

nonlinearity parameter ξ satisfies the strong inequalities: m ≪ mξ ≪ ε (see [72]). As we

have already hinted in the Introduction, under the above assumptions the electron is only

slightly deflected from its asymptotic direction by the background field in the physically

relevant situation where it is initially counterpropagating with respect to the laser field and,

from this point of view, the regime ξ ∼ 1 can also be investigated with the present method.
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Thus, it is convenient to introduce the light-cone coordinates

T =
t+ n · x

2
, x⊥ = x− (n · x)n, φ = t− n · x (1)

for a space-time point x with space-time coordinates xµ = (t,x) and to indicate the four

light-cone coordinates via the corresponding capital letter X : Xµ = (T,x⊥, φ). In [72], for

the sake of simplicity, we have chosen n to coincide with p/|p| as this essentially simplifies

the solution of the classical equations of motion. However, as it will be clear below, this

assumption is not strictly necessary and more general expressions of the electron wave func-

tions can be obtained by assuming that the direction n is such that |p⊥| . mξ ≪ p+, where

p⊥ = p − (n · p)n and p+ = (ε + n · p)/2 are three of the four light-cone coordinates of

the asymptotic four-momentum. The on-shell condition p2 = m2 implies that the remain-

ing light-cone coordinate p− = ε − n · p can be expressed in terms of the other three as

p− = (m2+p2
⊥)/2p+. The light-cone coordinates of an arbitrary four-vector vµ = (v0, v) are

defined in the same way as for the four-momentum: v+ = (v0+n·v)/2, v⊥ = v−(n·v)n, and
v− = v0−n ·v. The same definition is extended to the Dirac gamma matrices γµ = (γ0,γ),

which are intended in the Dirac representation: γ+ = (γ0+n ·γ)/2, γ⊥ = γ− (n ·γ)n, and
γ− = γ0 − n · γ. Moreover, the derivatives

∂

∂T
=

∂

∂t
+

∂

∂(n · x) ,
∂

∂φ
=

1

2

(

∂

∂t
− ∂

∂(n · x)

)

(2)

with respect to the light-cone coordinates T and φ can be derived from the relations

∂

∂t
=

1

2

∂

∂T
+

∂

∂φ
,

∂

∂(n · x) =
1

2

∂

∂T
− ∂

∂φ
, (3)

whereas the derivatives with respect to the transverse coordinates form the two-dimensional

vector ∇⊥ = ∂/∂x⊥. Also, the scalar product between two four-vectors uµ and vµ can be

written as

(uv) = u+v− + u−v+ − u⊥ · v⊥ (4)

and the four-divergence of a vector field V µ(x) as

∂µV
µ =

∂V+
∂T

+
∂V−
∂φ

+∇⊥ · V⊥. (5)

Below, for the sake of completeness, we summarize the important steps we followed in

[72] in order to solve the Dirac equation

[γµ(i~∂µ − eAµ)−m]ψ = 0, (6)
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for specific asymptotic conditions on the electron wave function ψ(x|A) and within the

parameter regime specified above. Recall that in terms of the light-cone coordinates the

largest dynamical energy scale of the problem is p+, which is approximately equal to ε in the

ultra-relativistic regime. Now, based on the general argument that the de Broglie wavelength

of an ultra-relativistic particle is very small, we applied the WKB method [75] and we looked

for a solution of the Dirac equation of the form ψ(x|A) = exp[iS(x|A)/~]ϕ(x|A) [83–85].

In [72], we have observed that, under the assumption that mξ ≪ ε, the WKB method can

be applied if the condition ~/w0ε ≪ 1 is fulfilled, with w0 being the laser waist size. This

condition is safely satisfied in the case of a tightly focused, optical (w0 ∼ 1 µm) laser field, as

~/ε ∼ mλC/ε≪ λC , with λC = ~/m = 3.9× 10−11 cm being the Compton wavelength. By

writing the electron wave function as ψ(x|A) = exp[iS(x|A)/~]ϕ(x|A), the Dirac equation

becomes

[γµ(∂µS + eAµ) +m]ϕ = i~γµ∂µϕ. (7)

By first neglecting the term proportional to ~, one obtains

[γµ(∂µS + eAµ) +m]ϕ = 0 (8)

for the bispinor ϕ(x|A) at zero-order in ~. This equation admits a non-vanishing solution

only if det[γµ(∂µS + eAµ) +m] = 0, which implies that the quantity S(x|A) has to satisfy

the Hamilton-Jacobi equation

(∂µS + eAµ)(∂
µS + eAµ)−m2 = 0 (9)

and that it can be identified with the classical action [74]. In [72], starting from the solution

of the classical equations of motion, we employed the method of characteristics in order to

construct the action S(x|A). Here, we follow a different procedure, which allows us to easily

obtain a more general expression of the action, including the possibility that p⊥ does not

vanish as it was in [72]. First, we pass to light-cone coordinates and we initially assume that

pµ is the electron four-momentum at a fixed reference “time” T0, which will be set to ±∞
later. Thus, we write the action as S(X|A) = Sp(X ;T0|A) = −(p+φ + p−T − p⊥ · x⊥) +
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δSp(X ;T0|A). The quantity δSp(X ;T0|A) satisfies the equation

p+

(

∂δSp

∂T
+ eA−

)

+ p⊥ · (∇⊥δSp − eA⊥)−
∂δSp

∂φ

∂δSp

∂T
+

1

2
(∇⊥δSp)

2 − e2A−A+ +
1

2
e2A2

⊥

− eA−
∂δSp

∂φ
− eA+

∂δSp

∂T
− eA⊥ ·∇⊥δSp + p−

(

∂δSp

∂φ
+ eA+

)

= 0.

(10)

This equation can now be solved iteratively by setting δSp(X ;T0|A) = δS
(0)
p (X ;T0|A) +

δS
(1)
p (X ;T0|A) + · · · , with δS(n)

p (X ;T0|A) = O(1/pn+). It is clear that at the leading order

we can write

δS(0)
p (X ;T0|A) = −e

∫ T

T0

dT ′A−(T
′,x⊥, φ), (11)

where the same initial conditions as in [72] have been assumed for the four-vector potential,

i.e., Aµ(T0,x⊥, φ) = 0. By substituting this expression of δS
(0)
p (X ;T0|A) into Eq. (10), it is

easy to show that the first-order correction δS
(1)
p (X ;T0|A) reads

δS(1)
p (X ;T0|A) =

1

p+

∫ T

T0

dT ′

[

ep⊥ ·A⊥(T
′,x⊥, φ;T0)−

1

2
e2A2

⊥(T
′,x⊥, φ;T0)

]

, (12)

with

A⊥(X ;T0) = A⊥(X) +∇⊥

∫ T

T0

dT ′A−(T
′,x⊥, φ). (13)

In order to relate the results below to the finding in [72], we observe that the quantity

A⊥(X ;T0) can be written in terms of the electromagnetic field as

A⊥(X ;T0) = −
∫ T

T0

dT ′[E⊥(T
′,x⊥, φ) + n×B⊥(T

′,x⊥, φ)], (14)

which is equal to −Gp(τ, r0) in the notation employed in [72]. Also, we notice that up to

first order in 1/p+, the dependence on φ can be neglected in the external four-potential.

In fact, as it can be seen in Eq. (3) in [72], it is φ(T ) − φ0 = O(1/p2+). Correspondingly,

Eq. (6) there shows that, by neglecting the derivatives of the four-potential with respect

to φ, the conjugated momentum p+ − eA+(T,x⊥) is conserved up to terms O(1/p+) with

respect to the leading one. Since here we will neglect the dependence on φ of the four-vector

potential (one can assume for simplicity that φ0 = 0), it is convenient to introduce the

three-dimensional light-cone coordinates X = (T,x⊥) and define the effective transverse

vector potential

A⊥(X;T0) = A⊥(X) +∇⊥

∫ T

T0

dT ′A−(T
′,x⊥). (15)
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Thus, we can write the action Sp(X ;T0|A) up to first order terms in 1/p+ as (for the sake of

notational simplicity and since no confusion can arise, from now on we do not write explicitly

the upper index (1))

Sp(X ;T0|A) =− (p+φ+ p−T − p⊥ · x⊥)− e

∫ T

T0

dT ′A−(T
′,x⊥)

+
1

p+

∫ T

T0

dT ′

[

ep⊥ ·A⊥(T
′,x⊥;T0)−

1

2
e2A2

⊥(T
′,x⊥;T0)

]

,

(16)

which generalizes the expression found in [72]. It is also worth observing that the present

approach allows to easily find higher-order corrections in 1/p+ in the action by means of Eq.

(10).

After determining the action, the construction of the first-order electron wave function

ψp,σ(X|A) = ψp,σ(X ;T0|A), with σ being the spin quantum number at T0, proceeds as in

[72] and the final result is

ψp,σ(X ;T0|A) =eiSp(X;T0|A)/~

(

1 +
e

2

∫ T

T0

dT ′

p+
{∇⊥ ·A⊥(T

′,x⊥;T0)

+ iΣ · [B(T ′,x⊥)− n×E(T ′,x⊥)]}
)

up,σ√
2ε
,

(17)

whereΣ = −iγ1γ2γ3γ, up,σ is the usual constant free bispinor normalized as u†p,σup,σ = 2ε [2],

and a unit quantization volume has been assumed. Apart from the more general expression

of the action Sp(X ;T0|A), this expression of the wave function is equivalent to the one found

in [72].

Now, as it is observed, e.g., in [2], when performing the matrix elements of basic strong-

field QED processes like nonlinear Compton scattering and nonlinear Breit-Wheeler pair pro-

duction in the ultra-relativistic regime, the contribution of those terms in the pre-exponent

proportional to the unit matrix is suppressed with respect to those having a different matrix

structure. The reason is that, since all particles involved in such processes almost propagate

along the same direction and thus the photon polarization vectors eλ, with λ = 1, 2, almost

lie on the plane perpendicular to this direction, the matrix element of the interaction matrix

γ · eλ between two constant bispinors vanishes at leading order in 1/p+. As a result, the

leading-order terms proportional to the unit matrix and the terms O(1/p+) with a different

matrix structure in the pre-exponent in Eq. (17) give contributions of the same order of

magnitude to the transition matrix elements. Thus, in order to calculate probabilities of

strong-field QED processes at the leading order within our approximations, all first-order
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corrections in the pre-exponent proportional to the unit matrix can be neglected. This is

also formally corroborated by observing that, from the derivation presented in [72], the pre-

exponential function in Eq. (17) proportional to the unit matrix results from the overall

exponential factor exp
[

(1/2p+)
∫ T

T0
dT ′∂µ∂

µSp(T
′,x⊥, φ;T0|A)

]

(see Eq. (11) in the Supple-

mental Material in [72]), which is proportional to the well-known Van Vleck determinant [86]

(see also [87, 88]) and which can be neglected within our approximations, as correspond-

ing to a quantum correction to the action. The above argumentation allows us to write

the wave function ψp,σ(X ;T0|A) in a simpler form than in Eq. (17) but equivalent within

our approximations. In fact, by exploiting the approximated relation γ0up,σ ≈ n · γup,σ in

the first-order term in the pre-exponent in Eq. (17), it can be easily shown that the wave

function ψp,σ(X ;T0|A) can also be written as

ψp,σ(X ;T0|A) = Ep(X ;T0|A)
up,σ√
2ε
, (18)

where the matrix

Ep(X ;T0|A) = eiSp(X;T0|A)/~

[

1− e

2p+
γ+γ⊥ ·A⊥(X;T0)

]

(19)

is the analogous of the Ritus matrix in the case of a focused laser field (see [8]).

This form of the wave function is very suggestive. In fact, apart from the inconsequential

phase factor exp
[

− i(e/~)
∫ T

T0
dT ′A−(T

′,x⊥)
]

(see also Eq. (16)), which does not contribute

when evaluating transition probabilities of strong-field QED processes, the structure of the

state ψp,σ(X ;T0|A) is the same as that of a Volkov wave function for a plane wave propagating

along the direction −n , and described by the four-vector potential Aµ(T ) = (0,A⊥(T ), 0),

with the substitution

A⊥(T ) → A⊥(X;T0). (20)

This turns out to be especially interesting, by calculating the local value χ(X) of the quan-

tum nonlinearity parameter χ starting from its general definition [8]

χ(X) =
1

mFcr

√

[εE(X) + p×B(X)]2 − [p ·E(X)]2. (21)

In fact, up to the leading order in 1/p+, one obtains that χ(X) is independent of φ and it

is given by

χ(X) =
p+
m

1

Fcr

∣

∣

∣

∣

∂A⊥(X;T0)

∂T

∣

∣

∣

∣

=
p+
m

1

Fcr

∣

∣

∣

∣

∂A⊥(X)

∂T
+∇⊥A−(X)

∣

∣

∣

∣

, (22)



12

which exactly corresponds to the local value of the parameter χ for a “plane wave” with

four-vector potential Aµ(X;T0) = (0,A⊥(X;T0), 0) (note that the laser phase corresponds

to 2T ). This is in agreement with the general observation that an ultra-relativistic charged

particle “sees” an arbitrary electromagnetic field locally as a plane wave [74]. Of course, the

same correspondence also occurs by introducing a local definition ξ(X) of the parameter ξ

as the ratio between χ(X) and the quantity (kp)/m2 (see, e.g., [56]) or by starting from the

manifestly Lorentz and gauge invariant definition of the parameter ξ proposed in [18]. A

related observation is in order here. In fact, in general, a Dirac bispinor ψ(x|A), which is

solution of the Dirac equation (6), transforms as ψ(x|A) → ψ′(x|A′) = exp(−ieg(x))ψ(x|A)
under the gauge transformation Aµ(x) → A′µ(x) = Aµ(x)+∂µg(x). Now, let us consider the

gauge transformation, which makes the component A′
−(X) of the transformed four-vector

potential vanish, such that the latter resembles the four-vector potential in the plane-wave

case (recall that the component A+(X) does not play any role under our approximations).

The corresponding gauge function can be chosen as g(X ;T0) = −
∫ T

T0
dT ′A−(T

′,x⊥) and the

transformed wave function resulting from the one in Eq. (18) would exactly correspond to

a Volkov wave function in the plane-wave potential A⊥(T ) with the substitution A⊥(T ) →
A′

⊥(X;T0)(= A⊥(X;T0)).

For the sake of completeness, we conclude this Section by writing the in- and out-states

with positive and negative energy, which can be obtained from the general expressions in

Eqs. (16) and (18) by means of the limiting procedures T0 → ±∞, as mentioned in [72].

By employing the same notation as in [2] for the negative-energy constant bispinors u−p,−σ

normalized as u†−p,−σu−p,−σ = 2ε, the final result is:

ψ(in)
p,σ (X|A) = eiS

(in)
p (X|A)/~

[

1− e

2p+
γ+γ⊥ ·A(in)

⊥ (X)

]

up,σ√
2ε
, (23)

ψ(out)
p,σ (X|A) = eiS

(out)
p (X|A)/~

[

1− e

2p+
γ+γ⊥ ·A(out)

⊥ (X)

]

up,σ√
2ε
, (24)

ψ
(in)
−p,−σ(X|A) = eiS

(in)
−p (X|A)/~

[

1 +
e

2p+
γ+γ⊥ ·A(in)

⊥ (X)

]

u−p,−σ√
2ε

, (25)

ψ
(out)
−p,−σ(X|A) = eiS

(out)
−p (X|A)/~

[

1 +
e

2p+
γ+γ⊥ ·A(out)

⊥ (X)

]

u−p,−σ√
2ε

, (26)
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where

S
(in)
±p (X|A) = ∓(p+φ+ p−T − p⊥ · x⊥)− e

∫ T

−∞

dT ′A−(T
′,x⊥)

+
1

p+

∫ T

−∞

dT ′

[

ep⊥ ·A(in)
⊥ (T ′,x⊥)∓

1

2
e2A

(in),2
⊥ (T ′,x⊥)

]

,

(27)

S
(out)
±p (X|A) = ∓(p+φ+ p−T − p⊥ · x⊥) + e

∫ ∞

T

dT ′A−(T
′,x⊥)

− 1

p+

∫ ∞

T

dT ′

[

ep⊥ ·A(out)
⊥ (T ′,x⊥)∓

1

2
e2A

(out),2
⊥ (T ′,x⊥)

]

,

(28)

A
(in)
⊥ (X) = A⊥(X) +∇⊥

∫ T

−∞

dT ′A−(T
′,x⊥), (29)

A
(out)
⊥ (X) = A⊥(X)−∇⊥

∫ ∞

T

dT ′A−(T
′,x⊥). (30)

III. ULTRA-RELATIVISTIC WKB PROPAGATOR IN A FOCUSED LASER

FIELD

In the present section we derive the electron propagator under the same assumptions of

Section II and we closely follow the approach developed in [81, 82], based on the operator

technique. The electron propagator G(x, x′|A) satisfies the equation

[γµ(i~∂µ − eAµ(x))−m]G(x, x′|A) = δ(x− x′). (31)

It is convenient to write the electron propagator in the form

G(x, x′|A) = [γµ(i~∂µ − eAµ(x)) +m]D(x, x′|A) (32)

such that the “square” propagator D(x, x′|A) satisfies the equation
[

(i~∂µ − eAµ(x))(i~∂
µ − eAµ(x))− i

2
e~σµνF

µν(x)−m2

]

D(x, x′|A) = δ(x− x′), (33)

where σµν = (1/2)[γµ, γν ]. Before carrying out the spinor case, one takes advantage in con-

sidering the simpler scalar case. By indicating asD(0)(x, x′|A) the corresponding propagator,
one has to solve the equation

[

(i~∂µ − eAµ(x))(i~∂
µ − eAµ(x))−m2

]

D(0)(x, x′|A) = δ(x− x′). (34)

In order to work within the operator-technique approach, we introduce the momenta oper-

ators corresponding to the light-cone coordinates as

Pφ = −i~ ∂

∂φ
, PT = −i~ ∂

∂T
, P⊥ = −i~∇⊥, (35)
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and we express the propagator via the Schwinger proper-time representation

D(0)(X,X ′|A) = − i

~

∫ ∞

0

dsei(s/~)[2PφPT−P 2
⊥
+2e(A+PT+A−Pφ+A⊥·P⊥)+e2A2−m2]δ(X −X ′). (36)

Here, the four-dimensional δ-function δ(X −X ′) can be expressed as

δ(X −X ′) =

∫

d4p

(2π~)4
e−i[p+(φ−φ′)+p−(T−T ′)−p⊥·(x⊥−x′

⊥
)]/~ (37)

and the four-vector pµ can be identified with the four-momentum flowing through the prop-

agator, which also explains the use of the symbol pµ in accordance to the results in Section

II. By replacing this expression of the δ-function into the propagator, we obtain

D(0)(X,X ′|A) =− i

~

∫ ∞

0

ds

∫

d4p

(2π~)4
e−i[p+(φ−φ′)+p−(T−T ′)−p⊥·(x⊥−x′

⊥
)]/~ei(p

2−m2)s/~

× exp
{

i
s

~
[2PφPT − P 2

⊥ − 2(p+PT + p−Pφ + p⊥ ·P⊥)

+ 2e[A+(PT − p−) + A−(Pφ − p+) +A⊥ · (P⊥ + p⊥)] + e2A2
}

.

(38)

Analogously to what we have already carried out in the Section II, we will apply the prop-

agator to the investigation of processes, where the particles are ultra-relativistic and whose

propagation direction is only barely altered by the laser field. Thus, we will keep only terms

in the exponent up to order 1/p+ and we will neglect all quantum corrections. Since, as we

will see below, the relevant proper-times s scale as 1/p+, we can already neglect all terms

containing the quantity p− in the last exponential in Eq. (38). We point out that, even

though the propagator contains an integration over all possible four-momenta pµ, the con-

servation laws and the dynamics in the processes of interest here, will automatically single

out the relevant integration regions in the four-momentum and in those regions it will be

p− ≪ |p⊥| ≪ p+. Analogously to the procedure followed in [81, 82], this also allows us to

neglect the field component A+(X) in Eq. (38), which, after neglecting the terms propor-

tional to p−, always appears as a correction to the large quantity p+ in the combination

p+ − eA+(X) (we will come back later on this point). Finally, as we have already pointed

out in Section II, we can also neglect the dependence of the background four-vector poten-

tial on the light-cone variable φ. These considerations allow to substantially simplify the

propagator D(0)(X,X ′|A), which can be written in the form

D(0)(X,X ′|A) =− i

~

∫ ∞

0

ds

∫

d4p

(2π~)4
e−i[p+(φ−φ′)+p−(T−T ′)−p⊥·(x⊥−x′

⊥
)]/~ei(p

2−m2)s/~

× e−i(s/~){P 2
⊥
+2(p+PT+p⊥·P⊥)+2e[A−p+−A⊥·(P⊥+p⊥)]+e2A2

⊥
}.

(39)
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This expression of the propagator precisely corresponds to the starting expression of the

propagator in [81, 82]. Now, the possibility of neglecting the quantity p− in the last ex-

ponential brings an additional simplification as the integration in p− is trivial in Eq. (39).

Indeed, it essentially provides a δ-function δ(T −T ′−2sp+), which in turn allows to perform

the proper time integration:

D(0)(X,X ′|A) =− i

2~

∫

dp+
2π~

e−ip+(φ−φ′)/~ θ(s0)

|p+|

∫

d2p⊥

(2π~)2
eip⊥·(x⊥−x′

⊥
)/~e−i(p2

⊥
+m2)s/~

× e−i(s0/~){P 2
⊥
+2(p+PT+p⊥·P⊥)+2e[A−p+−A⊥·(P⊥+p⊥)]+e2A2

⊥
},

(40)

where s0 = (T − T ′)/2p+. It could have been formally more convenient to perform the

integration p− later and to avoid the appearance of the T -dependent quantity s0 in the

exponential, which does not commute with the operator PT . On the one hand, this does not

introduce ambiguities under our approximations, as all quantum corrections in the exponen-

tials in Eq. (40) are neglected. On the other hand, we have ensured that the final results

are unchanged if one had followed the alternative procedure and perform the integration in

p− later. Thus, we can ignore this subtlety here below.

Now, the task is to disentangle the operator

O(s) = e−i(s/~){P 2
⊥
+2(p+PT+p⊥·P⊥)+2e[A−p+−A⊥·(P⊥+p⊥)]+e2A2

⊥
}, (41)

where s is a numerical parameter. First, it is convenient to disentangle the operator

exp[−2i(s/~)(p+PT + p⊥ ·P⊥)], which corresponds to the free motion of the particle. Thus,

we write

O(s) = L(s)e−2i(s/~)(p+PT+p⊥·P⊥), (42)

with

L(s) = e−i(s/~){P 2
⊥
+2(p+PT+p⊥·P⊥)+2e[A−p+−A⊥·(P⊥+p⊥)]+e2A2

⊥
}e2i(s/~)(p+PT+p⊥·P⊥). (43)

The operator L(s) satisfies the differential equation

dL(s)

ds
= − i

~
L(s)

{

P 2
⊥ + 2e[A−(s)p+ −A⊥(s) · (P⊥ + p⊥)] + e2A2

⊥(s)]
}

, (44)

where we have introduced the short notation

A−(s) = A−(T − 2sp+,x⊥ − 2sp⊥), (45)

A⊥(s) = A⊥(T − 2sp+,x⊥ − 2sp⊥). (46)
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Since we keep only leading-order terms in ~, we can neglect the non-commutativity of the

operators at different values of s and write

O(s) = L(s) = e−(i/~)
∫ s

0
ds′{P 2

⊥
+2e[A−(s′)p+−A⊥(s′)·(P⊥+p⊥)]+e2A2

⊥
(s′)]}. (47)

Here, we have exploited the fact that the operator exp[−2i(s/~)(p+PT + p⊥ · P⊥)] in O(s)

acts on the unit function once the operator O(s) itself is substituted back intoD(0)(X,X ′|A).
Now, since s scales as 1/p+, the only operator in the exponent of O(s) of the order of unity

is the one containing the quantity p+
∫ s

0
ds′A−(s

′). According to the procedure in [81, 82],

it is convenient to disentangle all other operators by writing

O(s) =M(s)e−(i/~)
∫ s

0 ds′[P 2
⊥
−2eA⊥(s′)·(P⊥+p⊥)+e2A2

⊥
(s′)], (48)

where

M(s) =e−(i/~)
∫ s

0 ds′{P 2
⊥
+2e[A−(s′)p+−A⊥(s′)·(P⊥+p⊥)]+e2A2

⊥
(s′)]}

× e(i/~)
∫ s

0
ds′[P 2

⊥
−2eA⊥(s′)·(P⊥+p⊥)+e2A2

⊥
(s′)].

(49)

By applying the same procedure as in the case of the operator L(s), we can write the operator

M(s) under the same approximations as

M(s) =e−(2ip+/~)
∫ s

0
ds′A−

(

T−2s′p+,x⊥−2s′p⊥+2e
∫ s′

0
ds′′A⊥(s′′)−2s′P⊥

)

(50)

and

O(s) =e−(2ip+/~)
∫ s

0
ds′A−

(

T−2s′p+,x⊥−2s′p⊥+2e
∫ s′

0
ds′′A⊥(s′′)−2s′P⊥

)

× e−(i/~)
∫ s

0
ds′[P 2

⊥
−2eA⊥(s′)·(P⊥+p⊥)+e2A2

⊥
(s′)],

(51)

Now, since the argument of the second exponential already scales as 1/p+, we can neglect the

non-commutativity of the components of the operator P⊥ with the corresponding coordinates

and approximate the operator O(s) as

O(s) ≈e−(2ip+/~)
∫ s

0
ds′A−

(

T−2s′p+,x⊥−2s′p⊥+2e
∫ s′

0
ds′′A⊥(s′′)−2s′P⊥

)

× e(i/~)
∫ s

0
ds′[2eA⊥(s′)·p⊥−e2A2

⊥
(s′)]

≈e(i/~)
∫ s

0 ds′[2eA⊥(s′)·p⊥−e2A2
⊥
(s′)]

× e−(2ip+/~)
∫ s

0 ds′A−

(

T−2s′p+,x⊥−2s′p⊥+2e
∫ s′

0 ds′′A⊥(s′′)−2s′P⊥

)

.

(52)

We observe that the operator P⊥ cannot be neglected in the argument of the field component

A−(X) because the corresponding operator in the exponential is of the order of unity. By
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replacing this expression of the operator O(s) in Eq. (40) and by performing the shift

p⊥ → p⊥+(x⊥−x′
⊥)/2s0 (recall that from classical electrodynamics the quantity |x⊥−x′

⊥|
scales as 1/p+, see [72]), we obtain

D(0)(X,X ′|A) =− i

2~

∫

dp+
2π~

e−ip+(φ−φ′)/~ θ(s0)

|p+|

∫

d2p⊥

(2π~)2
e

i
~

(x
⊥

−x
′

⊥
)2

4s0 e−
i
~
(p2

⊥
+m2)s0

× e(i/~)
∫ s0
0 ds{2eA⊥(s)·[p⊥+(x⊥−x′

⊥
)/2s0]−e2A2

⊥
(s)}

× e
−(2ip+/~)

∫ s0
0 dsA−

(

T−2sp+,x⊥− s
s0

(x⊥−x′

⊥
)−2sp⊥+2e

∫ s

0
ds′A⊥(s′)−2sP⊥

)

,

(53)

where from now on the meaning of the abbreviation A⊥(s) is

A⊥(s) = A⊥

(

T−2sp+,x⊥−
s

s0
(x⊥−x′

⊥)−2sp⊥

)

≈ A⊥

(

T−2sp+,x⊥−
s

s0
(x⊥−x′

⊥)
)

. (54)

The last approximation is justified because all terms containing A⊥(s) in Eq. (53) scale

already as 1/p+ and because the integration in p⊥ will produce either quantum corrections

(due to the factor exp(−is0p2
⊥/~), see also [81, 82]) or corrections scaling as 1/p+ (due to

the factor exp
[

i(2e/~)p⊥ ·
∫ s0
0
dsA⊥(s)

]

).

At this point, the next step is to shift the variable p⊥ as p⊥ → p⊥ + (e/s0)
∫ s0
0
dsA⊥(s).

Since after this shift the variable p⊥ will only produce quantum corrections, it can be ne-

glected in the argument of the field component A−(X) and the remaining Gaussian integral

in p⊥ can be performed analytically. The result is

D(0)(X,X ′|A) =− 1

4π~2

∫

dp+
2π~

e−ip+(φ−φ′)/~ θ(s0)

|T − T ′| exp
(

− i

~
m2s0

)

× exp

{

i

~s0

[

x⊥ − x′
⊥

2
+ e

∫ s0

0

dsA⊥(s)

]2

− i

~
e2

∫ s0

0

dsA2
⊥(s)

}

× e
−(2ip+/~)

∫ s0
0 dsA−

(

T−2sp+,x⊥− s
s0

(x⊥−x′

⊥
)+2e

∫ s

0 ds′A⊥(s′)−2e s
s0

∫ s0
0 dsA⊥(s)−2sP⊥

)

.

(55)

As we have already mentioned, our aim here is the determination of the propagator within the

WKB approximation. Thus, we have neglected the transverse quantum fluctuations brought

about by the original presence of the term proportional to p⊥ in A−(X) [81, 82] and, apart

from this aspect, the expression in Eq. (55) is in agreement with the corresponding one in

[81, 82]. By expanding the last exponential operator up to terms of the order of 1/p+ and

by updating the abbreviation A−(s) according to Eq. (54), i.e.,

A−(s) = A−

(

T − 2sp+,x⊥ − s

s0
(x⊥ − x′

⊥)
)

, (56)
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we obtain

D(0)(X,X ′|A) =− 1

4π~2

∫

dp+
2π~

e−ip+(φ−φ′)/~ θ(s0)

|T − T ′| exp
(

− i

~
m2s0

)

× exp

{

i

~s0

[

x⊥ − x′
⊥

2
+ e

∫ s0

0

dsA⊥(s)

]2

− i

~
e2

∫ s0

0

dsA2
⊥(s)

}

× exp

{

−4ie2p+
~

∫ s0

0

ds[∂⊥A−(s)] ·
[
∫ s

0

ds′A⊥(s
′)− s

s0

∫ s0

0

dsA⊥(s)

]}

× e−(2iep+/~)
∫ s0
0 dsA−(s)+(4iep+/~)

∫ s0
0 ds s[∂⊥A−(s)]·P⊥ ,

(57)

where we have introduced the two-dimensional gradient ∂⊥ with respect to the whole trans-

verse vector variable of the field to which it is applied (the transverse vector variable

x⊥ − (s/s0)(x⊥ − x′
⊥) in Eq. (57)). The final task is to disentangle the last exponential in

Eq. (57). It is convenient to introduce a parameter ρ and to write

R(ρ) = e−(2iep+/~)
∫ ρ

0 dsA−(s)+(4iep+/~)
∫ ρ

0 ds s[∂⊥A−(s)]·P⊥ = N(ρ)e(4iep+/~)
∫ ρ

0 ds s[∂⊥A−(s)]·P⊥, (58)

with

N(ρ) = e−(2iep+/~)
∫ ρ

0
dsA−(s)+(4iep+/~)

∫ ρ

0
ds s[∂⊥A−(s)]·P⊥e−(4iep+/~)

∫ ρ

0
ds s[∂⊥A−(s)]·P⊥ . (59)

By differentiating with respect to the variable ρ and by noticing that in general [P⊥, A−(s)] =

−i~(1− s/s0)∂⊥A−(s) (see Eq. (56)), we obtain that

N(ρ) = e
−(2iep+/~)

∫ ρ

0 ds
{

A−(s)+4ep+
(

1− s
s0

)

[∂⊥A−(s)]·
∫ s

0 ds′ s′[∂⊥A−(s′)]
}

. (60)

In conclusion, since the operator on the right of N(ρ) in Eq. (58) acts on the unit function

(once the operator R(ρ) is substituted back into Eq. (57)), we obtain

D(0)(X,X ′|A) =− 1

4π~2

∫

dp+
2π~

e−ip+(φ−φ′)/~ θ(s0)

|T − T ′| exp
[

− i

~
m2s0 −

2iep+
~

∫ s0

0

dsA−(s)
]

× exp

{

i

~s0

[

x⊥ − x′
⊥

2
+ e

∫ s0

0

dsA⊥(s)

]2

− i

~
e2

∫ s0

0

dsA2
⊥(s)

}

× exp

{

−4ie2p+
~

∫ s0

0

ds[∂⊥A−(s)] ·
[
∫ s

0

ds′A⊥(s
′)− s

s0

∫ s0

0

dsA⊥(s)

]}

× exp

{

−8ie2p2+
~

∫ s0

0

ds

(

1− s

s0

)

[∂⊥A−(s)] ·
∫ s

0

ds′ s′[∂⊥A−(s
′)]

}

.

(61)
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As a check on this expression of the propagator, we go back to Eq. (34) and we notice that

the propagator D(0)(x, x′|A) equivalently solves the equation

[

(i~∂′µ + eAµ(x
′))(i~∂′,µ + eAµ(x))−m2

]

D(0)(x, x′|A) = δ(x− x′). (62)

This can be easily proven by writing the propagator D(0)(x, x′|A) in the operator form as

D(0)(x, x′|A) = 〈x|D(0)(A)|x′〉 and by noticing that Eqs. (34) and (62) correspond to the

operator equations

[

(Pµ − eAµ(X))(P µ − eAµ(X))−m2
]

D(0)(A)

= D(0)(A)
[

(Pµ − eAµ(X))(P µ − eAµ(X))−m2
]

= 1,
(63)

where Xµ and P µ are four-position and the four-momentum operator, respectively (with

an abuse of notation we have employed the symbol Xµ only in this equation to indicate

the four-position operator, whereas in the rest of the paper it indicates the generic space-

time point in light-cone coordinates). Now, Eq. (62) clearly shows that the propagator

D(0)(x, x′|A) has to fulfill the general symmetry relation D(0)(x, x′|A) = D(0)(x′, x| −A). In

order to verify that indeed the propagator in Eq. (61) satisfies this symmetry relation, it

is convenient to perform the changes of variable: a) p+ → −p+, such that the quantity s0

remains unchanged (after the exchange X ↔ X ′), b) s → −s + s0 (s′ → −s′ + s0) in the

integrations in s (s′).

A more explicitly symmetric form of the propagator D(0)(X,X ′|A) can be obtained by
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performing the change of variable τ = T − 2sp+ (τ ′ = T − 2s′p+) in the integrals in s (s′):

D(0)(X,X ′|A) =− 1

4π~2

1

|T − T ′| exp
[

− i

~
e

∫ T

T ′

dτA−(τ) +
i

~
e
x⊥ − x′

⊥

T − T ′
·
∫ T

T ′

dτA⊥(τ)

]

×
∫

dp+
2π~

e−ip+(φ−φ′)/~θ

(

T − T ′

2p+

)

exp

[

− i

~
m2T − T ′

2p+
+
i

~

p+
2

(x⊥ − x′
⊥)

2

T − T ′

]

× exp

〈

i

~

e2

2p+

{

1

T − T ′

[
∫ T

T ′

dτA⊥(τ)

]2

−
∫ T

T ′

dτA2
⊥(τ)

}〉

× exp

{

i

~

e2

p+

∫ T

T ′

dτ [∂⊥A−(τ)]

·
[

T − τ

T − T ′

∫ τ

T ′

dτ ′A⊥(τ
′)− T ′ − τ

T − T ′

∫ τ

T

dτ ′A⊥(τ
′)

]

}

× exp

〈

i

~

e2

2p+

TT ′

T − T ′

×
{

∫ T

T ′

dτ
(

1− τ

T ′

)

[∂⊥A−(τ)] ·
∫ τ

T

dτ ′
(

1− τ ′

T

)

[∂⊥A−(τ
′)]

−
∫ T

T ′

dτ
(

1− τ

T

)

[∂⊥A−(τ)] ·
∫ τ

T ′

dτ ′
(

1− τ ′

T ′

)

[∂⊥A−(τ
′)]

}〉

,

(64)

where

A−(τ) = A−

(

τ,x⊥ − T − τ

T − T ′
(x⊥ − x′

⊥)

)

, (65)

A⊥(τ) = A⊥

(

τ,x⊥ − T − τ

T − T ′
(x⊥ − x′

⊥)

)

. (66)

Now, let us consider the exponential function

E(X,X ′) = exp

{

i

~

e2

p+

∫ T

T ′

dτ [∂⊥A−(τ)]·
[

T − τ

T − T ′

∫ τ

T ′

dτ ′A⊥(τ
′)− T ′ − τ

T − T ′

∫ τ

T

dτ ′A⊥(τ
′)

]

}

(67)

in Eq. (64), where we notationally reminded that a dependence on the transverse variables

x⊥ and x′
⊥ is brought about by the components of the four-vector potential (see Eqs. (65)-

(66)). By integrating by parts, it can easily be shown that the quantity E(X,X ′) can be

written as

E(X,X ′) = exp

{

− i

~

e2

p+

∫ T

T ′

dτA⊥(τ)

·
[

∆A⊥(τ ;X,X ′)− 1

T − T ′

∫ T

T ′

dτ∆A⊥(τ ;X,X ′)

]

}

,

(68)
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where

∆A⊥(τ ;X,X ′) =
T

T − T ′

∫ τ

T

dτ ′
[

∂⊥A−

(

τ ′,x⊥ − T − τ ′

T − T ′
(x⊥ − x′

⊥)

)]

− T ′

T − T ′

∫ τ

T ′

dτ ′
[

∂⊥A−

(

τ ′,x⊥ − T − τ ′

T − T ′
(x⊥ − x′

⊥)

)]

.

(69)

By manipulating in a analogous way the last exponential function in Eq. (64), one can

finally write the propagator D(0)(X,X ′|A) in the compact form

D(0)(X,X ′|A) =− 1

4π~2

1

|T − T ′| exp
[

− i

~
e

∫ T

T ′

dτA−(τ) +
i

~
e
x⊥ − x′

⊥

T − T ′
·
∫ T

T ′

dτA⊥(τ)

]

×
∫

dp+
2π~

e−ip+(φ−φ′)/~θ

(

T − T ′

2p+

)

exp

[

− i

~
m2T − T ′

2p+
+
i

~

p+
2

(x⊥ − x′
⊥)

2

T − T ′

]

× exp

〈

i

~

e2

2p+

{

1

T − T ′

[
∫ T

T ′

dτA⊥(τ ;X,X ′)

]2

−
∫ T

T ′

dτA2
⊥(τ ;X,X ′)

}〉

.

(70)

Here, we have introduced the effective transverse vector potential

A⊥(τ ;X,X ′) = A⊥(τ) + ∆A⊥(τ ;X,X ′), (71)

which exactly corresponds to the analogous effective transverse vector potential A⊥(X;T0)

introduced in Section II, in the sense that it reduces to A
(in)
⊥ (τ ;x⊥) and to A

(out)
⊥ (τ ;x′

⊥)

in the limits T ′ → −∞ and T → ∞, respectively (see also the discussion below Eq. (78)).

In this respect, we want to show that, analogously to what we have observed in Section

II, the propagator can be written in an alternative, equivalent form such that, after per-

forming the gauge transformation Aµ(x) → A′µ(x) = Aµ(x) + ∂µg(x) with gauge function

g(X ;T0) = −
∫ T

T0
dτA−(τ,x⊥), the resulting propagator in the new gauge coincides with the

scalar Volkov propagator with the plane-wave transverse vector potential A⊥(T ) being re-

placed by A′
⊥(X;T0) = A⊥(X;T0) (see, e.g., [49, 89]). Although this alternative expression

of the propagator is formally asymmetric with respect to, e.g., the transverse variables x⊥

and x′
⊥, it is instructive to sketch the proof of the above statement by reminding that under

our approximations the quantity |x⊥−x′
⊥| scales as 1/p+. By starting from this observation,
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it is easy to show that

− e

∫ T

T ′

dτA−(τ) + e
x⊥ − x′

⊥

T − T ′
·
∫ T

T ′

dτA⊥(τ)

≈ −e
∫ T

T0

dτA−(τ,x⊥) + e

∫ T ′

T0

dτA−(τ,x
′
⊥) + e

x⊥ − x′
⊥

T − T ′
·
∫ T

T ′

dτA⊥(τ,x⊥;T0).

(72)

Moreover, since the argument of the field-dependent exponential inside the integral in p+ in

Eq. (70) is already proportional to 1/p+, one can easily see from Eq. (69) that

A⊥(τ ;X,X ′) ≈A⊥(τ,x⊥;T0)

+
T

T − T ′

∫ T0

T

dτ∇⊥A−(τ
′,x⊥)−

T ′

T − T ′

∫ T0

T ′

dτ∇⊥A−(τ
′,x⊥).

(73)

The proof of the above statement is complete once one observes that, since the difference

A⊥(τ ;X,X ′)−A⊥(τ,x⊥;T0) does not depend on τ , then

1

T − T ′

[
∫ T

T ′

dτA⊥(τ ;X,X ′)

]2

−
∫ T

T ′

dτA2
⊥(τ ;X,X ′) =

=
1

T − T ′

[
∫ T

T ′

dτA⊥(τ,x⊥;T0)

]2

−
∫ T

T ′

dτA2
⊥(τ,x⊥;T0).

(74)

Coming back to Eq. (70), we make two additional remarks. First, the argument of the

exponential function outside the integral in p+ coincides within our approximations with

the quantity −i(e/~)[∆Xµ/∆T ]
∫ T

T ′ dτA
µ(τ), with ∆Xµ = (∆T,∆x⊥,∆φ) = (T − T ′,x⊥ −

x′
⊥, φ − φ′), as ∆φ scales as 1/p2+. Second, the quantity p+ appears in the field-dependent

part of the integrand in Eq. (70) only in the denominator, which can be used as an a

posteriori qualitative indication that the field component A+(X) can be neglected in the

propagator within our approximations (see the discussion below Eq. (38)).

Now, the integral in p+ is Eq. (70) can be performed analytically. We first remove the

θ-function by splitting the integral from −∞ to +∞ into two integrals, one from −∞ to 0

and the other from 0 to +∞. Then, by performing the change of variable p+ = y∆T/2 in

both integrals and by combining them, we obtain

D(0)(X,X ′|A) =− 1

16π2~3
exp

[

− i

~
e

∫ T

T ′

dτA−(τ) +
i

~
e
∆x⊥

∆T
·
∫ T

T ′

dτA⊥(τ)

]

×
∫ ∞

0

dy exp

〈

− i

~

{

∆X2

4
y +

[

m2 + δm2(X,X ′)
] 1

y

}〉

,

(75)

where the quantity

δm2(X,X ′) = e2

{

1

∆T

∫ T

T ′

dτA2
⊥(τ ;X,X ′)−

[

1

∆T

∫ T

T ′

dτA⊥(τ ;X,X ′)

]2
}

(76)
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is the local generalization of the mass correction due to the laser field to the case of a

focused laser field [49, 89] (see also [90, 91]). Finally, by performing the change of variable

y → 1/y, it is clear that the integrand coincides with that of the free (and of the Volkov)

propagator, with the substitution m2 → M2(X,X ′) = m2 + δm2(X,X ′) ≥ m2, such that

the propagator can be written in a very compact form as [92]

D(0)(X,X ′|A) =− 1

4π~2
exp

[

− i

~
e
∆Xµ

∆T

∫ T

T ′

dτAµ(τ)

]

×
[

δ(∆X2)− 1

2~

M(X,X ′)
√

∆X2 − iη
H

(2)
1

(

M(X,X ′)
√

∆X2 − iη
)

]

,

(77)

where H
(2)
1 (z) is the Hankel function [93] and η is a positive infinitesimal quantity.

Now, by introducing the reduced propagator D(0)(X,X ′; p+|A) such that (see Eq. (70))

D(0)(X,X ′|A) =
∫

dp+
2π~

e−ip+(φ−φ′)/~D(0)(X,X ′; p+|A), (78)

it can easily be shown that it generates the in- and out-states with positive and negative

energies Φ
(in/out)
±p (X|A) = exp

[

iS
(in/out)
±p (X|A)/~

]

= exp(∓ip+φ)Φ(in/out)
±p (X|A) of a scalar

particle in agreement with the electron wave functions found in Section 2 and according to

exactly the limiting procedure and substitution rules as in Eqs. (68)-(73) in [82] (one has

only to remember that here the in- and out-states are defined as those states which reduce

to the free states in the remote past and future, respectively, also for the negative-energy

states):

lim
T→∞

|x⊥|→∞

D(0)(X,X ′; p+|A) = − 1

4π~2

ei(p
2
⊥
−m2)T/2~p+

T
Φ(out)∗

p (X ′|A) p+ > 0, (79)

lim
T ′→−∞
|x′

⊥
|→∞

D(0)(X,X ′; p+|A) = − 1

4π~2

ei(p
′ 2
⊥
−m2)|T ′|/2~p+

|T ′| Φ
(in)
p′ (X|A) p+ > 0, (80)

lim
T ′→∞
|x′

⊥
|→∞

D(0)(X,X ′;−|p+||A) = − 1

4π~2

ei(q
2
⊥
−m2)T ′/2~|p+|

T ′
Φ

(out)
−q (X|A) p+ < 0, (81)

lim
T→−∞
|x⊥|→∞

D(0)(X,X ′;−|p+||A) = − 1

4π~2

ei(q
′ 2
⊥

−m2)|T |/2~|p+|

|T | Φ
(in)∗
−q′ (X

′|A) p+ < 0, (82)

where

pµ = p+

(

1,
x⊥

T
, 1− x2

⊥

2T 2
− m2

2p2+

)

, qµ = |p+|
(

1,
x′
⊥

T ′
, 1− x′ 2

⊥

2T ′ 2
− m2

2p2+

)

, (83)

p′µ = p+

(

1,− x′
⊥

|T ′| , 1−
x′ 2
⊥

2T ′ 2
− m2

2p2+

)

, q′µ = |p+|
(

1,−x⊥

|T | , 1−
x2
⊥

2T 2
− m2

2p2+

)

. (84)
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Now, by looking at Eq. (33) for the square propagator D(X,X ′|A), we see that the

correction in the exponential operators induced by the new spin terms scales as 1/p+ and

it is independent of ~ (which means that it is a first-order quantum correction in ~, as the

exponent in the propagator always contains the overall factor 1/~). Thus, by introducing

the corresponding reduced propagator D(X,X ′; p+|A) such that

D(X,X ′|A) =
∫

dp+
2π~

e−ip+(φ−φ′)/~D(X,X ′; p+|A), (85)

it is easy to show that

D(X,X ′; p+|A) =
{

1 +
e

2p+
γ+γ⊥ · [A⊥(X;T0)−A⊥(X

′;T0)]

}

D(0)(X,X ′; p+|A), (86)

where it should be noticed that the difference A⊥(X;T0) − A⊥(X
′;T0) does not actually

depend on T0. Also, we point out that, analogously to the procedure followed in Section II,

in deriving the matrix structure in Eq. (86) we have retained only terms up to 1/p+, we

have neglected corrections proportional to 1/p+ to the unit matrix, and we have exploited

the fact that at the leading order in 1/p+ the second term in the curly brackets in Eq. (86)

is always multiplied by a matrix of the form γ · eλ, with eλ being the polarization vector of

a photon (almost) propagating along n (see Section II), and then by a free bispinor.

Now, the spinor propagator G(X,X ′|A) in light-cone coordinates can be obtained from

Eq. (32). By introducing the reduced electron propagator G(X,X ′; p+|A) such that

G(X,X ′|A) =
∫

dp+
2π~

e−ip+(φ−φ′)/~G(X,X ′; p+|A), (87)

also in the spinor case, it is

G(X,X ′; p+|A) =
[

γ+
(

i~
∂

∂T
− eA−(X)

)

+ γ−p+

+ γ⊥ · (i~∇⊥ + eA⊥(X)) +m

]

D(X,X ′; p+|A).
(88)

By exploiting the arguments below Eq. (71) and by noticing that
[

γ+
(

i~
∂

∂T
− eA−(X)

)

+ γ−p+ + γ⊥ · (i~∇⊥ + eA⊥(X)) +m

]

× exp

[

−i e
~

∫ T

T0

dτA−(τ,x⊥) + i
e

~

∫ T ′

T0

dτA−(τ,x
′
⊥)

]

= exp

[

−i e
~

∫ T

T0

dτA−(τ,x⊥) + i
e

~

∫ T ′

T0

dτA−(τ,x
′
⊥)

]

×
[

γ+i~
∂

∂T
+ γ−p+ + γ⊥ · (i~∇⊥ + eA⊥(X;T0)) +m

]

,

(89)
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it can be seen that also in the spinor case the propagator can be written alternatively in an

equivalent form such that, after performing the gauge transformation mentioned below Eq.

(71), the resulting propagator in the new gauge coincides with the spinor Volkov propagator

with the plane-wave transverse vector potential A⊥(T ) being replaced by A′
⊥(X;T0) =

A⊥(X;T0). In order to show this statement, it is also important to observe that within

our approximations and after the commutation in Eq. (89) has been carried out, the action

of the operator i~∇⊥ in Eq. (88) on the background four-vector potential can be ignored.

This formal equivalence indicates that the propagator G(X,X ′|A) can also be written in the

compact form

G(X,X ′|A) =
∫

d4p

(2π~)4
Ep(X ;T0|A)

p̂+m

p2 −m2 + iη
Ēp(X

′;T0|A), (90)

like in the plane-wave case [8], where p̂ = γµpµ, where in general Ēp(X ;T0|A) = γ0E†
p(X ;T0|A)γ0,

and where the dependence on T0 finally compensates out.

Finally, it can be easily shown that the analogous limiting procedures as in Eqs. (74)-(77)

in [82] allow to obtain the in- and out-electron states in agreement with Eqs. (23)-(26)):

lim
T→∞

|x⊥|→∞

G(X⊥,X
′
⊥; p+|A) = − 1

4π~2

ei(p
2
⊥
−m2)T/2~p+

T

2
∑

σ=1

√
2ε up,σψ̄

(out)
p,σ (X ′|A) p+ > 0,

(91)

lim
T ′→−∞
|x′

⊥
|→∞

G(X⊥,X
′
⊥; p+|A) = − 1

4π~2

ei(p
′ 2
⊥
−m2)|T ′|/2~p+

|T ′|

2
∑

σ=1

√
2ε ψ

(in)
p′,σ(X|A)ūp′,σ p+ > 0,

(92)

lim
T ′→∞
|x′

⊥
|→∞

G(X⊥,X
′
⊥;−|p+||A) =

1

4π~2

ei(q
2
⊥
−m2)T ′/2~|p+|

T ′

2
∑

σ=1

√
2ε ψ

(out)
−q,−σ(X|A)ū−q,−σ p+ < 0,

(93)

lim
T→−∞
|x⊥|→∞

G(X⊥,X
′
⊥;−|p+||A) =

1

4π~2

ei(q
′ 2
⊥

−m2)|T |/2~|p+|

|T |

2
∑

σ=1

√
2ε u−q′,−σψ̄

(in)
−q′,−σ(X

′|A) p+ < 0,

(94)

where ψ̄(x) = ψ†(x)γ0 for a generic bispinor ψ(x) and where, consistently with the re-

sults in Section II, the first-order terms in 1/p+ in the pre-exponent proportional to the
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unit matrix have been neglected. Obviously, the in-and out-states in Eqs. (91)-(94) dif-

fer from those in Eqs. (23)-(26) only by the φ-dependent phase factors exp(−ip+φ) and

exp(ip+φ) for the positive- and negative-energy states, respectively, i.e., ψ
(in/out)
±p,±σ (X|A) =

exp(∓ip+φ)ψ(in/out)
±p,±σ (X|A). Also, it should be noticed that in Eqs. (91)-(94) the quantity

ε =
√

m2 + p2 is always a positive quantity and the appearance of the quantity
√
2ε in-

stead that of 2|ǫ| as in [82] is only due to a difference in the normalization of the constant

bispinors. Finally, it is also worth observing that, since in deriving the propagators we have

neglected all quantum corrections in the exponents, the limiting procedure cannot reproduce

the correcting terms proportional to the unit matrix in the pre-exponent in Eq. (17), as

those arising, e.g., from the Van Vleck determinant. However, as we have mentioned in

Section II, such terms can be neglected in the calculation of the probabilities of strong-field

QED processes.

IV. CONCLUSIONS AND OUTLOOK

In conclusion, in the present paper we have continued and extended the investigation

started in [72], and provided analytical tools for studying strong-field QED processes in

the presence of tightly focused laser beams. As in [72], we have focused on the regime

of interaction where the asymptotic energy of the electron is the largest dynamical energy

scale in the problem. First, we have presented an equivalent but simpler expression of the

wave functions found in [72]. We have also generalized the expression of the wave functions,

including the possibility that the electron also has a non-vanishing asymptotic transverse

momentum. This is particularly important for the study of first-order strong-field QED

processes, where the two leptons (e.g., initial and final electron or final electron and positron)

do not propagate exactly along the same direction. Moreover, we have shown that the wave

functions found here have essentially the same structure of the Volkov states and that the

former can be practically obtained from the latter by means of a simple substitution of the

transverse vector potential of the laser field.

Moreover, we have now constructed the corresponding scalar and spinor propagators

under the same approximations and we have verified by means of an appropriate limiting

procedure that the determined propagator is compatible with the corresponding wave func-

tions. We have seen that the structure of the propagator is also essentially the same as the
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Volkov propagator, with an effective transverse vector potential also containing derivatives

of the focused laser field with respect to the transverse variables. This has allowed for the

introduction of a local laser-induced mass correction also in the case of a focused laser field.

In an upcoming publication we will apply the wave functions found here and in [72] to

investigate the first-order strong-field QED processes (nonlinear Compton scattering and

nonlinear Breit-Wheeler pair production) including the tight focusing of the background

laser field.
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[41] K. Krajewska, J. Z. Kamiński, and F. Ehlotzky, Laser Phys. 16, 272 (2006).

[42] C. Müller, Phys. Lett. B 672, 56 (2009).

[43] A. Ilderton, P. Johansson, and M. Marklund, Phys. Rev. A 84, 032119 (2011).

[44] E. Lötstedt and U. D. Jentschura, Phys. Rev. Lett. 103, 110404 (2009).
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