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We study the driven-dissipative dynamics of a network of spin-1/2 systems coupled to one or
more chiral 1D bosonic waveguides within the framework of a Markovian master equation. We
determine how the interplay between a coherent drive and collective decay processes can lead to
the formation of pure multipartite entangled steady states. The key ingredient for the emergence of
these many-body dark states is an asymmetric coupling of the spins to left and right propagating
guided modes. Such systems are motived by experimental possibilities with internal states of atoms
coupled to optical fibers, or motional states of trapped atoms coupled to a spin-orbit coupled Bose-
Einstein condensate. We discuss the characterization of the emerging multipartite entanglement in
this system in terms of the Fisher information.
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I. INTRODUCTION

The ability to engineer the system-bath coupling in
quantum optical systems allows for novel scenarios of dis-
sipatively preparing quantum many-body states of mat-
ter [1]. This is of interest both as a non-equilibrium con-
densed matter physics problem [2–8] and in the context of
quantum information [9–18]. In the present work we will
study open system quantum dynamics of chiral spin net-
works from a quantum optical perspective. The nodes
of these networks are represented by spin-1/2 systems,
whereas the quantum channels connecting them are 1D
waveguides carrying bosonic excitations [cf. Fig. 1(a-b)].
In addition, these waveguides provide the input and out-
put channels of our quantum network, allowing for driv-
ing and continuous monitoring of the spin dynamics. In
a quantum optical setting, such a network can be identi-
fied by two-level atoms coupled to optical fibers [19, 20]
or photonic structures [21, 22]. As discussed in previous
studies [23–25], the 1D character of the quantum reser-
voir manifests itself in unique features including long-
range dipole-dipole interactions mediated by the bath
and collective decay of the two-level systems as super-
and subradiant decay.

The novel aspect underlying our study below is the
assumption of a chiral character of the waveguides repre-
senting the photonic channels. By chirality we mean that
the symmetry of emission of photons from the two-level
atoms into the right and left propagating modes of the 1D
waveguides is broken. This allows the formation of novel
non-equilibrium quantum phases as steady states of the
open system dynamics in chiral quantum spin networks.
This includes the driven-dissipative evolution as "cool-
ing" to pure states of entangled spin clusters, which play
the role of quantum many-particle dark states, i.e. spin
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Figure 1. (Color online) Spin networks with chiral coupling
to 1D bosonic reservoirs. (a) Driven spins can emit photons
to the left and right propagating reservoir modes, where the
chirality of the system-reservoir interaction is reflected in the
asymmetry of the corresponding decay rates γL 6= γR. (b)
Spin network coupled via three different chiral waveguides
m = 1, 2, 3. Waveguide m = 1 couples the spins in the order
(1, 2, 3, 4), whereas m = 2 couples them in order (1, 3, 2, 4)
and m = 3 in order (2, 1, 4, 3). Note that only waveguides
without closed loops are considered in this work.

clusters decoupled from the bath. While in Ref. [26] the
formation of entangled spin clusters for the (idealized)
purely unidirectional waveguide have been discussed, we
have recently presented first results that this formation of
pure entangled spin clusters is, in fact, the generic case
for chiral spin networks under fairly general conditions
[27]. It is the purpose of the present paper to present
an in depth study of this quantum dynamics and pure

mailto:hannes.pichler@uibk.ac.at


2

entangled spin cluster formation in chiral spin networks
including imperfections, and the characterization of the
resulting multi-partite entangled states in experiments
(e.g., via the Fisher information [28, 29]). We emphasize
that our results are derived within the standard quan-
tum optical master equation (ME) treatment, where the
effective spin dynamics is obtained by eliminating the
reservoir in a Born-Markov approximation (in contrast
to non-Markovian treatments discussed, for instance, in
Refs. [30–34]).

The present work is motivated by recent experiments
and proposals for the realization of chiral spin networks
with quantum optical systems. This includes the re-
markable recent experimental demonstration of direc-
tional spontaneous emission of single atoms and scatter-
ing from nano-particles into a 1D photonic nanofiber in
Refs. [35, 36], and similar experiments and proposals with
quantum dots coupled to photonic nano-structures in
Refs. [37, 38]. We also note that related experiments re-
porting directional emission in 2D setups have been per-
formed with photons [39] and surface plasmons [40, 41].
Moreover we remark that topological photonic devices
provide chiral edge modes for light propagation [42, 43],
with possible applications in this context. In contrast
to these photonic setups, we have shown in Ref. [27]
that chiral waveguides for phonons (or Bogoliubov ex-
citations) can be realized using a 1D spin-orbit coupled
Bose Einstein condensate (SOC BEC) [44, 45]. A faith-
ful realization of the corresponding chiral spin network
was proposed by coupling atoms in optical lattices, rep-
resenting spins with vibrational levels, to the SOC BEC
via collisional interactions.

The paper is organized as follows. In Sec. II we present
the quantum optical model describing the chiral spin net-
works and provide a qualitative summary of the various
multi-partite entangled pure states, which are formed as
steady states of their driven-dissipative dynamics. In
Sec. III we illustrate this for networks of two and four
spins and identify sufficient conditions for the existence
of pure steady states as "dark states" of the quantum
master equation. In Sec. IV we extend these concepts to
networks with an arbitrary number of spins. There, we
will also analyze the purification dynamics and comment
on the role of imperfections. In Sec.V, we discuss the
possibility to witness the steady state multi-partite en-
tanglement via a measurement of the Fisher information.
In Sec.VI we conclude with an outlook.

II. MODEL AND OVERVIEW

The key feature of the chiral spin networks consid-
ered here is the accessibility of pure multi-partite entan-
gled states that arise as the steady state of their driven-
dissipative dynamics. In this section we give an overview
of this primary result, beginning with an introduction to
the underlying physical model of the chiral spin network
itself. We then discuss the master equations that describe

the corresponding open system dynamics and illustrate
the entanglement properties of their pure steady states
in different parameter regimes.

A. The chiral spin network

The system we consider consists of a collection of
N two-level systems (TLSs) or spins, as depicted in
Fig. 1(a). For each spin j, we will denote the two states
by |g〉j and |e〉j , and the corresponding transition fre-
quency between the two states by ωj . These spins are
driven by a classical coherent field at a single frequency
ν, defining a detuning pattern δj ≡ ν − ωj . We denote
the corresponding Rabi frequencies by Ωj . In a rotat-
ing frame with the driving frequency ν and after apply-
ing the rotating wave approximation (RWA), provided
|Ωj |, |δj | � ωj , the Hamiltonian for the spin chain reads

Hsys = ~
N∑
j=1

(
−δjσ†jσj + Ωjσj + Ω∗jσ

†
j

)
, (1)

where we have used the notation σj ≡ |g〉j〈e|. The spins
are coupled to a 1D waveguide, whose Hamiltonian is
given by

Hres =
∑
λ=L,R

∫
dω ~ω b†λ(ω)bλ(ω), (2)

where the bλ(ω) are bosonic annihilation operators for
the right (λ = R) and left (λ = L) moving bath modes
of frequency ω, i.e. [bλ(ω), b†λ′(ω

′)] = δλ,λ′δ(ω − ω′). We
note that in writing Eq. (2) we implicitly assumed a lin-
ear dispersion relation for the degrees of freedom of the
reservoir.

We are interested in a chiral coupling of the spins to
these reservoir modes. By this we refer to an asymmetry
in the coupling to the left and right propagating modes of
the waveguide. Such a chiral system-reservoir interaction
can be modelled by the linear RWA Hamiltonian

Hint = i~
∑
λ=L,R

∑
j

∫
dω

√
γλ
2π
b†λ(ω)σje

−i(νt+ωxj/vλ) + h.c.,

(3)

where γL and γR are the decay rates into the left (vL<0)
and right (vR> 0) moving reservoir modes, respectively,
with vλ denoting the corresponding group velocities. In
addition, we denote the position of spin j along the
waveguide by xj . We stress the fact that the chirality
of the system-reservoir coupling is reflected by γL 6= γR.

B. Chiral dissipative dynamics and overview of
parameter regimes

Treating the chiral waveguide as a long reservoir
exhibiting Markovian dynamics, we can now derive
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a master equation describing the dissipative dynam-
ics of the spin degrees of freedom. If we make the
standard quantum-optical Born-Markov approximation
and neglect retardation effects (which is valid provided
|Ωj |, γj , |δj | � |vλ|/|xj − xl|, ωj), we obtain a master
equation for the evolution of the system density oper-
ator ρ(t), as detailed in Appendix A. Using the notation
D[A]ρ ≡ AρA†−{A†A, ρ}/2, the chiral master equation
in explicit Lindblad form reads

ρ̇ = − i
~

[Hsys+HL+HR, ρ]+γLD[cL]ρ+γRD[cR]ρ, (4)

where left and right moving reservoir modes give inde-
pendent contributions. Their coherent parts

HL ≡ −
i~γL

2

∑
j<l

(
eik|xj−xl|σ†jσl − h.c.

)
, (5)

HR ≡ −
i~γR

2

∑
j>l

(
eik|xj−xl|σ†jσl − h.c.

)
, (6)

describe long-range spin interactions mediated by the left
and right moving reservoir modes, respectively. Due to
the 1D character of the bath these interactions are of in-
finite range. However, the positions of the spins xj enter
due to their ordering along each propagation direction.
Without loss of generality we label the spins such that
xj > xl for j>l. The second relevant quantity thereby is
their distance as compared to the wavevector k of the res-
onant reservoir modes [cf. Appendix A]. The dissipative
terms with collective jump operators cL≡

∑
j e
ikxjσj and

cR≡
∑
j e
−ikxjσj describe collective spin decay into left

and right moving excitations that leave the waveguide
at the two different output ports [cf. Fig. 1(a)]. There-
fore, in contrast to the coherent part, the dissipative part
does not depend on the ordering of the spins along the
waveguide.

In the rest of this subsection we discuss the two limiting
cases corresponding to a bi-directional (non-chiral) situ-
ation γL = γR, and a purely cascaded one where γL = 0.
We then introduce a more general situation considering
multiple chiral waveguides.

1. Bidirectional Master Equation

We note that the familiar Dicke model [47] in one di-
mension is obtained from the chiral master equation (4)
in the limit of a perfect bidirectional reservoir, i.e. when
the symmetry between left and right moving excitations
is not broken, γL = γR ≡ γ. In this case, HL + HR con-
spires to form the well-known infinite-range dipole-dipole
Hamiltonian, whereas the Lindblad terms form the famil-

iar super- and sub-radiant collective decay [48]

ρ̇ = − i
~

[
Hsys + ~γ

∑
j,l

sin(k|xj − xl|)σ†jσl, ρ
]

+ 2γ
∑
j,l

cos(k|xj − xl|)
(
σlρσ

†
j −

1

2
{σ†jσl, ρ}

)
. (7)

Both, coherent and dissipative parts, depend on the dis-
tance between spins only up to a multiple of the wave-
length. Therefore, in contrast to the chiral situation, the
order of the spins does not matter.

Remarkably, when placing the spins at distances com-
mensurate with the reservoir wavelength such that k|xj−
xl| = 2πn (n integer), the dipole-dipole interactions van-
ish and the collective jump operators to left and right
moving excitation modes coincide cL = cR =

∑
j σj ≡ c.

When driving all spins homogeneously Ωj = Ω and on-
resonance δj = 0, this reduces to a totally symmetric
Dicke model [23, 49]

ρ̇ = −i[Ω(c+ c†), ρ] + 2γD[c]ρ. (8)

This model is symmetric under exchange of all the spins,
giving rise to multiple steady states corresponding to de-
coupled subspaces in different symmetry sectors. On each
of these subspaces, the system of N spin-1/2s reduces to
a single collective spin-J , where J = 0, 1, . . . , N/2 (for
even N) is determined by the initial condition. Interest-
ingly, this model predicts a non-equilibrium phase tran-
sition, e.g. in the J = N/2 manifold, at a critical driving
strength Ωc ≡ Nγ/4 [23, 49].

2. Cascaded Master Equation

The other limiting case of a chiral waveguide is a purely
unidirectional reservoir, where the spin chain couples
only to modes propagating in one direction (e.g. γL = 0).
One refers to such a system as cascaded, since the out-
put of each spin can only drive other spins located on its
right, without back-action. The corresponding cascaded
master equation was extensively studied in Refs. [26, 50–
54] and it is simply given by setting γL = 0 and thus
HL = 0 in Eq. (4). To gain more insight into the dy-
namical structure of such an unidirectional channel, we
rewrite Eq. (4) for this specific case as

ρ̇ = − i
~

[Hsys, ρ]− i

~
(Heffρ− ρH†eff) + γRcρc

†, (9)

where the non-Hermitian effective Hamiltonian reads

Heff = − i~γR
2

∑
j

σ†jσj − i~γR
∑
j>l

σ†jσl. (10)

To connect to the standard literature we have (without
loss of generality) absorbed phases by σj → σje

ikxj and
Ωj → Ωje

−ikxj . The position of the spins then enter
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solely via their spatial ordering. Note that such a sim-
plification is only possible in the strict cascaded case,
since there is only one collective jump operator, by con-
struction. Between the corresponding quantum jumps
[46], the system evolves with the non-hermitian Hamil-
tonian in Eq. (10). It induces unidirectional interactions
between spins, where an excitation of spin l can be trans-
ferred only to spins j located on its right (j > l). The
inverse process is not possible. In contrast to conven-
tional spin interactions [55], these unidirectional interac-
tions are thus fundamentally non-Hermitian, and can not
be obtained in a closed system.

3. Multi-waveguide Chiral Master Equation

In a more general context one can consider spins cou-
pled not only by one, but by several chiral waveguides as
depicted in Fig. 1(b). These additional waveguides, la-
beled by m = 1, ...,M , are arranged such that the order
of the spins along each of them differs. We are interested
in the situations where each of these waveguides cou-
ples to each spin at most once, excluding, for example,
loops. Since the different waveguides are independent,
it is straightforward to generalize the chiral ME from a
single- to a multi-waveguide network, where each waveg-
uide gives an additive contribution analogous to Eq. (4).
Denoting by γ(m)

λ the decay rates of the spins into modes
propagating in directions λ = L,R along waveguide m,
the ME for multiple chiral waveguides reads

ρ̇ = − i
~

[
Hsys +

∑
m,λ

H
(m)
λ , ρ

]
+
∑
m,λ

γ
(m)
λ D[c

(m)
λ ]ρ. (11)

Analogous to the single waveguide case, the coherent
contributions from each waveguide H(m)

λ , and the cor-
responding collective jump operators c(m)

λ are given by

H
(m)
λ ≡

−i~λγ(m)
λ

2

∑
j,l

θ(xmj −xml )
(
eik|x

m
j −x

m
l |σ†jσl−h.c.

)
,

(12)

c
(m)
λ ≡

∑
j

e−ikλx
m
j σj . (13)

Here we denoted the position of spin j along waveguidem
by xmj and assigned the values λ = {1,−1} corresponding
to λ = {R,L}. The symmetry breaking γ(m)

L 6= γ
(m)
R in

the coupling to each reservoir, introduces an explicit de-
pendence of the reservoir-mediated coherent term on the
ordering of the spins along each waveguide, as reflected
by the Heaviside-function θ(x) in Eq. (12), with θ(x) = 1
for x > 0 and θ(x) = 0 for x ≤ 0.

This chiral networks allow to couple the spins in multi-
ple ways, offering a variety of possibilities to create multi-
partite entangled states as we illustrate in the next sub-
section.

C. Dynamical Purification of Spin Multimers

The master equations presented above describe the
spin networks as a driven, open many-body system,
whose dynamics drive the system into a steady state
ρ(t)

t→∞−−−→ ρss. Generally, this steady state is mixed,
but under special circumstances the interplay between
driving and dissipation leads to a pure steady state
ρss = |Ψ〉 〈Ψ|, which in the language of quantum op-
tics is called a dark state [56]. There are a variety of
paradigmatic examples of this in quantum optics, includ-
ing optical pumping [57] and laser cooling [58], where the
internal or motional states of atoms, respectively, are dis-
sipatively purified to a reach a steady state with a lower
temperature.

We will show below that for a spin ensemble coupled
via a chiral network (γL 6= γR), there is a set of suffi-
cient conditions under which the steady state is pure. In
particular, for a single-waveguide network this set is:

(i) The spacing between spins is commensurate with
the wavelength of reservoir excitations such that
k|xj − xl| = 2πn, with n an integer.

(ii) All spins are driven symmetrically, Ωj = Ω.

(iii) The total number of spins N is even.

(iv) The detuning pattern δj (j = 1, . . . , N) is such that
detunings cancel in pairs. That is, for each spin
j with detuning δj , there is another spin l with
δl = −δj .

With conditions (i) and (ii) the chiral master equation
(4) can be written as

ρ̇ =− i
[
Ω(c+ c†)−

∑
j

δjσ
†
jσj−

i∆γ

2

∑
j>l

(σ†jσl − σ
†
l σj), ρ

]
+ (γL + γR)D[c]ρ, (14)

where condition (i) allows to express the dissipative part
in terms of a single collective jump operator c = cR =
cL =

∑
j σj . In the bidirectional case, this condition

leads to a complete absence of dipole-dipole interactions
[cf. Eq. (8)]. In Eq. (14), however, owing to the asym-
metry between decay rates ∆γ ≡ γR − γL > 0, spin-
spin interactions are still present. Moreover, this chiral-
ity breaks the permutation symmetry between the spins,
which is crucial for the uniqueness of the steady state.

If conditions (iii) and (iv) are also fulfilled, the steady
states of Eq. (14) are always pure and multipartite entan-
gled, and their structure is determined by the detuning
pattern δj . In general, the steady state factorizes in a
product of Nm adjacent multimers:

|Ψ〉 =

Nm⊗
q=1

|Mq〉 , (15)
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where each multimer state |Mq〉 is aMq-partite entangled
state of an even number of spins Mq ≤ N . Specifically,
it takes the form

|Mq〉=a(0) |g〉⊗Mq+
∑
j1<j2

a
(1)
j1,j2
|S〉j1,j2 |g〉

⊗Mq−2

+
∑

j1<j2<j3<j4

a
(2)
j1,j2,j3,j4

|S〉j1,j2 |S〉j3,j4 |g〉
⊗Mq−4

+. . .+
∑

j1<···<jMq

a
(Mq/2)
j1,...,jMq

|S〉j1,j2 . . .|S〉jMq−1,jMq
, (16)

where |S〉j,l ≡ (|g〉j |e〉l−|e〉j |g〉l)/
√

2 denotes the singlet
state between two spins j and l. These clusters contain
superpositions of up to Mq/2 (delocalised) singlets, but
no other spin-excitations.

As an illustrative example, in Fig. 2 we analyse the
dynamics that produce entangled pure states in a chiral
network of N = 8 spins. This will be expanded upon in
Secs. III and IV, where we analyze in detail the general

0 50 100
0.5

0.6

0.7

0.8

0.9

1

0 50 100
0.5

0.6

0.7

0.8

0.9

1

0 1000 2000 3000 4000 5000
0.6

0.7

0.8

0.9

1

B1812CB1812C

0 100 200 300 400
0.4

0.6

0.8

1

Figure 2. (Color online) Dynamical purification of a chiral
spin network of N=8 spins into different entangled multimer
steady states. As a function of time, we plot the purity of
the total state P and the purities of reduced density matrices
of different spin subsets Pj1,j2,... ≡ Tr{(ρj1,j2,...)2} to probe
the entanglement structure of the steady states. (a) Dimers
are formed when δj = 0 and γL = 0.1γR. (b) Tetramers
are formed for the indicated detuning pattern. Here δa = 0,
δb = 0.3γR and γL = 0.1γR. (c) Genuine 8-partite entangled
octamer formed as the result of coupling the spins to two
chiral channels, when driven on resonance δj = 0. For the
second chiral channel we assume γ(2)

R = γR, γ(2)
L = 0.5γR and

the order of coupling the spins is indicated above. Addition-
ally, γ(1)

L = 0.1γR and γ
(1)
R = γR. (d) Non-local dimers in a

single bidirectional channel, γL = γR. The detuning pattern
is as indicated, with δa = 0.6γR, δb = 0.4γR, δc = 0.2γR, and
δd =0.1γR. All calculations assume Ω=0.5γR.

conditions leading to these types of states. In Fig. 2(a) all
spins are driven on resonance δj=0, which results in the
spin chain dynamically purifying into dimers (i.e. Mq =
2, ∀q). Here, not only the total state purifies dynamically
(P(t)≡Tr{ρ2(t)} → 1 as t → ∞), but also the reduced
states of spin pairs (P2j−1,2j ≡ Tr{(ρ2j−1,2j)

2} → 1, as
t → ∞, ∀j = 1, . . . , 4). Throughout this work we use
the notation ρj1,j2,... to denote the reduced density op-
erator of spins {j1, j2, . . . }. On the other hand, when
driving the same chiral spin network with the detuning
pattern indicated in Fig. 2(b), the spin chain arranges it-
self into four-partite clusters, or tetramers, as indicated
by the purification of two blocks of four adjacent spins
[cf. Fig. 2(b)]. All other spin subsets are in a mixed
steady state.

It is remarkable that also in a multi-waveguide setting,
pure states of the form in Eq. (15) can be obtained under
analogous conditions as (i)-(iv) [see Sec. IVD for details].
In Fig. 2(c) we show an example with N=8 spins coupled
to two chiral waveguides in a partially reverse order, as
indicated. When driven on resonance δj=0, the spins pu-
rify into a genuine 8-partite entangled state, or octamer.
In this case only the total state purifies P(t)→ 1, while
all reduced density matrices involving fewer spins stay
mixed. While a chiral spin chain with a single waveg-
uide forms a dimerised state when driven on resonance,
the alternate “wiring” of the second waveguide is here the
key to entangle these structures.

We note that also in the case of an ideal bidirectional
waveguide (γL=γR) it is possible to prepare unique pure
steady states in specific situations. While in the chiral
setting the permutation symmetry is intrinsically bro-
ken via the chirality of the reservoir, in the bidirectional
case this can also be achieved by choosing different de-
tunings for each spin. Then, under the same conditions
as in the chiral case (i)-(iv), the system is driven into a
unique steady state. However, only bipartite dimerized
states form, but interestingly, depending on the detun-
ing pattern, these can be highly non-local. For instance,
in Fig. 2(d) we illustrate such a situation. There, the
first and last spins are driven into a non-local pure en-
tangled state, while all the other spins in between are
dynamically purified into adjacent dimers. Note that in
the absence of chirality, the coupling between subspaces
of different permutation symmetry is weaker, and corre-
spondingly the timescale to approach this steady state is
longer that in the chiral counterpart [cf. Fig. 2(b)].

D. Experimental realizations

As a final remark in this overview section, it is impor-
tant to comment on experimental possibilities to realize
these chiral spin networks. Very recently, chiral system-
reservoir interactions of the type in Eq.(3) have been re-
alized in photonic systems by coupling a Cs atom [36] or
a gold nanoparticle [35] to a tapered-nanofiber as shown
in Fig. 3(a), as well as quantum dots to photonics crys-



6

Figure 3. (Color online) Photonic and phononic realizations
of spin chains with chiral coupling to a 1D reservoir. (a)
Atoms coupled to the guided modes of a tapered nanofiber.
The directionality of the photon emission γL 6= γR stems from
coupling between the transverse spin density of light and its
propagation direction. A current experimental challenge is
the control of photon emission into non-guided modes, indi-
cated by γ′. (b) Cold atoms in an optical lattice immersed
in a 1D quasi-BEC of a second species of atoms, where latter
represents the reservoir [3, 4]. Including synthetic spin-orbit
coupling (SOC) of the quasi-BEC [44] allows to break the
symmetry of decay into left and right moving Bogoliubov ex-
citations [27].

tal waveguides [37]. Related works where directionality
of photon emission has been experimentally demostrated
or proposed can be found in Refs. [38–41]. The direction-
ality in these photonic setups is due the strong transverse
confinement of light, which gives rise to non-paraxial lon-
gitudinal components of the electric field that are differ-
ent for left and right moving photons [59, 60]. A polariza-
tion selective coupling of an emitter can therefore result
in directional coupling to the guided modes [35–37]. Note
that also optomechanical systems have been proposed to
realize a unidirectional spin chain [26].

On the other hand, a purely atomic implementation
of these chiral reservoirs, replacing photons by phonons,
has been proposed in Ref. [27] [cf. Fig. 3(b)]. There,
cold atoms in an optical lattice are immersed in a second
species of atoms representing the reservoir [3, 4]. This
reservoir gas is confined to a 1D geometry and forms
a quasi-BEC in which the Bogoliubov excitations play
the role of the guided modes. The symmetry between
left and right moving modes is broken by implementing
synthetic spin-orbit coupling of the reservoir gas [44, 45],
as detailed in Ref. [27]. Proof of principle experiments on
implementations of such quantum optical systems with
cold atoms have already been reported in Refs. [3, 4].
One of the remarkable features of this implementation

is the intrinsic absence of other decay channels outside
the waveguide [cf. Fig.3(a)], which is currently a major
challenge in photonic experiments.

III. PURE DARK STEADY STATES OF
CHIRAL SPIN NETWORKS

From a quantum optics perspective, steady states of
open systems are pure when they are dark states of the
driven-dissipative dynamics. The scope of this section
is to analyze in detail the conditions under which the
steady states of the chiral spin networks are dark, and
to establish a physical interpretation of the underlying
mechanisms. In particular, in the illustrative examples
with two and four spins, we show that the conditions
stated in Sec. II C are sufficient to cool the system into
such dark states. In Sec. IV we extend this to larger
networks.

We recall that a pure quantum state |Ψ〉 is a dark state
of the driven-dissipative dynamics [61, 62], if it is

(1) annihilated by all jump operators, and

(2) invariant under the coherent part of the dynamics,
i.e. an eigenstate of the Hamiltonian.

In the particlar case of a chiral spin network with ME
(4), the first condition reads cL |Ψ〉= cR |Ψ〉= 0, which
means that the system does not emit photons at both
output ports of the waveguide (hence the term “dark”).
The second condition is fulfilled if (Hsys+HL+HR) |Ψ〉 =
E |Ψ〉, i.e. if the state is an eigenstate of the total Hamil-
tonian, consisting not only of the system part Hsys, but
also of the bath mediated coherent parts HL and HR.
In general, these two conditions can not be satisfied at
the same time, inhibiting the existence of a dark state.
To understand why and when they can be satisfied si-
multaneously it is instructive to first consider the simple
example of only two spins coupled by a chiral waveguide,
since it contains many of the essential features, and will
serve as a building block to understand larger systems.

A. Two spins coupled by a chiral waveguide

The dark state condition (1) restricts the search for
dark states to the nullspaces of the two jump operators
cL and cR. The nullspace of cL = σ1 + eik|x2−x1|σ2 is
spanned by the trivial state |gg〉 and the state |ΨL〉 ≡
(|ge〉−eik|x2−x1| |eg〉)/

√
2. The latter does not emit pho-

tons propagating to the left because of destructive in-
terference of the left-moving photons emitted by the two
spins, an effect well known as sub-radiance [47, 63]. How-
ever, this sub-radiant state in general decays by emitting
photons travelling to the right, i.e. cR |ΨL〉 6= 0. On the
other hand, the nullspace of cR = σ1 + e−ik|x2−x1|σ2 is
spanned by |gg〉 and |ΨR〉 ≡ (|ge〉−e−ik|x2−x1| |eg〉)/

√
2,

where again, |ΨR〉 is sub-radiant with respect to emission
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Figure 4. (Color online) A chiral waveguide couples two spins
that are separated by a distance commensurate with the pho-
ton wavelength. They are additionally driven homogeneously
(Ω1 =Ω2 =Ω) and with opposite detunings (δ1 =−δ2 =δ). (a)
The super-radiant collective decay couples dissipatively only
the spin triplet states. The spin singlet |S〉 does not emit into
the waveguide (sub-radiance) and couples coherently only to
|T 〉. (b) The level diagram of states |gg〉, |S〉 and |T 〉 resemble
a Λ-system and thus there is a dark state |D〉 in the subspace
spanned by |S〉 and |gg〉.

of photons to the right, but in general emits photons to
the left. As a consequence, only the trivial state |gg〉 is
in general annihilated by both jump operators, leaving
no room for a nontrivial dark state. An exception occurs
if the distance of the two spins is an integer multiple of
the wavelength of the photons, that is if k|x1−x2|=2πn
with n = 0, 1, 2, . . . [64]. Then the two jump operators
coincide cL=cR=c= σ1 +σ2 (up to an irrelevant phase),
and the common nullspace is spanned by the two states
|gg〉 and |S〉 ≡ (|ge〉 − |eg〉)/

√
2. The so-called singlet

state |S〉 is then perfectly sub-radiant with respect to
both, photons propagating to the right and photons prop-
agating to the left. On the other hand the triplet state
|T 〉 ≡ (|ge〉+ |eg〉)/

√
2 is super-radiant, that is, it decays

with 2(γL+γR) [cf. Fig. 4]. We note that in the perfectly
cascaded setup this condition on the distance of the spins
is not required, since in this case there is only one jump
operator [cf. Eq. (9)].

As mentioned in Sec. II C, condition (2) can be satisfied
if the two spins are driven with the same Rabi frequency
Ω1 = Ω2 ≡ Ω and opposite detunings δ1 = −δ2 ≡ δ. This
can be most easily realized by expressing the Hamiltonian
H = Hsys +HL +HR in the basis of singlet |S〉 and the
triplet states |gg〉, |T 〉 and |ee〉 as

H

~
=
√

2Ω(|T 〉〈gg|+|ee〉〈T |)+

(
δ− i∆γ

2

)
|S〉〈T |+h.c. (17)

The level scheme and the corresponding coherent and
dissipative couplings of the two spins are depicted in
Fig. 4(a). There the states |gg〉, |S〉 and |T 〉 resemble
a so-called Λ-system with resonant couplings from the
stable states |gg〉 and |S〉 to the super-radiant state |T 〉.
In the nullspace of c, one can thus find a transforma-
tion from |gg〉 and |S〉 to a dark state |D〉 and a bright
state |B〉 [cf. Fig. 4(b)]. The state |D〉 decouples from

the coherent dynamics due to destructive interference of
the coherent drive, chiral interactions and detunings, and
thus is an eigenstate of H. Explicitly it is given by

|D(α)〉 ≡ 1√
1 + |α|2

(|gg〉+ α |S〉) , (18)

where α ≡ −2
√

2Ω/(2δ + i∆γ) is the singlet fraction.
Fig. 4(b) shows the coherent and dissipative couplings
in this transformed basis. The two spins are dissi-
patively “pumped” into this dark state on a timescale
tD ≡ 2π/γeff , where the effective decay γeff reads

γeff =
2(γL + γR)(∆γ2/4 + δ2)

∆γ2/4 + δ2 + 2Ω2
. (19)

With this picture it is simple to understand the two
requirements Ω1 =Ω2 and δ1 =−δ2, necessary for the ex-
istence of a pure steady state. An inhomogeneous Rabi

Figure 5. (Color online) Deviations from the dark state con-
ditions for N = 2 and their effect on the dark states. (a) A
non-homogeneous drive Ω̃=Ω1−Ω2 6=0 couples |S〉 coherently
to |ee〉 and |gg〉, inhibiting the formation of a dark state. (b)
An homogeneous off-set in the detunings ∆ = (δ1+δ2)/2 6= 0,
destroys the Raman-resonance between the states |S〉 and
|gg〉. (c) Decay processes for spins at arbitrary distance, i.e.
non-commensurate with the wavelength. The state |S〉 is
in general not perfectly sub-radiant and thus decays to the
state |gg〉. (d) Additional decay channels such as emission of
the spins into independent reservoirs different from the chiral
waveguide also lead to a decay of the singlet state.
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Figure 6. (Color online) Purity of the steady state for N = 2
if the dark state conditions are not met [cf. Fig. 5]. (a) Shown
as a function of an homogeneous offset in the detuning ∆
and a staggered component of the coherent drive Ω̃. (b) As
a function of the distance between the spins relative to the
wavelength (modulo integers) and a onsite decay γ′. Param-
eters are Ω/γR = 0.5, δ/γR = 0.3 and γL/γR = 0.5.

frequency leads to a coherent coupling of the singlet state
|S〉 to the states |gg〉 and |ee〉 with strength

√
2Ω̃, where

Ω̃ ≡ Ω1−Ω2 [cf. Fig. 5(a)], inhibiting the existence of
an eigenstate of the Hamiltonian in the nullspace of c.
On the other hand, if the detunings are not exactly op-
posite, but rather have an additional homogeneous off-
set ∆ ≡ (δ1 + δ2)/2 6= 0, this gives rise to a non-zero
“two-photon” Raman detuning between states |S〉 and
|gg〉. Effectively this leads to a coupling between the
ideal dark state |D〉 and the bright state |B〉, inhibiting
the formation of a stationary dark state [cf. Fig. 5(b)].
Similarly, also other imperfections are simple to under-
stand in this picture. For example we show in Fig. 5(c),
the dissipative couplings if the commensurability con-
dition (i) is not met. As discussed above, the singlet
is no longer in the nullspace of both jump operators
cL, cR and decays with a rate γ−, where we denoted
γ± ≡ (γL + γR)[1 ± cos(k|x2 − x1|)]. In addition, an
experimentally relevant question is the effect of a finite
decay to dissipative channels other than the chiral waveg-
uide [35, 36]. This would introduce an additional term
γ′(D[σ1]ρ+D[σ2]ρ) to the chiral ME (4). Since the sin-
glet |S〉 is not in the nullspaces of these two additional
jump operators σ1 and σ2, the pure dark state does not
survive [cf. Fig. 5(d)]. In Fig. 6 we quantify the decrease
in the purity P ≡Tr{ρ2

ss} of the steady state of the chi-
ral ME (4), when considering different deviations of the
dark state conditions disussed above. In general, one
finds that the steady state is close to pure if these devi-
ations are small compared to the rate γeff at which the
dark steady state would be formed in the ideal setup, i.e.
Ω̃,∆, γ−, γ

′ � γeff .

As a final remark in this subsection we note that the
dimers are formed al long as the permutation symmetry
between the two spins is broken, i.e. as long as ∆γ 6= 0 or
δ 6= 0. Else the singlet and the triplet manifold decouple
[cf. Fig. 4(a)] and the steady state is not unique.

B. Four spins coupled to a chiral waveguide

To gain insight in the general structure of dark states
of longer spin chains, we consider here the case of N = 4
spins. This system is still small enough to find analyti-
cal solutions and allows to show that conditions (i)-(iv)
are necessary and sufficient to obtain dark states (up to
trivial exceptions). Moreover, it will pave the way to the
more general discussion of larger networks in Sec. IV.
Note that N =3 spins do not allow for pure dark states,
as direct search shows.

As in Sec. III A we start by identifying the nullspace
of the jump operators cL and cR. Again, its dimension
depends on the distances between the spins with respect
to k, and is maximal if both jump operators coincide cL =
cR = c, that is, if the commensurability condition (i) of
Sec. II C is fulfilled. The corresponding nullspace is then
spanned by states in which excitations of the spins are
always shared in singlet states |S〉j,l between two spins j
and l, while all other spins are in the state |g〉. Therefore,
condition (1) restricts the possible dark states to states
of the form [cf. Eq. (16)]:

|Ψ〉 = a(0)|gggg〉+a(1)
12 |S〉12|gg〉34+a

(1)
34 |S〉34|gg〉12

+a
(1)
13 |S〉13|gg〉24+a

(1)
14 |S〉14|gg〉23+a

(1)
23 |S〉23|gg〉14

+a
(1)
24 |S〉24|gg〉13+a

(2)
1234|S〉12|S〉34

+a
(2)
1324|S〉13|S〉24+a

(2)
1423|S〉14|S〉23. (20)

One can easily check that this subspace for four spins
is six-dimensional. Note that any violation of the com-
mensurability condition leads to a second (independent)
jump operator, which reduces the dimension of this sub-
space, inhibiting in general a simultaneous fulfilment of
the dark state conditions (1) and (2). To see that states
of the form in Eq. (20) indeed span the full null-space of
c it is instructive to add the four different spins-1/2 to a
total angular momentum. For example, one can add the
first two spins to form a spin-0 and a spin-1 system as
in the N = 2 case, and analogously the last two spins.
Adding these spins, one obtains two spin-0, three spin-1
and one spin-2 system [cf. Fig. 7]. Note that the collective
jump operator c =

∑
j σj is simply the lowering operator

of the collective angular momentum, such that in each of
these six manifolds there is exactly one state, namely the
one with the minimum eigenvalue of the z-component of
the total angular momentum Jz≡

∑
j(σ
†
jσj−σjσ

†
j ), which

is annihilated by c [cf. red states in Fig. 7].
Dark states can be formed if Hsys + HL + HR has an

eigenstate in this nullspace. As in the N = 2 case, this
happens only when all spins are driven homogeneously
Ωj = Ω, implying that the driving terms ∼ Ω couple
only states within the same angular momentum mani-
fold [cf. vertical arrows in Fig. 7]. On the other hand, the
reservoir mediated spin-spin interactions ∼ ∆γ, as well as
differences in detunings ∼ δj , couple only states with the
same number of excitations [cf. horizontal dashed lines



9

Figure 7. (Color online) Level diagram of the N = 4 spin
system in a total angular momentum basis, obtained by first
adding the subspaces of spin 1 with 2 and spin 3 with 4, sep-
arately. The resulting 16 states are grouped in 6 angular mo-
mentum manifolds of given total angular momentum, which
ranges from 0 to 2 (see text). In each manifold, states are or-
dered by increasing number of excited spins, i.e. eigenvalue of
Jz (see text). The coherent driving ∼Ω and dissipative terms
∼ (γL+γR) couple them vertically. The interactions ∆γ and
different detunings ∼ δj couple states of different manifolds,
but conserve the number of excitations. The nullspace of the
collective jump operator c =

∑
j σj is spanned by the 6 states

marked in red. All these are superpositions of products of
singlet |S〉j,l≡(|ge〉−|eg〉)/

√
2 and |g〉j |g〉l states between the

different spins j, l, as indicated in the figure.

in Fig. 7]. It is a straightforward calculation to show
that the existence of dark states, that is eigenstate of
Hsys + HL + HR in the six-dimensional nullspace of c,
requires the detunings δj to vanish in pairs. For N = 4
spins there are three different possibilities to satisfy this:

(I) δ1 + δ2 = δ3 + δ4 = 0,

(II) δ1 + δ3 = δ2 + δ4 = 0,

(III) δ1 + δ4 = δ2 + δ3 = 0.

The structure of the steady state thereby depends on the
structure of this detuning pattern. Note that all three
cases can be obtained from each other by permutations
of the detunings.

1. Dimerization

If the detuning pattern is of the form (I), one finds that
the dark state decouples into two dimers:

|Ψ〉 = |D(α1)〉12 |D(α3)〉34 . (21)

The dimers |D(α1)〉12 and |D(α3)〉34, formed between be-
tween the first and the second spin-pair, respectively, are
of the same form as Eq. (18), with singlet fractions αj
defined as

αj ≡
−2
√

2Ω

2δj + i∆γ
. (22)

As it is evident from Eq. (21), under these conditions the
dark state is two-partite entangled. This dimerised state

is the straightforward generalization of the N = 2 case
presented in Sec. III A. Each of the two spin pairs thereby
goes separately into a dark state, scattering no photons
into the waveguide, and thus allowing also the other pair
to reach its corresponding dark state. In the next section
we show that this concept generalizes to chains with any
even number of spins N .

2. Tetramer

If the detuning pattern is not of the form (I), but ful-
fils (II) or (III) the dark state is fully four-partite en-
tangled. The corresponding tetramer states, which are
special cases of the general multimer in Eq. (16), read

|Ψ〉∝|gggg〉+a(1)
12 |S〉12|gg〉34+a

(1)
34 |S〉34|gg〉12

+a
(1)
13

(
|S〉13|gg〉24+|S〉14|gg〉23+|S〉23|gg〉14+|S〉24|gg〉13

)
+a

(2)
1234|S〉12|S〉34+a

(2)
1324(|S〉13|S〉24+|S〉14|S〉23). (23)

where the explicit form of the coefficients a(m)
j1,...,j2m

∝Ωm

is given in Appendix B. Interestingly, in the strong driv-
ing limit Ω → ∞, this tetramer takes the form |Ψ〉 ∝
|S〉12|S〉34 + |S〉13|S〉24 + |S〉14|S〉23, reminiscent of a va-
lence bond state [55].

3. Non-local dimers in bidirectional bath

The formation of such a tetramer relies heavily on
the broken symmetry between γL and γR. In fact, if
∆γ = 0, no four-partite entangled state can be formed in
the dissipative dynamics. As already seen in the N = 2
case, unique pure steady states exist also in the bidi-
rectional case (under the same conditions as in the chi-
ral case), if the permutation symmetry is broken via
δj 6= 0. However, a direct calculation [cf. Appendix B]
shows that they are always dimerized. Remarkably, when
the detuning pattern is of the form (II) or (III) [but
not of the form (I)], these dimers are non-local since
the dark state factorizes as |Ψ〉 = |D(α1)〉13 |D(α2)〉24
or |Ψ〉= |D(α1)〉14 |D(α2)〉23, respectively. In these two
last cases pairs of non-neighbouring spins are entangled,
but they decouple from adjacent spins due to quantum
interference. In Fig. 2(d) we show an example of this be-
haviour in the case of N = 8, where spins 1 and 8 form a
non-local dimer in steady state. In Sec. IVE we discuss
this in the general context of networks with arbitrary
even N .

IV. PURE STEADY STATES IN SYSTEMS
WITH N SPINS

In this section we want to extend the discussion of
Sec. III to dark states of networks with an arbitrary
number of spins that coupled to one or many chiral
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waveguides. The analysis presented above for two and
four spins will thereby serve as guide. In particular, we
show that the conditions (i)-(iv) already anticipated in
Sec. II C, are sufficient for a system to have a unique
pure dark state if N is even. In addition, we show that
the structure of this steady states is in general of the form
given in Eqs. (15)-(16), i.e. the system factorizes into a
product of clusters, and we connect this structure to the
properties of the bare spin system, in particular to the
detuning pattern δj .

A. Cascaded Channel and Dimerization

We first take a detour [cf. Sec. IVA] and consider not a
chiral, but a cascaded setup instead. The cascaded prob-
lem is simpler, inasmuch the unidirectional flow of infor-
mation allows an analytic solution from “left to right”.
Using this property, it was shown in Ref. [26] that the
steady state of a cascaded spin system (under conditions
specified below) has a unique pure steady state in which
the system dimerizes, i.e. the steady state is of the form

|Ψ〉=
N/2⊗
j=1

|D(α2j−1)〉2j−1,2j . (24)

Here each spin j = 1, . . . , N , pairs up with one of its
neighbours to form a dimer and decouples from the rest
of the chain.

To this end, let us consider a system of N spins that
are coupled via a unidirectional channel as described by
the cascaded ME (9). A defining property of Eq. (9) is
that information flows only in one way, specifically in the
propagation direction of the photons along the unidirec-
tional waveguide. While this is evident from the physical
picture underlying the ME, one can also see this also on
a formal level. For example, it is possible to calculate the
equations of motion for the “first” or “leftmost” spin along
the cascaded channel, by simply tracing out the degrees
of freedom of all other spins in Eq. (9), obtaining

ρ̇1 =− i[−δ1σ†1σ1 + Ω1(σ1 + σ†1), ρ1] + γRD[σ1]ρ1. (25)

The above ME (25) is closed, meaning that the first spin
is independent on the state of all other spins and re-
flecting the unidirectionality of the system. Note that
Eq. (25) is the well-known optical Bloch equation for a
single driven two-level system and thus its steady state
is in general mixed.

More interesting is the equation of motion for the den-
sity operator of the first two spins ρ1,2, which is obtained
from Eq. (9) analogously to Eq. (25) and reads

ρ̇1,2 =− i
∑
j=1,2

[−δjσ†jσj+Ωj(σj+σ
†
j ), ρ1,2]

− γR
2

[σ†2σ1−σ†1σ2, ρ1,2] + γRD(σ1+σ2)ρ1,2. (26)

Again, the equation of motion of the first two spins does
not depend on the state of any other spin, since the first
two spin do not notice the presence of the others in the
cascaded setup. Importantly, Eq. (26) is a special case
(with ∆γ = γR) of the chiral master equation for two
spins, already analysed in Sec. III A. There we showed
that after a characteristic time tD [cf. Eq. (19)], the two
spins dynamically purify into the dimer state |D(α1)〉 in
Eq. (18), provided δ2 = −δ1 and Ω2 = Ω1 = Ω. The
corresponding singlet fraction is given as in Eq. (22), but
here with ∆γ = γR.

Since this state is pure, the first two spins can not
be entangled with any of the other spins and thus the
state of the total system for times t � tD has the
form ρ(t) = |D〉1,2〈D| ⊗ ρ3,...,N (t). Once the first two
spins are in the dark state |D〉1,2, they no longer scat-
ter photons and therefore do not affect the dynamics of
any of the other spins. The equation of motion for ρ3,4

then decouples not only from spins {5, . . . , N} due to
the cascaded nature of the problem, but also from the
first pair forming the dark state. The ME for ρ3,4 is
therefore closed and given by an expression analogous to
Eq. (26). As for the first pair, also this second pair is
driven into the pure dark state |D(α3)〉3,4 if δ4 = −δ3
and Ω4 = Ω3 = Ω. This argument can be iterated to
show that the dimerized state in Eq. (24) is the unique
steady state of a cascaded spin chain with an even num-
ber of spins N , driven homogeneously Ωj = Ω, and with
a “staggered” detuning pattern δ2j = −δ2j−1, j = 1 . . . N .
Remarkably this iterative purification from left to right
is not only a mathematical trick to solve for a dark state,
but it is also realized physically, meaning that the cas-
caded system is indeed dynamically purified from left to
right, as shown in Fig. 8(a). There we numerically cal-
culate the time-evolution of the entropies of spin pairs,
Si,j ≡ −Tr{ρi,j ln ρi,j}, signalling the successive forma-
tion of dimers as S2j−1,2j → 0, for different pairs at dif-
ferent times. They are separated by the relaxation times
tD given in Eq. (19) and the timescale to form the full
dimerized state is in the cascaded setup is proportional
to the number of spins tss ∼ NtD/2 [65].

If the total number of spins is odd, all spins except
the last one are driven into such dimers. This last spin
simply factorises off and goes to a mixed steady state, as
its dynamics is described by a ME of the same form as
Eq. (25), once all other spins reach the dimerized dark
state [cf. Fig. 9(a)].

B. Dimerization in a Chiral Channel

For spins coupled to a chiral channel (0 < γL < γR), an
iterative solution for the steady state as in the cascaded
setup is not possible due to the non-unidirectional flow
of information. However, we have already seen for N = 2
and N = 4 that the generic chiral ME (4) also has dark
steady states if the general conditions (i)-(iv) of Sec. II C
are satisfied. We show below that this holds true also for
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Figure 8. (Color online) Dynamical purification in the cascaded setup (γL =0, first row), chiral setup (γL =0.5γR, second row)
and bidirectional setup (γL =γR, third row). We show the entropies of reduced density matrices Sj1,j2,... of spins {j1, j2, . . . }
(colored solid lines) and the purity of the total state P (dashed black lines) as a function of time. In the first column the
detuning pattern is chosen such that the steady state dimerizes, which is signalled by a vanishing entropy of the reduced
density matrix of the corresponding spin pairs (see text). While in the cascaded setup the system purifies from left to right, in
the chiral case the system purifies as a whole. In the second column the detuning pattern is chosen such that the steady state
breaks up into a tetramer and two dimers. The last two columns show analogous situations for detuning pattern corresponding
to two tetramers and an octamer, respectively. Note that in the bidirectional case (γL = γR, last row), the steady state is always
dimerized, but the dimers can be nonlocal, depending on the detuning pattern. Other parameters are Ω = 0.5γR, δa = 0.6γR,
δb = 0.4γR, δc = 0.2γR and δd = 0.1γR.

arbitrary even N .
We start by showing that under the same conditions

as in the cascaded case, also the chiral ME (4) drives the
spins into a dimerised steady state, which in Sec. IVC is
the starting point to obtain more complex multi-partite
entangled dark states. Since the solution of the cascaded
ME relies heavily on its unidirectional character, it is
quite remarkable that it is this solution that allows us to
construct also the dark states of its chiral counterpart.
In fact any dark steady state of the cascaded system can
be obtained also in a chiral setup, as we show in the
following.

First, we note that under condition (i) of Sec. II C one
finds the relations

γRHL = −γLHR, cL = cR. (27)

and thus the chiral ME (4) can be written as a sum
of a cascaded Liouvillian, whose strength is replaced by

∆γ ≥ 0, and an additional Lindblad term with the single
collective jump operator cR of strength 2γL:

ρ̇=− i
~

[
Hsys+

∆γ

γR
HR, ρ

]
+

∆γ

γR
D[cR]ρ+2γLD[cR]ρ. (28)

As shown in the Sec. IVA, the dimerized state is the
unique pure steady state of the cascaded part of Eq. (28).
By construction this dark state is annihilated by the sin-
gle collective jump operator cR, such that it is also a dark
state of the additional term in the chiral setup. Thus,
any unique pure steady state of the cascaded ME, is also
the steady state of the corresponding chiral ME, with
the identification γR → ∆γ. Moreover, it is also guaran-
teed to be unique as long as ∆γ > 0. In particular, the
dimerized state (24) is also the steady state of the chiral
ME, where only the singlet fraction (22) is renormalised
with respect to the cascaded case. We note that this con-
struction requires ∆γ 6= 0 and thus can not be extended
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Figure 9. (Color online) Typical behaviour of a system with
an odd number of spins in the case of N = 7. We show
the entropies of reduced density matrices Sj1,j2,... of spins
{j1, j2, . . . } (colored solid lines) and the purity of the total
state P (dashed black lines) as a function of time. (a) In
the strict cascaded limit (γL = 0), dimers are formed, but
the last spin stays mixed and renders the steady-state non-
dark [cf. red and black dashed curves]. (b) If γL 6= 0 the
steady state is mixed, and no sub-structure is formed. Other
parameters are the same as in Fig. 8(a-b).

naively to the bidirectional setting of Sec. II B 1. This
special case will be discussed in Sec. IVE.

Note that the treatment of the cascaded case can not
be extended to the chiral one if the number of spins
is odd. In the cascaded setup, even though dimers are
formed, the last unpaired spin scatters photons and thus
the state is not dark [cf. Fig. 9(a)]. However, only dark
states of the cascaded ME are also steady in the chiral
pendant. From a physical point of view this is clear,
since the unpaired spin in the chiral setting will scatter
photons to both sides of the chain and thus necessarily
disturb any dimers that may have been formed between
other spins, inhibiting a dimerization of the steady state
[cf. Fig. 9(b)].

Even though the cascaded and the chiral ME have the
same steady states (for even N), the dynamics of the
two systems in how this steady states is approached is
rather different. While in the cascaded setup the spin
chain purifies successively from left to right due to the
unidirectional flow of excitations [cf. Fig. 8(a)], in the
chiral case the system purifies “as a whole” [cf. Fig. 8(e)].

C. Multipartite entanglement in a chiral spin chain

The above discussion shows that the spin chain is
driven into a pure dimerised steady state if driven ho-
mogeneously and with a “staggered” detuning pattern
δj such that δ2j = −δ2j−1. For N = 4 we found in
Sec. III B 2 that also for permutations of this detuning
pattern the system has dark states, which are no longer
dimerized, but rather four-partite entangled. It turns out
that this concept can be generalized to any even number
of spins N . In fact, a chiral spin chain driven with a de-
tuning pattern obtained by any permutation p ∈ SN of

the staggered one, i.e.

δp(2j) = −δp(2j−1), (29)

goes into a pure steady state. Moreover, this steady state
can be multipartite entangled. For the cascaded case this
was shown in Ref. [26] and - as for the dimerized state -
the solution carries over also to the chiral setting.

Specifically, there is a unitary mapping U(p) that
leaves the chiral master equation form-invariant up to
permutations p of the detunings, and therefore the cor-
responding steady states are connected by this trans-
formation. Starting from the dimerized state |Ψ〉 one
can thus construct dark states U(p) |Ψ〉, corresponding
to MEs with more complex detuning patterns. To con-
struct U(p), we first consider the unitary transformation

Uj(ϑ) = exp

(
i
ϑ

2
~σj · ~σj+1

)
, (30)

acting on two neighboring spins j and j + 1, where
~σj ≡

(
σxj , σ

y
j , σ

z
j

)
is the vector of Pauli matrices for spin

j. One finds that for ϑ = arctan
{

(δj+1−δj)/∆γ
}
the chi-

ral ME (14) is invariant up to the swap of the detunings
δj ↔ δj+1 (cf. Ref. [26]). Therefore, on the level of the
steady states, interchanging the detunings between two
neighbouring spins corresponds to applying the entan-
gling operation in Eq. (30), on the involved subsystems.
For instance, the detuning patterns in Fig. 10(a) and (b)
differ by the exchange of δ2 ↔ δ3. This is reflected in the
structure of the corresponding steady state, inasmuch in
Fig.10(a) it is dimerized, while in Fig. 10(b) it forms a
tetramer.

Since any permutation p can be decomposed into a se-
quence of such pairwise transpositions, the correspond-
ing unitary U(p) is given by a product of pairwise trans-
formations of the form (30), and thus the structure of

Figure 10. (Color online) (a) Dimerized state as the steady
state of the chiral spin chain, when driven on resonance with
a staggered detuning pattern. (b) Tetramerized steady state,
when the spin chain is driven with a permuted detuning pat-
tern with respect to (a). (c) Simple 2-waveguide chiral net-
work with a tetramerized pure steady state. The connection
between the states generated in these 3 different situations is
outlined in Secs. IVB-IVD.



13

the steady state can be easily understood by construct-
ing it via a sequential application of these entangling
gates starting from the dimerized state. For example,
we show in Fig. 8(a-h) the time-evolution towards dif-
ferent types of “clusterized” steady states in systems of
N=8 spins, including dimerized states [cf. Fig. 8(a) and
(e)], tetramerized states [cf. Fig. 8(c) and (g)], octamers
[cf. Fig. 8(d) and (h)], but also heterogeneous cluster sizes
[cf. Fig. 8(b) and (f)]. As already discussed on the ex-
ample of the dimerized states above, also in this general
setting there is a difference between the cascaded and
the chiral setup, inasmuch the unidirectional character
of the cascaded setting is reflected in the order at which
the clusters purify.

D. Many Chiral Waveguides

A single chiral waveguide breaks the left-right sym-
metry and therefore introduces an ordering of the spins
along it. When more waveguides are involved, as de-
picted for example in Fig. 1(b), the situation becomes
more complex, since the order of the spins along each of
them can differ. Remarkably, in this more general con-
text, pure steady states are still possible. A complete
characterisation of the possible dark states in all chiral
networks described by the ME (11), is beyond the scope
of this paper, but we rather want to show this for some
simple cases. For instance, we are interested in the sit-
uation where all M waveguides couple to all N spins
exactly once and where conditions analogous to (i)-(iii)
of Sec. II C are satisfied for each waveguide. In particu-
lar, condition (i) simplifies the discussion drastically since
the jump operators corresponding to emission of photons
at both outputs of all waveguides are then the same, and
equal to the collective jump operator c =

∑
j σj discussed

earlier.
The simplest nontrivial of such networks consists of

two chiral waveguides, m = 1, 2
(
with decay asymmetry

∆γ(m) ≡ γ(m)
R −γ(m)

L > 0
)
, where the order of two neigh-

bouring spins along the first and second waveguide is
interchanged. Such a system is depicted in Figure 10(c).
It turns out that the corresponding ME can be unitarily
mapped to the one of a set of spins coupled to a single
chiral waveguide (14), with different detunings. In fact
one can show that this is achieved via the unitary given
in Eq. (30) with a choice of ϑ such that

tan(ϑ) =
δj−δj+1±

√
(δj − δj+1)2+4∆γ(1)∆γ(2)

2∆γ(1)
. (31)

Under this transformation, this two-waveguide network
maps onto a single-waveguide one with γL = γ

(1)
L + γ

(2)
L

and γR = γ
(1)
R + γ

(2)
R . Moreover, the detunings of spins

j and j + 1 transform as δj → (δj + δj+1)/2 + ε/2 and
δj+1 → (δj + δj+1)/2− ε/2, with

ε ≡(∆γ(1)+∆γ(2)) sin(2ϑ)+(δj − δj+1) cos(2ϑ), (32)
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Figure 11. (Color online) Steady states in multi-waveguide
chiral networks. We show the entropies of reduced density
matrices Sj1,j2,... of spins {j1, j2, . . . } (colored solid lines) and
the purity of the total state P (dashed black lines) as a func-
tion of time. (a) Pure tetramerized state as dark state of a
2-waveguide network. (b) 2-waveguide network with a wire-
ing such that the steady state is mixed and without internal
structure. Parameters as in Fig. 2(c).

whereas all others are left invariant. From the discus-
sion in Sec. IVC we can thus infer that the steady
state is pure if this transformed pattern satisfies con-
dition (iv) of Sec. II C. For example, the situation de-
picted in Fig. 10(c), can be mapped into a single chi-
ral waveguide similar to Fig. 10(b) with a detuning pat-
tern δj={δa, ε/2,−ε/2,−δa} and thus has a pure steady
state.

This construction can be iterated to interchange the or-
der of more spins along the waveguides and also to intro-
duce more chiral waveguides. For example in Fig. 11(a)
we show how a two-waveguide network can be wired to
lead to a pure tetramerized steady state. However, not
every multi-waveguide chiral networks can be mapped
in this manner to a single-waveguide chiral network
[cf. Fig. 11(b) for an example] and thus a completely gen-
eral setting needs a different approach, which is beyond
the scope of this paper.

E. Special Case: Bidirectional Channel

The case γL = γR has to be treated separately, since
a unique steady state can only form if the permutation
symmetry between all spins is broken. However in the
absence of chirality ∆γ = 0, this is not guaranteed. In
particular if some detunings are equal the symmetry is
partially restored, leading to non-unique steady states,
depending on the initial conditions. On the other hand,
if all detunigs are different, the permutation symmetry
is again fully broken, and the steady state is unique also
in the bidirectional case. Additionally, if conditions (i)-
(iv) of Sec.II C are fulfilled, the steady state is dark and
-in contrast to the chiral case- always dimerizes. Spins
with opposite detuning pair up in dimers and factorise off
from the rest of the system, even if they are not nearest
neighbours. Unlike the chiral setting, these dimers can
not be entangled by interchanging the detunings of dif-
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ferent spins. This is related to the fact that the unitary
U corresponding to such a swap (cf. Eq. (30)) is not an
entangling gate for ∆γ = 0. This behaviour is illustrated
in the last row of Fig. 8. In the absence of chirality, the
coupling between subspaces of different permeation sym-
metry is weaker, and correspondingly the timescale to
approach this steady state is longer that in the chiral or
cascaded counterparts [cf. Fig. 8].

F. Remarks on less restrictive assumptions for
dark states

We remark that both conditions (i) and (ii) stated in
Sec. II C can be trivially relaxed in some situations. In
particular, for a clusterized state of the form in Eq. (15)
(with Nm ≥ 2), these conditions need to be fulfilled only
within each cluster of spins. For example, dark states
still form if the coherent driving field, Ωj , varies from
cluster to cluster. Similarly, the spacings of the spins has
to be commensurate with the photon wavelength only
for spins within each cluster. This simply reflects the
fact that each cluster can be dark independently, since in
that case it does not emit any photons into the waveguide
and thus completely decouples from all other spins.

G. Imperfections

A important question, so far discussed only on the
example of N = 2 spins in Sec. III A is the error-
susceptibility of the steady state against various type
of imperfections. In Fig. 12 we numerically calculate
the error robustness for different kind of setups as a
function of the size of the spin chain N . In particu-
lar, in Fig. 12(a) we show the effect of a homogeneous
offset ∆ on top of detuning patterns that would be
consistent with pure steady states. For a finite ∆ the
steady state is no longer pure and its purity decreases as
P = 1− (1/2)(∆/∆0)2 +O(∆4), such that the the error
susceptibility is quantified by ∆0. This type of error is
only of second order in ∆, since P(∆) = P(−∆), which
can be shown by noting that the ME corresponding to
∆ and the one corresponding to −∆ can be unitarily
mapped into each other. One can very clearly see that
the error susceptibility increases with system-size, and
moreover that the chiral setting is more vulnerable than
the cascaded counterpart. This can be understood intu-
itively, since any imperfection will disturb the formation
of the dark state, e.g. dimers. Moreover, an imperfectly
formed dimer scatters photons affecting also the other
parts of the system. While all pairs can be disturbed by
such photons in the chiral setting, in the cascaded setting
they act as an additional perturbation only on pairs on
its left.

In Fig. 12(b) we show the effect of a finite on-site de-
cay of each spin with a rate γ′. In this case the purity
depends linearly on γ′, i.e. P = 1−γ′/γ′0+O(γ′2). There-

Figure 12. (Color online) Imperfections for different systems
sizes. We consider a homogeneous offset in the detuning ∆ on
top of the ideal detuning pattern in (a) and additional on-site
decay channel with decay rate γ′ in (b). For small ∆ the pu-
rity of the steady states behaves like P = 1− (1/2)(∆/∆0)2,
whereas for on-site decay, it scales linearly as P = 1 − γ′/γ′0
(see text). The figure shows the corresponding error suscepti-
bilities ∆0 in (a) and γ′0 in (b) for a systems with N = 2, 4, 6, 8
spins. Parameters: 1) and 2) show the fully N -partite en-
tangled situation with an ideal detuning pattern satisfying
δ1 = δN = 0 and δ2j =−δ2j+1 = 0.3γR, else. 3) and 4) show
the dimerized situation δj = 0. For the decay asymmetries
we choose γL/γR = 0 in 1) and 3); γL/γR = 0.3 in 2) and 4).
We further fix Ω/γR = 0.5.

fore, quantity γ′0 shown in Fig. 12(b) is a rough bound
on the maximum decay rate γ′ still allowed to see the
effect of a dynamical purification. One finds, again, that
chiral systems are more error prone than their cascaded
counterpart and that the control of the on-site decay γ′
becomes more crucial for larger systems. While such im-
perfections are in general hard to control in current pho-
tonics realizations of the spin network [19, 22], this would
be intrinsically absent in a cold atom realization [27].

H. Quantum Trajectories calculations

We can extend our calculations to larger spin chains,
for example by integrating the ME (9) using quantum
trajectories methods [66, 67]. In addition to averaging
over trajectories to reproduce expectation values associ-
ated with the ME, these methods also give us an inter-
pretation of the dynamics that would occur under con-
tinuous measurement of whether collective decay into the
waveguide had occurred as a function of time [46]. In
Fig. 13 we show example trajectories obtained by propa-
gating an initial state with all of the spins in the ground
state. Following the usual prescription, the states are
propagated under the effective, non-hermitian Hamilto-
nian, e.g. Hsys +Heff in the cascaded case, with collective
jumps under the jump operator c occurring in appropri-
ately statistically weighted timesteps [66, 67].

In Fig. 13(a) we show an example trajectory for the
cascaded case γL = 0, and we clearly see that the pu-
rity of the reduced state of each pair of spins increase
in succession as the cascaded systems evolves towards
the steady state. In this plot, we also see how in the
cascaded case the timescale for formation of the pairs in-
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Figure 13. (Color online) (a) Illustration of the time-
dependent process of formation of dimers, through a single
random trajectory in a quantum trajectories calculation, as
described in the text, with γL = 0. We plot the purity of each
spin pair j, determined by Pj,j+1 = Tr{ρ2j,j+1}, where ρj,j+1

is the reduced density operator for spins j and j+1, shown as
a function of the spin pair index j and time t. Here, we take a
chain of N = 18 spins, and choose Ω = 1.8γR. The shading is
interpolated across the plot, so that we clearly see the forma-
tion of pure spin pairs between all pairs (j, j + 1) with j odd,
while the reduced density operators for all pairs (j, j+1) with
j even remain in a mixed state. (b) Same as in (a) but with
γL = 0.05γR. We can clearly see that quantum jumps with
γL 6= 0 can lead to breakup of already formed dimers, that
tends to lengthen the process of reaching the steady state.

creases linearly with the length of the chain. The dynam-
ics of the chiral case with γL = 0.05γR are more compli-
cated, as illustrated by the equivalent example trajectory
in Fig. 13(b). With coupling in two directions, jumps can
lead to a sudden decrease in the purity of a range of dif-
ferent spins, which then reestablish their purity in the
subsequent time evolution. This type of process substan-
tially slows the dynamics as γL is increased, as predicted
also for two spins in Eq. (19).

I. Adiabatic preparation of the dark state

As a last side remark in this section, we note that
the steady states discussed here can be reached dynam-
ically in different ways. So far we considered the situ-
ation where Ω is constant in time, such that, starting
with an initial state, e.g. |g〉⊗N , the driven system will
scatter photons that leave the chiral waveguide at one
of the two output ports until the dark state is reached.
This scenario is the many-body analog of optical pump-
ing in quantum optics [57]. Alternatively, one can reach
the steady state without scattering a single photon by
changing the coherent drive time-dependently Ω = Ω(t),
and in particular turning it on slowly. Then, the system
follows adiabatically the instantaneous dark states cor-
responding to Ω(t), never leaving the non-emitting sub-
space defined by c |ψ〉 = 0 [cf. Fig. 14(a)], reminiscent
of the a stimulated Raman adiabatic passage (STIRAP)
in quantum optics [68]. In Fig. 14(b) we illustrate this
on the example of a spin chain (initially in the trivial
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Figure 14. (Color online) (a) Schematic illustration of dif-
ferent ways to “cool” to the many-body dark steady state
(see text). The thick black arrow corresponds to an adi-
abatic path, while the red arrows indicate a non-adiabatic
one. (b) Dynamical purification of a chain of N = 8 spins
into two tetramers initially in the state |g〉⊗N for a sud-
den switch on of the constant coherent driving field (dashed
lines), and for an “adiabatic” switching on of the driving
field (solid lines). The black lines correspond to the puri-
ties P of the total system in the two cases. The total num-
ber of photons leaving the system in both cases is plotted
in red; residual photons in the “adiabatic case” are due to
non-adabatic effects stemming from a finite TmaxγR = 300.
Parameters are γL/γR = 0.5, and detuning pattern chosen is
δj/γR = {0, 0.4,−0.4, 0, 0, 0.4,−0.4, 0}. (c) Total number of
photons scattered for N = 6 (solid line) and N = 4 (dashed
line) as a function of the ramp-time Tmax. Parameters are
Ωmax = 0.5γR, γL/γR = 0.5, δj/γR = {0, 0.4,−0.4, 0, 0, 0}
(solid line) and δj/γR = {0, 0.4,−0.4, 0} (dashed line).

state |g〉⊗N ) that reaches a teteramerized steady state.
For Ω(t) = Ωmax the state purity initially decreases as
the system scatters photons before it eventually puri-
fies again into the entangled steady state. For an “adi-
abatic” switching on of the driving field according to
Ω(t) = Ωmax sin2(π2

t
Tmax

) the system is almost pure, indi-
cating that it follows the instantaneous dark state from
the trivial initial state to the highly entangled final state.
Fig. 14(c) shows the total number of scattered photons
NPhoton ≡ (γL+γR)

∫ t→∞
0

dτTr{c†cρ(τ)} before the sys-
tem relaxes to the steady state as a function of the turn-
on time Tmax. One can clearly see that the total num-
ber of photons leaving the waveguide goes to zero with
Tmax →∞.
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V. MULTIPARTITE ENTANGLEMENT
DETECTION VIA FISHER INFORMATION

In this section we discuss the possibility to detect the
entanglement generated in the chiral spin networks dis-
cussed in this work. In particular, we are interested in the
possibility to witness entanglement via the Fisher infor-
mation and analyse its suitability in the present context.

Since the steady state is in general not only pure, but
also fragments into a product of multimers, state tomog-
raphy can be efficient. For periodic detuning patterns the
experimental cost for such a tomography does not scale
exponentially with the system size, but linearly. Even
though such a state tomography may be efficient, it still
may be challenging to perform since it requires local mea-
surements.

An alternative route to analyse the entanglement prop-
erties is to use entanglement witnesses. The advantage
of such witnesses is that they do not require full knowl-
edge of the state, and therefore can be determined with
a smaller set of measurements, that are potentially much
simpler to perform as compared to state tomography.
Recently, it has been shown in Refs. [28] and [69] that
the Fisher information can be used to witness multipar-
tite entanglement. Moreover, the Fisher information has
been measured in an experiment with cold atoms and
used to detect entanglement [29]. In the remainder of
this section we review some properties of the Fisher in-
formation, its relation to entanglement and analyze up to
which extent it can be used to detect the entanglement
generated in the steady state of a chiral spin network.

A. Fisher Information and Entanglement

Originally, the Fisher Information was introduced in
the context of parameter estimation [70]. There, one is
interested in distinguishing the state ρ from the state
ρθ = e−iGθρeiGθ, obtained by applying a unitary induced
by a hermitian generator G. To infer the value of θ one
performs a measurement M = {Mµ}, which in the most
general case is given by a positive operator valued mea-
sure (POVM). The Fisher information F [ρ,G,M ] quanti-
fies the sensitivity of this measurement and gives a bound
on the accuracy to determine θ as (∆θ)2 ≥ 1/F . In par-
ticular, the Fisher information is defined as [70]

F [ρ,G,M ] ≡
∑
µ

1

P (µ|θ)

(
∂P (µ|θ)
∂θ

)2

, (33)

where P (µ|θ) ≡ Tr{ρ(θ)Mµ} is the probability to ob-
tain the measurement outcome µ in a measurement of
M given the state ρ(θ).

The Fisher information for an optimal measurement,
i.e the one that gives the best resolution to determine θ,
is called quantum Fisher information, and is defined as
FQ[ρ,G] ≡ maxM F [ρ,G,M ]. On pure states it takes the

simple form [70]

FQ[|ψ〉 〈ψ| , G] = 4(∆G)2, (34)

relating the quantum Fisher information to the variance
of the generator (∆G)2 ≡ 〈ψ|G2 |ψ〉 − 〈ψ|G |ψ〉2.

There is an interesting link between quantum metrol-
ogy and entanglement, inasmuch entangled stated can
be useful to improve measurement sensitivities [71, 72].
In particular, in Refs. [28] and [69] it has been shown
that the quantum Fisher information witnesses multipar-
tite entanglement in spin systems, as the ones considered
here. For linear generators G = (1/2)

∑N
j=1 ~nj · ~σj (with

with |~nj | = 1), the quantum Fisher information of a k-
producible state, is bounded by [28, 69]

FQ[ρ,G] ≤ f(k,N) ≡ nk2 + (N − nk)2, (35)

where n is the integer part of N/k. Therefore, a quan-
tum Fisher information FQ[ρ,G] > f(k,N) witnesses
(k + 1)-partite entanglement. Notice that this criterion
also applies for the Fisher information corresponding to
any measurement M , since FQ ≥ F . To witness entan-
glement via Eq. (35) it is desirable to use a generator G
that maximises the quantum Fisher information. How-
ever, the optimal local rotation axes ~nj , corresponding
to this generator, are in general dependent on the state
and need to be determined numerically. For pure states
it is was shown in Ref. [73] that the optimal quantum
Fisher information Fmax

Q [|ψ〉 〈ψ|] ≡ maxG FQ[|ψ〉 〈ψ| , G]
is given by

Fmax
Q = max

{~nj}

N∑
i,j=1

∑
a,b=x,y,z

nai Γa,bi,j n
b
j , with (36)

Γa,bi,j ≡
1

2
〈ψ| (σai σbj + σbjσ

a
i ) |ψ〉 − 〈ψ|σai |ψ〉 〈ψ|σbj |ψ〉 .

(37)

Here σai denotes the a-th Pauli matrix on site i, and anal-
ogously nai denotes the a-component of ~ni. Thus, given
the two-spin correlation function of a pure state ,one has
to solve a quadratically constrained quadratic problem.
For a positive semidefinite Γa,bi,j , efficient numerical algo-
rithms (e.g. semidefinite programming) are known [74].
Moreover, an upper bound can be easily found in terms
of the largest eigenvalue λmax of Γa,bi,j and is given by
Fmax
Q ≤ Nλmax [73].

B. Quantum Fisher Information for steady states
of a chiral spin chain

In this section we apply the above concepts to the dif-
ferent steady states of chiral spin networks studied in
Sec. IV. In particular, we address the question whether
and up to which extent, a measurement of the (quantum)
Fisher information can reveal the multipartite entangle-
ment structure of these states.
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Figure 15. (Color online) (a) Fisher Information calculated
via Eq. (33) for a generator G = (1/2)

∑
j(−1)jσx

j and a mea-
surement of Jz =

∑
j σ

z
j , in the case of N = 6 spins driven

on resonance. The solid line shows the standard quantum
limit F = N . (b) Quantum Fisher Information calculated via
Eq. (34), for a generator G = (1/2)(σx

1 −σx
2 −σx

3 +σx
4 ) in the

case of N = 4 spins driven with a strength Ω/γR = 5 and a
detunig pattern δj = {δa, δb,−δb,−δa}. The solid lines dis-
tinguish regions where FQ detects (at least) n-partite entan-
glement (for n = 2, 3, 4). There is a parameter region where
full four-partite entanglement is detected. All calculations are
shown for a chirality of γL = 0.5γR.

In the simplest example of a dimerized steady state, the
entanglement stems from a finite overlap of each dimer
with the singlet [cf. Eq. (18)]. This singlet state is max-
imally sensitive to, e.g. staggered rotations around the
x-axis [cf. Fig. 5(a)], and thus a suitable choice for the
linear generator is given by G = 1

2

∑
j(−1)jσxj . More-

over, it turns out that the measurement of the global
operator Jz =

∑
j σ

z
j is optimal to detect such rotations

of a singlet state [75]. A measurement of the correspond-
ing Fisher information thus consists of two parts: (i) the
generator G is implemented by driving the spins on reso-
nance with a coherent driving field, where in contrast to
the homogeneous field used to drive the system into the
dimerised state [cf. Eq. (1)], the amplitudes of this probe
field have to be staggered, and (ii) determining the prob-
abilities for the different measurement outcomes of the
total spin along the z-axis, Jz. The Fisher information
can then be calculated from this probability distribution
for different values of the probe field (see Ref. [29]).

In Fig. 15(a) we calculate the corresponding Fisher in-
formation in the example of N = 6 spins coupled by
a chiral waveguide and driven on resonance. We addi-
tionally map out the region F > N , in which it detects
bipartite entanglement. The Fisher information can wit-
ness entanglement even in the presence of imperfections
such as a finite homogeneous detuning ∆, and thus the
steady state is neither pure nor dimerized. As one ex-
pects, no entanglement can be detected, if ∆ is too large.
In the ideal case (∆ = 0), and for strong driving Ω, F
saturates at the maximum value f(2, N) = 2N , consis-
tent with a 2-producible state in which N/2 singlets are
formed.

For dark states with a more complex entanglement
structure than the dimerized state, such as the tetramer

Figure 16. (Color online) Optimal directions for local rota-
tions to detect entanglement via the quantum Fisher informa-
tion. In each panel (a)-(c) we indicate the directions ~ni that
give the maximum FQ for different steady states of a chiral
spin network. We show examples of detuning patterns that
give rise to (a) a dimerized state, (b) a tetramerized state,
and (c) a fully eight-partite entangled octamer. The absolute
values of the detunigns are chosen (numerically) such that the
steady state maximises Fmax

Q . The color map on each sphere
corresponds to FQ as a function of the local rotation direc-
tion ~ni, while keeping all other ~nj (j 6= i) at their optimal
value. One finds that FQ is able to detect the bipartite en-
tanglement in the dimerised state, three-partite entanglement
in the tetramerized state and four-partite entanglement in the
octamer. Other parameters are Ω/γR = 5 and γL/γR = 0.2.

states for N = 4 spins, it is not straightforward to an-
alytically find generators and measurements that maxi-
mize the Fisher information. Nevertheless, the quantum
Fisher information reveals that an optimal measurement
can detect the full four-partite entanglement, for the sim-
ple generator G = (σx1 − σx2 − σx3 + σx4 )/2. This is shown
in Fig. 15(b) where FQ > f(3, 4) = 10 in a specific pa-
rameter region. For tetramers corresponding to detun-
ings outside this region, only three-partite, two-partite
or even no entanglement is witnessed. This reflects the
fact that not every four-partite entangled state is equally
useful for quantum metrology [73].

To explore up to which extent the Fisher informa-
tion can in principle detect the multipartite entanglement
in the clustered states obtained in the chiral networks
[cf. Fig. 16], we employ Eq. (36) to numerically find the
optimal generator and the corresponding maximal Fisher
information for steady states of different structures. In
Fig. 16 we show this maximal Fmax

Q for systems of N = 8
spins, with detuning patters leading to a dimerised state
in Fig. 16(a), a tetramerized state in Fig. 16(b) and a
full eight-partite entangled state in Fig. 16(c). The val-
ues of the detunings are thereby chosen such that the
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corresponding steady state maximises Fmax
Q . In particu-

lar, we show the directions ~nj for the optimal generator,
obtained by a numerical solution of Eq. (36) and which
give rise to the maximum quantum Fisher information.
The color code on each sphere reflects the value of FQ
as a function of the local generator direction ~ni (where
all other ~nj 6=i are fixed at the optimal value), demon-
strating the sensitivity of FQ against deviations from the
optimal generator. In general, one finds that the opti-
mal generator is not simple and in particular it is not a
global one. An optimal measurement of the Fisher infor-
mation therefore involves local rotations of the individual
spins. As we have already discussed above, in the dimer-
ized case, FQ easily detects the entanglement structure
(16 > FQ > 8) [Fig. 16(a)]. In higher entangled states,
it detects the entanglement only partially [Fig. 16(b-c)].
For example in the fully eight-partite state [Fig. 16(c)]
up to four partite entanglement is detected.

VI. SUMMARY AND OUTLOOK

In this paper we have discussed the driven-dissipative
dynamics of a many-particle spin system interacting via
a chiral coupling to a set of 1D waveguides. Our key
result is the formation of pure, multi-partite entangled
states as steady states of the dynamics. Our results were
derived within a quantum optical master equation treat-
ment based on a Born-Markov elimination of the waveg-
uides playing the role of quantum reservoirs. The emerg-
ing many-body dark states form clusters of spin states
that decouple from the reservoir. The crucial ingredient
of our scenario is the chirality of the reservoir, i.e. the
symmetry breaking in the coupling of the spins to reser-
voir modes propagating in different directions. More-
over, we have shown that the multi-partite entanglement
emerging in these systems could be detected in a mea-
surement of the Fisher information.

We conclude with several remarks on the relevance
and possible future extensions of the present work in a
broader context. While the present work has focussed
on the non-equilibrium many-particle dynamics of chi-
ral spin networks, we emphasize that chiral coupling of
spins to waveguides has immediate applications in quan-
tum communication protocols with spins representing the
nodes (stationary qubits) of a network, connected by the
exchange of photons (as flying qubits) [76]. In addition,
we emphasize the Markovian assumption underlying our
master equation treatment, which ignores time-delays in
the exchange of photons or phonons between spins. In-
clusion of time-delays and loops in these networks allows
for a connection to quantum feedback problems [77]. Fi-
nally, it would be interesting to extent the present study
to 2D geometries [39, 78].
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Appendix A: Derivation of the Chiral Master
equation

Here we derive the master equation for a collection of
spins coupled to a chiral waveguide, as given in Eq. (4).
We take a quantum optical point of view and identify the
spins as the system and the bosonic modes in the chiral
waveguide as the bath, which we will eliminate in a Born-
Markov approximation [46]. To do so it is convenient to
consider an interaction picture with respect to the bath
Hamiltonian in Eq. (2), such that the total Hamiltonian
in this frame reads Htot(t) = Hsys +Hint(t). The density
operator of the full system and bath at time t is denoted
byW (t). Since the full system is closed, it simply evolves
unitarily, W (t) = U(t)W (0)U†(t). The unitary U(t) sat-
isfies the Schrödinger equation i~ d

dtU(t) = Htot(t)U(t),
with the initial condition U(0) = 1. We choose the initial
state of system and bath as W (0) = ρ(0) ⊗ |vac〉 〈vac|,
that is, system and bath are uncorrelated initially, and
the bath is in the vacuum state. In the following we
want to derive an equation of motion for the reduced
density operator of the system ρ(t) = TrB{W (t)}, which
is obtained from the state of the full system by tracing
over the bath degrees of freedom. To this end we derive
the quantum Langevin equations of motion, and from
there we obtain the corresponding master equation. In
a slightly more general situation than the one discussed
in the main text, we allow here for the system bath cou-
plings γλ to vary from spin to spin, denoting the decay
rate for spin j by γλj .

We start with the Heisenberg equations of motion for
system operators a(t) = U†(t)aU(t) and bath operators
bλ(ω, t) = U†(t)bλ(ω)U(t). The latter is given by

ḃλ(ω, t) =

N∑
l=1

√
γλl
2π

σl(t)e
−i(ν−ω)t−iωxl/vλ (A1)

whose formal solution reads

bλ(ω, t) = bλ(ω)+

∫ t

0

ds

N∑
l=1

√
γλl
2π

σl(s)e
i(ω−ν)s−iω xl

vλ ,

(A2)
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with bλ(ω, t = 0) = bλ(ω). The Heisenberg equations for an arbitrary operator a acting on the Hilbert space of the
spins only, read

ȧ(t)=− i
~

[a(t), Hsys(t)] +
∑
λ=L,R

N∑
j=1

∫
dω

√
γλj
2π

(
b†λ(ω, t)e

i(ω−ν)t−iω
xj
vλ [a(t), σj(t)]− [a(t), σ†j (t)]bλ(ω, t)e

i(ν−ω)t+iω
xj
vλ

)
.

(A3)

Inserting the solution (A2) into Eq. (A3), denoting the quantum noise operators by bλ(t) ≡ 1√
2π

∫
dω bλ(ω)e−i(ω−ν)t

and introducing the shorthand notations xjl ≡ xj − xl and kλ ≡ ν/vλ, one obtains

ȧ(t) = − i
~

[a(t), Hsys(t)] +
∑
λ=R,L

N∑
j=1

√
γλj

(
b†λ(t− xj/vλ)e−ikλxj [a(t), σj(t)]− [a(t), σ†j (t)]bλ(t− xj/vλ))eikλxj

)

+
∑
λ=R,L

N∑
j,l=1

√
γλjγλl

2π

∫ t

0

ds

∫
dω
(
ei(ω−ν)(t−s)−iωxjl/vλσ†l (s)[a(t), σj(t)]− e−i(ω−ν)(t−s)+iωxjl/vλ [a(t), σ†j (t)]σl(s)

)
.

(A4)

Born-Markov approximation. We assume that the
timescales on which system operators evolve are much
longer than the correlation time of the bath τ ∼
1/ϑ. This is the essence of the Markov approxima-
tion [46], which allows us to perform the integrals over
ω and s in the second line of Eq. (A4), assuming that
|Ωj |, |δj |, γλj � ϑ � ν. For example (for times t >
|xjl/vλ|), we obtain

∑
l

∫ t

0

ds

∫ ν+ϑ

ν−ϑ
dω

1

2π
ei(ω−ν)(t−s)−iωxjl/vλσ†l (s)

=
∑
l

∫ t

0

ds δ(t− xjl/vλ − s)e−ikλxjlσ†l (s)

≈ 1

2
σ†l (t) +

∑
l

θ(xjl/vλ)e−ikλxjlσ†l (t− xjl/vλ). (A5)

Here, the the function θ(x) is defined via θ(x) = 1 for
x > 0 and θ(x) = 0 for x ≤ 0 and it accounts for the

time-ordering of the spins along the two propagation di-
rections.

Neglecting retardation. In the following, we will fur-
ther neglect retardation effects arising from a finite
propagation velocity of the photons and approximate
σl(t − xjl/vλ) ≈ σl(t). This approximation is jus-
tified provided |Ωj |, |δj |, γλj � |vλ|/|xjl|, that is, if
timescales on which system operators evolve are much
slower than the time photons need to propagate through
the waveguide [25, 79]. It is important to note that
even though retardation effects are neglected, the time
ordering of the spins along the waveguide is still ac-
counted for. The ordering of the quantum noise operators
bλ(ω) allows a simple evaluation of expectation values
〈a(t)〉 = TrS+B{a(t)W (0)} for initial states of the form
W (0) = ρ(0) ⊗ |vac〉 〈vac|. Using the cyclic property of
the trace and the fact that the bath is initially in the vac-
uum state (bλ(ω)W (0) = W (0)b†λ(ω) = 0), one finds that
the equation of motion for expectation values of arbitrary
system operators a is given by

〈ȧ(t)〉 = − i
~
〈[a(t), Hsys(t)]〉+

∑
λ=R,L

N∑
j=1

γλj
2

(
〈σ†j (t)[a(t), σj(t)]〉 − 〈[a(t), σ†j (t)]σj(t)〉

)
+
∑
λ=R,L

∑
j,l

kλxj>kλxl

√
γλjγλl

(
e−ikλ(xj−xl)〈σ†l (t)[a(t), σj(t)]〉 − eikλ(xj−xl)〈[a(t), σ†j (t)]σl(t)〉

)
(A6)

We note that 〈a(t)〉 = TrS+B{a(t)W (0)} = TrS+B{aW (t)} = TrS{aρ(t)}, that is, one can move the time dependence
in the expectation values for system operators to the reduced density operator. Since this above equation holds for
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all system operators, we obtain the master equation for the evolution of the system density operator ρ(t) as

ρ̇(t) = − i
~

[Hsys, ρ(t)] +
∑
λ=R,L

N∑
j=1

γλj
2

(
[σj , ρ(t)σ†j ]− [σ†j , σjρ(t)]

)
+
∑
λ=R,L

∑
j,l

kλxj>kλxl

√
γλjγλl

(
eikλ(xj−xl)[σj , ρ(t)σ†l ]− e

ikλ(xj−xl)[σ†j , σlρ(t)]
)
. (A7)

Without loss of generality, we take kR = −kL ≡ k > 0.
This can always be achieved (for a single waveguide)
by going to a different reference frame via the unitary
transformation V = exp

(
−i 1

2

∑
λ,j kλxjσ

†
jσj

)
. Simple

algebra then shows that this is equivalent to the master
equation presented in Eq. (4).

The bidirectional and the cascaded master equations
in Eq. (7) and Eq. (9) follow as special cases. It is fur-
ther straightforward to generalize the above derivation
to a chiral network and obtain the master equation (11).
A chiral network as defined in Sec. 11 simply consists
of several independent chiral reservoirs, where the loca-
tion of the spins along each of these waveguides may
change. Since these reservoirs are all independent, the
master equation is simply a sum of Liouvillians of the
form in Eq. (4) for each waveguide.

We note that we have performed a derivation of these
equations by starting with a Hamiltonian in the rotating
wave approximation. It is well known that the inclusion
of the counter-rotating terms is crucial to obtain the cor-
rect dipole-dipole interactions in three dimensions [48].
One can derive the master equation also in 1D taking
into account also the counterrotating terms [23], how-
ever, in 1D such a procedure leads to the same equation
of motion (4).

Appendix B: Explicit Dark state for N = 4 case

In this appendix we give the explicit solution of the
unique dark steady state of Eq. (14) in the case of N = 4
spins discussed in Sec. III B. As commented in Sec. III B,
the dark state can be found as an eigenstates of the co-
herent part of Eq. (14) within the subspace specified by

Eq. (20), if the detunings fulfil at least one of the condi-
tions (I)-(III) in Sec. III B. Then, with Q≡−i∆γ/2 6= 0,
the five coefficients determining |Ψ〉 in Eq. (23) read

a
(1)
12 =

Ω[2Q2 + 2δ3δ4 + (Q+ δ1)(δ3 + δ4)]√
2(Q− δ1)(Q+ δ3)(Q+ δ4)

, (B1)

a
(1)
34 =

Ω(2Q+ δ3 − δ4)√
2(Q+ δ3)(Q+ δ4)

, (B2)

a
(1)
13 =

Ω(δ3 + δ4)

2
√

2(Q+ δ3)(Q+ δ4)
, (B3)

a
(2)
1324 =

2
√

2Ωa
(1)
13

2Q− δ1 − δ2
, (B4)

a
(2)
1234 =


Ω2(δ1+δ2−4Q)

(Q−δ1)(Q+δ4)(δ1+δ2−2Q) , (I) and (II)

√
2Ω(4Q+δ3+δ4)a

(1)
34

(2Q+δ3+δ4)(2Q−δ3+δ4) , (III)

. (B5)

Notice that for the detuning pattern (I) the dark
state factorizes into dimers |Ψ〉 = |D(α1)〉12 |D(α3)〉34,
as defined in Eq. (18) with singlet fractions αj ≡
−2
√

2Ω/(2δj + i∆γ). In the case of detuning patterns
(II) and (III) the dark state is a genuine 4-partite entan-
gled tetramer. On the other hand, when the bath is fully
bidirectional (∆γ = 0), dark state solutions of Eq. (14)
also exist, provided all the detunings are nonzero and dif-
ferent [cf. Sec. III B 3]. The dark state is always dimer-
ized and the specific detuning pattern determines how the
spins pair up. For detunings (I), (II) and (III), it is given
by |Ψ〉= |D(α1)〉12 |D(α3)〉34, |Ψ〉 = |D(α1)〉13 |D(α2)〉24
and |Ψ〉 = |D(α1)〉14 |D(α2)〉23, respectively. Remark-
ably, in the last two cases the dimers are non-local
[cf. Sec. III B 3].
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