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Every measurement that can be implemented by local quantum operations and classical communi-
cation (LOCC) using an infinite number of rounds is the limit of a sequence of measurements, where
each measurement in the sequence requires only a finite number of rounds. This rather obvious and
well-known fact is nonetheless of interest as it shows that these infinite-round measurements can be
approximated arbitrarily closely simply by using more and more rounds of communication. Here
we demonstrate the perhaps less obvious result that (at least) for bipartite systems, the reverse
relationship also holds. Specifically, we show that every finite-round bipartite LOCC measurement
is the limit of a continuous sequence of LOCC measurements, where each measurement in that se-
quence can be implemented by LOCC, but only with the use of an infinite number of rounds. Thus,
the set of LOCC measurements that require an infinite number of rounds is dense in the entirety
of LOCC, as is the set of finite-round LOCC measurements. This means there exist measurements
that can only be implemented by LOCC by using an infinite number of rounds, but can nonetheless
be approximated closely by using one round of communication, and actually in some cases, no com-
munication is needed at all. These results follow from a new necessary condition for finite-round
LOCC, which is extremely simple to check, is very easy to prove, and which can be violated by
utilizing an infinite number of rounds.

PACS numbers: 03.65.Ta, 03.67.Ac

I. INTRODUCTION

Measurements play a critical role in all areas of experimental science. It is therefore necessary to un-
derstand measurements from a theoretical point of view, to answer questions as to what measurements are
possible, how their results can be interpreted, and what precisely they can tell us about the system being
measured. Such questions have taken on renewed importance since the discovery of quantum mechanics, one
reason being the so-called “measurement problem”, a problem closely related to early foundational questions
raised by Schrédinger’s cat [1], which has been much debated ever since [2-5]. With the recent explosion
of interest in quantum information and quantum computation, new questions have arisen, including in the
general area we will be concerned with here, that of measurements performed by multiple parties on spatially
separated quantum systems.

If the parties lack the ability to communicate quantum information, then they are restricted to performing
quantum operations on their individual local subsystems and then communicating classical information
about the results of their actions to the other parties. The study of these local operations and classical
communication (LOCC) protocols has proven to be extremely challenging, but they are widely applicable
in the context of quantum information theory, with examples of such applications ranging from distributed
quantum computing [6], one-way quantum computing [7], entanglement distillation 8] and manipulation [9],
to local distinguishability of quantum states |10], local cloning [11, [12], and various quantum cryptographic
protocols, such as secret sharing |13]. As a result, efforts to understand these processes have been extensive.

Every LOCC protocol implements a separable measurement (SEP) [14], and much can be learned by
studying the latter set. It is known, however, that there exist separable measurements that are not LOCC
[15]. Therefore, the study of SEP for the purpose of gaining insights about LOCC will best be accompanied
by an understanding of exactly how these two sets of measurements differ. Much has been learned about
this difference in recent years, including several results showing a gap between what can be accomplished
by SEP as opposed to by LOCC for specific tasks such as quantum state discrimination [15-25] and the
transformation of entangled quantum states [26-30]. In the latter case, it has been shown that this gap can
be sizable [28, 29]
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A number of studies have considered the significance of the number of rounds of communication used by
the parties. In the bipartite case, it has been shown that for the task of transforming a system from one
pure state to another, multiple rounds is not better than a single one [31]. In contrast, there are mixed-state
purification scenarios which require at least two rounds of communication [§]. The question of whether or not
it can be helpful to use an infinite number of rounds has also been studied. In [20], it was shown that this is
not helpful for perfect state discrimination of complete product bases, but certain random distillation tasks
[26] were used to demonstrate circumstances where infinite rounds are required [27]. The latter example
involved three parties, but a bipartite case has also been given [30] using similar ideas.

We note that many of the examples mentioned in the preceding paragraphs involve studies of quantum
channels, as opposed to what we will define as a quantum measurement (see Sec. [A] below). The latter
always includes a classical output indicating the specific outcome obtained by the measurement, in addition
to a set of operators, often referred to as Kraus operators |32], indicating how the state is transformed for each
specific outcome. While any measurement can be represented as a channel, see () below, quantum channels
are commonly understood to be lacking the ‘extra’ classical index. Our notion of measurement is also distinct
from that of a positive operator-valued measure, or POVM, in that for POVMs, only the probabilities of
the various outcomes are of interest, whereas for what we call a measurement, it is important to know how
the state of the system is transformed. In general, a POVM will be an appropriate description when the
system is to be discarded and will not be used afterward, whereas a description in terms of measurements is
required in order to describe any situation for which the specific state of the system after the measurement
will be important in what subsequently occurs. In the remainder of this paper, we will be concerned with
quantum measurements, as defined in Sec. [[Al rather than with quantum channels or POVMs.

While there has been a great deal of attention paid to the study of quantum channels, there are numerous
circumstances where measurements (according to our definition) are also of considerable interest. For exam-
ple, the original paper on entanglement distillation [33] proposes two possible methods to achieve such tasks.
Each of these methods, the procrustean method and Schmidt projection, involves the acting parties making
measurements, and then according to their outcomes, they know whether they have failed or succeeded.
In the first case, they discard their systems, whereas in the latter, their systems are maximally entangled
with each other and can be used, for example, to achieve faithful teleportation. The point is that they need
to know the classical index indicating which outcome occurred, and when the distillation has succeeded,
they can then later utilize the system. In order to do so, however, they must also know the state of the
system after the measurement. Another important example is that of syndrome diagnosis in quantum error
correction [34, 135], where any errors that have occurred must be identified before they can be corrected. In
this case, the classical index indicates which error occurred, while at the same time, the encoded informa-
tion resides in the quantum state of the system, which will therefore play a critical role after the syndrome
measurement is made. Additional examples where both the outcome number and the output state must
be known include local filtering [36] and quantum state discrimination with preservation of entanglement
[18]. Furthermore, each and every LOCC protocol is itself an example, since every such protocol involves a
sequence of measurements for each of which the outcome must be known in order to determine the next step
in the protocol, and in addition, the way in which the state of the system is transformed by that outcome
plays an important role in determining what will happen at that next step.

Here, we continue the study of infinite-round LOCC with a focus on the difference between finite-round
protocols and those that require infinite rounds. The approach we use is an outgrowth of results we’ve
discussed in a series of recent papers, the genesis of which appears in |37], where an algorithm was developed
that is capable of determining whether or not a given bipartite separable measurement can be implemented
by LOCC in any fixed, finite number of rounds of communication. This algorithm was later generalized for
use with systems involving any number of parties [38]. A key idea of this approach rests on the fact that
any set of positive operators acting on a given Hilbert space generates a convex cone, and the algorithm
proceeds by finding intersections of cones generated by subsets of the positive operators corresponding to
the measurement to be implemented [37, 138]. It was thought to be the case, and we later proved [39, 140],
that when these cones have too many extreme rays, then it is impossible for the given measurement to
be implemented by LOCC in any finite number of rounds (and is conjectured to be impossible even when
using an infinite number of rounds). This provides a necessary condition for finite-round LOCC, which was
used in [41] to demonstrate the LOCC impossibility of an infinite class of problems involving the optimal
unambiguous discrimination of quantum states.

In the present work, we provide another application of the approach outlined in the series of papers dis-
cussed in the preceding paragraph. We begin in Sec. [Tl where a new necessary condition that a measurement
can be implemented by finite-round LOCC is presented. This new condition is based on counting all distinct



rays, as opposed to just counting distinct extreme rays, as was done in |39, 40]. We will use this condition
to extend, in rather dramatic fashion, the result by Chitambar [27] of the existence of measurements that
require infinite rounds, showing that such examples are, in fact, ubiquitous. In Sec. [[II, we give a specific
example of a two-qubit measurement that violates this condition, and then we construct an infinite-round
LOCC protocol that implements this measurement exactly. This necessary condition therefore provides the
first completely general approach (by which we mean an approach applying to every LOCC measurement,
as opposed to a subset such as only those measurements used for state discrimination [20, [25]) to distin-
guishing between measurements that can be implemented by finite-round LOCC and those that can only be
implemented using an infinite number of rounds. In Sec. [Vl we demonstrate that this two-qubit example
can be readily generalized, constructing a general class of measurements on any bipartite system which can
be implemented by using an infinite number of rounds, but not with any finite-round protocol.

Using these ideas, we then show in Sec. [V]how any finite-round LOCC protocol can be extended to infinite
rounds in a way such that (i) the measurement implemented by the resulting protocol violates our necessary
condition for finite-round LOCC, but (ii) in the limit of a particular small parameter approaching zero, the
original finite-round protocol is recovered. These results lead directly to the main results of this paper, in
which we use the following definitions: If a measurement, M, can be implemented in a finite number of
rounds, we say that M € LOCCy. If it can be implemented by LOCC but only by using an infinite number
of rounds, then M € LOCC\LOCCy =: LOCCy (here, we define LOCC as including all measurements
implemented by finite- or infinite-round protocols; this corresponds to what is denoted as LOCC in [30]).
We also denote the boundary of set X as 0X. Our main results can then be stated as the following theorem
and its corollary.

Theorem 1. FEvery measurement Mo € LOCCx is a limit point of the set of measurements LOCCy. That
is, for every My € LOCCy there exists a continuous sequence of measurements, M, € LOCCy, € > 0, such
that MQ = lim6_>0 Me.

In order to have a reasonable notion of limit point, as used in this theorem, we introduce a distance measure
between measurements in the following subsection. Using this theorem along with the obvious and well-
known fact that every measurement in LOCC,, can be arbitrarily closely approximated by measurements
in LOCCy, we have this corollary.

Corollary 2. The following related results are direct consequences of Theorem [l
1. Both LOCCy and LOCCy are dense in LOCC;
2. The boundaries of these subsets of LOCC satisfy OLOCCy =LOCC, and LOCC C 0LOCCy;
3. The closure of LOCCy is LOCC, and LOCC is strictly contained within the closure of LOCCy; and
4. LOCCy and LOCCy each has empty interior.

The strict inclusion in the second and third items of this corollary follow directly from a result of [28], where
it was shown that there exist sequences of measurements in LOCC., whose limit is not in LOCC. Note also
that the last item about the interior of LOCCy appears to contradict a result of [30]; see the discussion in
Sec. [Vl for an explanation.

A. Definitions and terminology

Before proceeding, let us review basic ideas on quantum measurements and introduce terminology. A
quantum channel is a completely positive, trace-preserving map £ from one operator space to another. It
can be described in terms of a set of Kraus operators {K} [32] as

o =E(p) =3 Kipk], (1)

Y KIK; =1, (2)
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where T is the identity operator on the full input space and p (p’) are operators acting on that of the input
(output). (Note that the set of Kraus operators describing a given channel is not unique.) By “quantum
measurement”, on the other hand, we will mean a quantum channel that also outputs the classical index j,

p— py = K;pK]/p;, pj = Tr(K]K;p), (3)

which can also be represented as

£(p) :ZKjPKJT@IJWI- (4)

Finally, a POVM is a measurement where the output is discarded and only the probabilities, p;, are retained.
Each positive (semidefinite) operator K ]T K is referred to as a POVM element, and a POVM is defined by

the collection, {K JT K}, of POVM elements. Since a given collection of POVM elements can correspond to

a range of different sets of Kraus operators (Kraus operator U;K; corresponds to POVM element K ]T K;,
regardless of the choice of isometry U;), there is a distinct difference between a POVM and what we are
calling a measurement. The output state following a POVM (or, indeed, the output space that this state
lives in) is not defined (since U; is unknown), whereas with a measurement, the output state for each given
outcome is not only well-defined, but can also play a very important role (see the sixth paragraph of Sec. [l
for examples). As noted previously, we are interested in measurements in the present work, as distinct from
quantum channels or POVMs.

We now introduce what we believe to be a new distance measure between measurements. Consider two
measurements, My, Mg, each defined in terms of its set of distinct Kraus operators, {K1,} and {Ks,},
respectively. We say that two Kraus operators are distinct if they are not proportional to each other (if two
Kraus operators in a given measurement are proportional, say ¢; K and c3 K, we combine these into a single
operator, K’ = y/|c1|? + |c2|? K, in our definition of the measurement). If the number of distinct Kraus
operators differs between M; and My, we pad the smaller set with zero-operators so that the two sets will
have the same number (which may be infinite). Then our distance measure is

d(M;, My) = supinf ) HKlfijjfj Ko pKo, (5)
p . -
J

)
2

where the supremum is taken over all density operators p > 0, Tr(p) = 1, the infimum is taken over all
permutations f (that is, f is a bijection mapping a subset of the natural numbers to itself), and || X ||z =
max{v/A|\ is an eigenvalue of XTX} is the spectral norm of operator X. One can readily show that (&)
obeys the required properties of a distance measure: it is non-negative, it vanishes if and only if M; =
Mo, it is symmetric, and it satisfies the triangle inequality. In addition, using (), one can show that
0 < d(M;,M;) < 2. We note also that it is not difficult to show the important property, used below,
that d (My, Ms) is continuous; in particular, it continuously approaches zero as M; — Ms. In actual
fact, this continuity at M; = M, is the only property of the distance measure that we will need, so it
would be just as well to use any other distance measure, as long as it has this property. For example, one
could use the diamond norm [42], modified appropriately to include the infimum over permutations, with a
quantum channel representation of measurements as in (). (The infimum over permutations is necessary,
since without it, one can easily get a large distance between two measurements that are identical, apart from
the ordering of their Kraus operators, an obviously undesirable property.)

An LOCC measurement is a quantum measurement that is implemented by an LOCC protocol. Various
different LOCC protocols may implement the same set of Kraus operators, but we will take the view that the
resulting measurements are the same. It is well-known that each LOCC measurement is separable, by which is
meant the corresponding Kraus operators are all product operators, of the form K; = KJ(-l) ®KJ(-2) - - -®KJ(-P)
when there are P parties involved (for a quantum channel, it just means there exists at least one set of product
Kraus operators for the given channel). An LOCC protocol can be represented by a tree, where the children
of any given node represent the outcomes of a measurement by one of the parties. For example, if the parties
have collectively implemented Kraus operator K=KVWgK®g...@K®P) up to a given node, and then party

1 measures with outcomes Ki(l), the resulting cumulative action becomes (Ki(l)ff(l)) K@@ @ KP),

the local Kraus operators all remaining the same apart from that for party 1, which changes to K i(l)K' M for
each of the outcomes i. We have here introduced a notation that will be followed throughout the remainder



of this paper, that Kraus operators representing the accumulated action up to a given point will have a hat
("), while those representing an individual measurement (those operators transforming from a parent to its
children in the tree) will not. Similarly, a measurement corresponding to cumulative Kraus operators by a
single party will be denoted by M j, whereas an individual measurement by a single party will not have a
hat. Overall measurements, which for our purposes will generally involve multiple parties, are denoted with
bold-face, such as My. For each (cumulative) Kraus operator K, we will denote the corresponding POVM
element in calligraphic script, l€j = KJKJ and I€§a) = K;Q)TK;Q) for each party a. We can also make
use of the polar decomposition of an operator to write the Kraus operator in terms of the POVM element.
Specifically, there exists isometry U J(O‘) such that

) _ gyl [
K™ = U™ K5, (6)

and we take the unique positive-semidefinite square root of l@ga).

A given measurement can be described in terms of its set of Kraus operators. Even though as we've
defined our terms above, a measurement is distinct from a POVM, every measurement nonetheless has a
set of POVM elements that describe it. Although for a complete description of the measurement, one must
know the Kraus operators, we have nonetheless seen elsewhere |37-39] that a description in terms of POVM
elements can be very fruitful, even when we are concerned with the more general notion of “measurement”
used here. In fact, we have shown |37, 38] that in order to determine whether or not a given measurement can
be implemented by LOCC in a finite number of rounds, it suffices to consider the POVM elements associated
with that measurement. There, the focus is on the set of local POVM elements in the given measurement
that are not proportional to each other, for each party, and we refer to two such elements as “distinct” if
they are not proportional.

An LOCC tree consists of nodes branching to a set of child nodes. The nodes may be labeled by the local
Kraus operator corresponding to the outcome of the individual measurement represented by that node, or by
the local Kraus operator representing the cumulative action of that party up to that point in the protocol,
or by the corresponding cumulative POVM element. Let us choose the latter, and let us also refer to a node
as an « node if it corresponds to an outcome of a measurement by party a. Then, any set of sibling « nodes

(nodes that all share the same parent), say {IC )} are descendant from their closest ancestor « node, IC
As discussed in [37], these operators satisfy the following relation,

K= 3 K. (7)

j€Esiblings

In addition, any tree satisfying this relation at every node and having the identity operator at the root nodes
for all parties is a valid LOCC tree [37]. These ideas will play an important role in what follows.
We now turn to our necessary condition for finite-round LOCC.

II. A NECESSARY CONDITION FOR FINITE-ROUND LOCC

Here, we give a necessary condition for finite-round LOCC. This condition is applicable quite generally,
including for any number of parties. There is one minor restriction, however. For any given (separable)
measurement, we assume there are at least two distinct POVM elements. If this is not the case, all Kraus
operators are proportional to product isometries, and it is clear that such measurements can be done using
LOCC and needing no more than one round of communication; we omit such measurements from consid-
eration in our necessary condition for finite-round LOCC (they violate it, but our proof does not apply
to them). The proof of our necessary condition for finite-round LOCC is then quite simple and follows
almost immediately from the evident observation that in any such finite-round protocol, someone makes a
last measurement that has at least two outcomes whose POVM elements are dlstlnct

Consider a separable measurement with POVM elements ICJ = IC )@ ® /C ) and assume there are

at least two such operators that are distinct. Each local operator ICj generates a ray in the convex cone

of positive operators acting on that party’s Hilbert space, this ray being defined as {AI@;O‘)M > 0}. Let us
define the ray deficit as follows. For each party «, identify all distinct rays generated by the set of operators

{I@ga)}. If there exists i # j such that I@ga) o I@ga), then these two operators correspond to the same ray



T, and we then say that this ray has multiplicity m,_, > 1. More generally, m,._ is given by the number of
distinct l€j whose local parts l@g-a) all lie on the same ray r,. Then, we define the ray deficit as

P
A=Y (m, - 1). (8)

a=1 1o

Note that if the number of distinct operators l€j defining the separable measurement is finite, say N, then

P
A=PN-> Ra, (9)

a=1

where Ry = >, (1) < N is the total number of distinct rays generated by operators ’&ga)' On the other
hand, the quantity A can easily be finite and well-defined even in the limit N — oo (and/or P — o0).

The minimum possible value of A for any separable measurement occurs when every ray corresponds to
one, and only one, operator K'*). Under these conditions, m,_ = 1 for all r,, and A = 0. For finite-round
LOCC protocols, however, we have the following theorem.

Theorem 3. For any finite-round LOCC protocol involving P parties implementing a measurement corre-
sponding to the set of distinct product POVM elements S = {K;}, where there are at least two elements in
S, it must be that A > P — 1.

Proof. Since there are at least two distinct operators in S, there must be at least one point in the protocol
at which some party makes a last non-trivial measurement, where by ‘non-trivial’, we mean it has at least
two distinct POVM elements (any number of the parties may follow each outcome of this last measurement
with an isometry). If, for example, it is party « that makes this last measurement, then the two outcomes of

that measurement will be l@ga) o’q K%, On the other hand, since one party’s measurement does not change
what the other parties have accomplished to that point, and since subsequent isometries by the parties do
not alter their local POVM elements, these two final outcomes of the protocol, K;, K;, share the same local
parts for all the other parties, I@g’@) x ,@56) for all 8 # a. As a consequence, each of these latter P — 1
operators correspond to rays rg having multiplicity m,, > 2 and recalling the definition of A in (8], the
theorem follows immediately. |

In the next section, we will demonstrate that for bipartite systems, the bound in Theorem [B] can be
violated, achieving A = 0, when using an infinite number of rounds of communication. This quantity A
therefore provides a distinction between finite- and infinite-round LOCC. We also show in the appendix that
for finite-round LOCC, A = 1 is achievable for P = 2 and any number of distinct operators K; (except when
N =1, the case of all Kraus operators being isometries).

IIT. A SEPARABLE MEASUREMENT REQUIRING INFINITE ROUNDS IN LOCC

Let us here give an explicit example involving four Kraus operators acting on two qubits, which can be
implemented by LOCC with an infinite number of rounds, but not with any finite number of rounds. There
are two parties A and B (for Alice and Bob), and the Kraus operators are A; ® B; (these will be final
outcomes of the LOCC protocol, so represent the cumulative action of the parties up to a given leaf), with

{Ar Az, Ag, As = {14, VT=q10)a, va0)a + [1a, VT=q]0)a(1]},
{31732733,1?34} = {V1—¢[0]5, Ve[0]p +[1]p, V1 —¢€|0)p(l], Veln}, (10)

where 0 < €,¢ < 1 and, for example, [0]a4 = ]0)4(0]. The corresponding POVM elements are
(Aj = AlA;, B; = B! j)



Note that > A;j @ Bj = (1 — qe) I4 ® I, and therefore,

M, = Aj@Bj

1 4
= }j_l
is a complete separable measurement. As no two of the Aj are proportional and no two of the l;’j are
proportional, this measurement satisfies A = 0, so by Theorem [J] it cannot be implemented by finite-
round LOCC. Notice how simple this measurement is, involving only four operators acting on the smallest
bipartite system of two qubits. In fact, as (I]) involves only diagonal matrices, it has the appearance of a
classical measurement. Certainly, one can readily devise a different measurement that, after coarse-graining,
reproduces the probability distribution of this one, and which can be implemented in few rounds. However,
if the state of the system after the measurement is important, then it is not possible to reproduce the results
that would be achieved by this measurement with any finite-round LOCC protocol. We next show how this
measurement can be implemented exactly with an infinite number of rounds.

[As can be seen from the results of [43], the Kraus operators of (I0]) are the unique product representation
for the corresponding channel. It is, therefore, also not possible to implement this quantum channel by
any finite-round LOCC (note that these Kraus operators would not be the unique product set if we replace
Ay — VT=q[1]a and Bs — /T —€[l]p; this is the only reason these operators have been chosen non-
diagonal—to provide an example of a channel, as opposed to just this particular measurement, that is shown
by Theorem Bl to be impossible by finite-round LOCC—and all other conclusions remain Vahd with this
replacement of A4 and Bs).]

The protocol involves four different local measurements repeated over and over, each of which has two
outcomes. These four measurements are given by the following pairs of Kraus operators:

(12)

Ah:{A%¢E£4} (13)

The first outcome of each of these measurements terminates the protocol, while the second outcome will
always be followed by another measurement. Bob starts with M, and if he ' gets the second outcome Bg,
Alice measures with Mg. If she gets the second outcome, Bob measures Ms, and if he gets the second
outcome, Alice does My. If she gets the second outcome, their cumulative action to this point is the Kraus
operator /qgeI4 ® Ig, and so Bob can just start over with M, the two of them continuing on ad infinitum.
By comparing these to ([I0), one sees that the first outcome of each of these measurements is a “correct”
outcome (up to multiplicative factors) and so can be taken to terminate the protocol, whereas the second
outcome is an error that needs to be corrected. For example, after the first outcome of Alice’s measurement
of Mg, they have implemented the desired A2 ® Bg, but the second outcome leaves them with A3 ® Bg, which
is an error since it is not one of the desired outcomes. The longer they continue, the smaller is the error,
decreasing by a factor of ge with every cycle through the four measurements M}, and vanishing in the limit
of infinite rounds. Therefore in this limit, the protocol just described implements the measurement given in
(@), with an overall weight factor (to the POVM elements A; ® B;) of 1+ ge + (qe)2 +--- = (1 — ge) .
Consider the limit € — 0, for which the measurement, which we denote as M, has Kraus operators

Al®@B =100
Ay ® By = \/1—q[0]4a ®[1]B,
A3 ® By = (\/q[0]a + [1]a) @0)5(1]. (14)

This can be implemented by the following LOCC protocol using two rounds of communication: Bob measures
M, (evaluated at ¢ = 0, of course), they terminate the protocol with his first outcome, but upon getting
his second outcome, Alice measures with M,. T hey terminate upon her first outcome, but if she gets her
second outcome, Bob does a spin-flip on his qubit, and then they are done. If, on the other hand, they are
just trying to implement the ¢ — 0 limit of the measurement having Kraus operators equal to the positive



semi-definite square roots of the POVM elements of ([I)—these Kraus operators are all diagonal in the
|0}, |1) basis—then Bob has no need for that final spin-flip and this measurement can be done with only one
round of communication. Thus, we see that for 0 < € < 1, there exists a measurement that can only be done
exactly with LOCC by using an infinite number of rounds, but that can be approximated within O(e) by
an LOCC protocol using only one round of communication. Indeed, using the distance measure of (], we
calculate explicitly that d(M¢, M) < 2¢(1 — q)/(1 — ge).

In the next section, we demonstrate, perhaps unsurprisingly, that the example just discussed is not an
isolated case.

IV. GENERALIZING THE EXAMPLE OF SEC. [IIl

Consider the following sequence of measurements on any bipartite system that Alice and Bob will take
turns performing. For j =1,--- | L, define

Msj_1 ={B2j_1,Ba;},
Msy; = {Asj, Asji1}, (15)

where Bob starts with M7, Alice follows with M5 upon Bob’s second outcome, and then the parties sequen-
tially alternate turns. As in the preceding section, the first outcome of each measurement (Bg;_1 or Ag;)
terminates the protocol, whereas the second outcome (Bg; or Agj41) is always followed by the other party
measuring next. Finally, let

Al - IA;
By, = \/EBQ_[}_27
A = VaA3] . (16)

where the cumulative action of each party starting from their first measurement is given by

By = By,

Ay = Ay,

B; = B;iBoy, --- B4BaBy, 2 <i < 2L,

Ai = AAgpy 1+ AsAg Ay, 3<i <20+ 1. (17)

and we have set By = Ip. Here, k; is the largest integer such that 2k < i, and ks is the largest integer such
We require these operators to satisfy the following constraints:

1. Each Agj4+1 and By, is full-rank, so that the inverses in (I0)) exist.

2. Comparing (@), we must choose € (g) small enough that By, (A2r+1) can be part of a valid measure-

ment. This means € < €* := )\52 (q <q* = /\22), where Ap (A4) is the largest singular value of BQ_LI_2

(Ayf_)-
3. Define flz = AI/L and l;'l = BJBZ for all ¢. Then for j =1,---, L require
A2j—1 = A2j + A2j+17
szfz = [;’2;;1 + B2j- (18)

The purpose of these conditions is to ensure that (7)) is always satisfied, which is required for any valid
LOCC protocol. Note also that inserting the last two lines of (I6) into the last two lines of (IT),
respectively, we have

Aor i1 = qla,
Bor, = elp. (19)
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FIG. 1: LOCC tree depicting an infinite-round protocol involving the individual local measurements of (IE) and
implementing the overall measurement M. of ([20]). Each node is labeled by the POVM element corresponding to
that party’s cumulative action to that point in the protocol, and each leaf can be followed by an isometry for each
party to adjust Kraus operators, if desired. The sequence of individual measurements repeats itself after each node
having label proportional to 4.

4. For € > 0, no two of the A; are proportional, and no two of the B; are proportional.

Note that it is easy to satisfy all these constraints simultaneously. In fact, randomly choosing operators under
the constraints of item [I] and Bl will almost certainly also satisfy item @ The overall separable measurement
is defined in terms of Kraus operators as

1 R y2L

This measurement M, satisfies the following conditions:

e Due to item Hl above, we have that A = 0. Hence, by Theorem [B] measurement M, cannot be
implemented by any finite-round LOCC protocol.

e M. is implemented successfully by the infinite-round LOCC protocol consisting of the sequence of local
measurements M, for which the first outcome is always taken to terminate the protocol and the second
outcome is followed by the other party measuring with M; .. Bob starts with M; and the sequence of
measurements continues without end. By ([9), this sequence effectively starts over at gel4 ® Ip with
Alice’s second outcome of Msy. Therefore, Bob can just start again after this outcome by performing
M, and the parties continually cycle through these 2L measurements. In the limit of infinite rounds,
they will have successfully implemented M, just as we saw for the L = 2 example in the preceding
section. See Figure [ for a depiction of the corresponding LOCC tree.

e In the limit ¢ — 0, Bas—o = Bap_1 by (I8)), and we recover a protocol of 2L — 2 rounds (2L — 3

rounds if Kraus operators BQ L_1= BQ L—2 in this limit) implementing a measurement which we denote
as My. By continuity of the distance measure of (&), we have that M, continuously approaches M
as e approaches zero. Hence, for small € the original measurement, which requires infinite rounds for
LOCC, can be closely approximated by this finite-round protocol.

We have thus constructed an infinite class C of measurements of the form M. given in (20), where each
element in this class is such that it cannot be implemented by finite-round LOCC, but can be implemented
using an infinite number of rounds. For any finite L, there exists a sub-class C;, C C for which the infinite-
round LOCC protocol that implements one of the measurements in Cy, consists of a continually repeating
sequence of 2L local measurements (of course, the limit as L goes to infinity can also be used to construct
valid measurements in C). In addition, for small € < €*, these measurements M. can be closely approximated
by a measurement of either 2L — 2 or 2L — 3 rounds. An explicit example from this class of measurements
with L = 2 was given in Sec. [TIl

We now move to the next section, where we use what we’ve just learned to show that every finite-round
LOCC is the limit of a sequence of separable measurements, where each measurement in that sequence can
be implemented by LOCC, but only with the use of an infinite number of rounds.

V. EVERY FINITE-ROUND LOCC IS ARBITRARILY CLOSE TO SEPARABLE
MEASUREMENTS THAT REQUIRE AN INFINITE NUMBER OF ROUNDS

Given an arbitrary measurement My € LOCCy, we wish to construct a continuous sequence of measure-
ments, M., such that
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a) lime_,o0 M. = My; and
b) Je* > 0 such that M, € LOCCy for all 0 < € < €*.

We will do so by considering an LOCC protocol implementing My and appending to each leaf of the corre-
sponding tree for that protocol a continually repeating sequence of 2L measurements of the kind described
in the preceding section (the choice of L can differ from one leaf to the next, and can even be chosen to be
infinite, such choices do nothing to alter our conclusions). In order to be sure that item @ is satisfied, we

require that all leaf nodes in the resulting infinite tree, with their respective POVM elements ./lg:,)l ® B

gm?
are such that no two /lgi)l are proportional, and no two BJ(Z are proportional (that is, for example, for all
1,4, m,n, flﬁ)@ ok AE;)) This will imply that A = 0 for this measurement M., and then by Theorem[3 M, €
LOCC4. In the remainder of this section, we describe how to satisfy these requirements.

Before appending these repeating sequences, there are two types of modifications we will make to the
original tree. The first will be to alter those leaf nodes that are repeated—that is, which correspond to the
same local POVM element—so that the modified tree will have no repeated leafs: after these modifications,
every A leaf will be distinct from every other one, and the same will hold for the B leafs. The second type
of modification has to do with the following issue: suppose there is a node in the original tree for which the
cumulative action by Alice is given by Kraus operator A; = [1;){(¢;]; that is, this operator is rank-1. The

corresponding POVM element associated with this node is A; = n;|¢;){(¢;], n; = (¥;|¥;), and this cannot
be changed (apart from scaling factors) by any subsequent measurements that Alice performs. Since our
strategy will be to create new and distinct POVM elements by appending measurements subsequent to the
leafs of the original tree, starting with a rank-1 operator will be problematic. Therefore, we will alter each
rank-1 outcome to increase its rank. All these modifications will be done in a way such that in the limit as
€ — 0, the original tree is recovered.

Since a rank-1 A; is unchanged by subsequent measurements, we may assume without loss of generality
that Alice makes no further measurements after such an outcome in the original protocol. It may subsequently
be necessary, however, for Alice to perform isometries to alter individual Kraus operators. Hence, each of
Alice’s rank-1 outcomes may be followed by a measurement by Bob, and for each outcome of the latter
measurement, an isometry (or a measurement for which each outcome is proportional to an isometry) by
Alice. Note that under these circumstances, Alice’s isometries will terminate the protocol, so will be located
at leaf nodes, and these leafs will be repeated, all corresponding to the same rank-1 POVM element A;.
Therefore, these leafs will each be modified as indicated in the preceding paragraph.

Our strategy will be the same for both types of modifications. Every one of Alice’s nodes that is to be
modified will be modified as

Ay — A = [(1 —)A; + %} . pj 20, pj ok Aj, (21)
and then, one of that node’s siblings is also modified to

Ay — Az(-é) = {(1 —)A; + Epz} , pi >0, p; ok Aj. (22)
These modifications maintain (7) as long as p; + p; = A + /lj, which we shall therefore require.

They correspond to a modification of Kraus operators by Aj = Uj\/Aj — Ujy/(1 —E)Aj +ep; and

A; — Uirn/ (1 — e)fll + ep;. Note that there is no problem with modifying a given node more than once,
so we need not worry about running out of siblings when more than one sibling needs to be modified. That
pj Kk Aj guarantees A') has rank exceeding 1, as required. It also guarantees that pairs Aj, p; (or A, i)
are rays defining a plane, and this observation will inform how the p; are chosen, see below.

If any of these modified A-nodes, say AEE), is not at the location of a leaf in the original tree, it may be
followed by subsequent A-measurements, so these descendant A nodes must be altered so as to preserve (7).
For the nearest descendent A measurement, replace all but one of the outcomes as Aj — (1- E)Ak (and
then multiply by 1 — € all A nodes descendant from these), and then for that one remaining outcome, say I,
replace A — (1- e)fll + ep;. Then repeat this process for the next descendant A measurement from that
A node, and continue this process until all descendant A nodes are modified appropriately. This procedure
ensures (7)) is maintained for all A descendants of Agé), ensuring that the tree continues to represent a valid
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LOCC protocol, and that the original protocol is recovered for ¢ — 0. Of course, Bob’s nodes are treated in
a way completely analogous to what we have just described for Alice’s.

We will choose the p; such that all leaf nodes are distinct (our method of doing so is discussed below, in the
last paragraph of this section). Multiple leaf nodes share the same parent, however, so this modified protocol
has A > 1, as it must given that it is still a finite-round protocol. The next step is to append, after each leaf
node, an infinite branch corresponding to repeating sequences of measurements like those described in Sec. [Vl
What results is an infinite-round LOCC protocol implementing a separable measurement corresponding to

POVM elements Agz ® Bj(i)l, where we have denoted the POVM elements appearing along the branch

j(€)

appended to leaf j by A, BJ(Z This separable measurement will be an element of LOCC, if no two of the

flgf% are proportional and no two of the BJ(Z are proportional. Let us now see how this can be accomplished.

For each of Alice’s (Bob’s) leaf nodes, choose even integer 2L, the length of the repeating sequence to
be appended to that leaf. This repeating sequence will consist of Bob and Alice alternating two-outcome
measurements, where the first outcome of each measurement terminates the protocol, and the second outcome
is followed by the other party’s next measurement. We require that the measurement operator for that second
outcome does not decrease the rank of the cumulative Kraus operator, a requirement that is necessary if
the sequence is to repeat itself. This requirement is essentially equivalent to item [I] above ([I8]), along with
the recognition that in general, the root of this branch (the node to which this branch is appended) will
not itself be full rank (when it is not full rank, the inverse in (8] is to be replaced by the pseudo-inverse,
sometimes referred to as the “inverse on the support” of the given operator). Note that item 2 above (8]
constrains € < €, but since €* > 0 there will always be a non-vanishing range for e. We also require that for
the first measurement after the original leaf to which this branch is being appended, that second outcome
has POVM element proportional to e. This ensures that in the limit ¢ — 0, the appended branch effectively
truncates at that original leaf, recovering the original tree in this limit. This will be clear when one notes
the position of the node e[;’](i) in Figure @ and realizes that by (@), lim._,q [;’]QB) = lim._, l’;’]@ = l;'j.

It only remains to show that the appended measurements can be chosen so as to yield a protocol im-
plementing an overall measurement having A = 0, so as to ensure that this measurement is in LOCC.
Consider the repeating sequence of measurements shown in Figure The labels indicate the cumulative
POVM elements associated with each node (operators flg»é), BJ@ may each be equal to their respective op-

erators in the original tree, Aj, Bj, or they may have been modified to O(e) as previously described). These

operators satisfy a modified version of (I8), which for m =1,--- , L reads
Afd 2 = A1+ Ao,
By 3m-1 = Biam + B3 (23)

3 = B (24)
Recall that A;e) =(1- E)Aj + €pj. As e varies, the ray generated by flg-é) traces out a two-dimensional

cone between rays A; and p;, and let us then choose all operators Agz for this fixed j to lie in the same
plane as this cone. For example, we could set ¢ = 2~ % and then form=1,--- L —1,

(e L (2\™
Ay =2 Aj+§<§> €pj;

e i 2\ ™
A = 27" A + (g) €Pj;

and

R R 9\ L1
A§2L = 2’L,Aj + <§) €pj, (26)



12

B A9 B A(e) A(2L_2€B(6) ¢ A© 2B q A(e)

BN

B_;B) A(E) 63(62) A(E) EB(2L_2 A(2L_1€B( qA(E)

FIG. 2: The infinite branch that is appended to leaf node ./lj of the original tree, which itself was previously modified

to Ag»e), as described in the text. All other leaf nodes of the original tree, including the Af) node shown in the figure,
have similar infinite branches appended to them in the final, infinite tree.

which together satisfy the A parts of (23)) and (24). Similar choices can be made for the B operators, as
well.

Therefore, we have that for each specific leaf in the original tree, Aj or Bj, all of a given party’s POVM
elements descended from that leaf in the extended, infinite tree lie in a given plane in the space of that
party’s operators, and that plane stays fixed as € varies. Each of these planes lies in a space of dimension at
least four. Therefore it is easy to choose the p; such that no two of these planes intersect with each other,
unless they share the same operator from the original tree, Aj o A;. In this case, the planes can be chosen
(by choosing p; to not lie in the plane connecting rays Aj and p;) so that the only intersection is precisely

at that single ray, /Alj. In addition when two (or more) of these planes do intersect, that intersection, A;,
is never a leaf or parent to a leaf in this final tree, since it was a repeated leaf in the original tree so has
been modified to flg»e) # A; and AEE) # A;, where flz(-e) # A;E). That is, this intersection never contains
a POVM element of the overall measurement corresponding to the final, infinite-round protocol, and thus
every ray generated by these POVM elements has multiplicity equal to one for this measurement. Hence, for
each 0 < € < €*, we have constructed an LOCC protocol implementing a measurement M, for which A = 0,
implying that M. € LOCC,,. Furthermore, lim._,o M, = My, the latter being the original, arbitrarily
chosen, finite-round measurement. This proves our claim that every finite-round LOCC protocol implements
a measurement that is the limit of a continuous sequence of measurements M, € LOCC,,. Theorem [Il then
follows directly. (It may be easier to visualize all of this by taking a section along the surface in which all
operators have unit trace. Then, flj, p; define a line along which all these descendant POVM elements lie.
If the system is a qubit, then these lines lie within the three-dimensional Bloch sphere, and for any other
system this space is of strictly higher dimension. It is then clearly easy to choose all these line segments
such that they do not intersect, except possibly at those points .4; which are not POVM elements of the
final measurement.)

VI. CONCLUSIONS

In summary, we have proved a necessary condition for finite-round LOCC, Theorem [3] and then provided
an example that demonstrates this condition can be violated for bipartite systems when using an infinite
number of rounds. We then constructed a general class of infinite-round LOCC protocols acting on bipartite
systems, each of which violates this necessary condition, and which therefore implement measurements
that cannot be performed in any finite number of rounds of communication between the parties. These
measurements can, of course, be approximated increasingly well by utilizing more and more rounds, and the
protocols we’'ve devised provide a simple way to see how the error incurred by finite-round approximations
can be successively reduced by including additional rounds.

We then showed that every finite-round LOCC protocol is the limit of a continuous sequence of measure-
ments, where each measurement in that sequence can be implemented by LOCC, but only with the use of an
infinite number of rounds. This includes so-called “zero-round” protocols, in which the parties both measure
but do not communicate, demonstrating the existence of measurements that can only be implemented by
LOCC by using an infinite number of rounds, but that can nonetheless be well approximated without using
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any communication at all. These results constitute a constructive proof of Theorem [l

One of the implications of Theorem[I] noted in Corollary[] is that LOCCy has empty interior. In apparent
contradiction, it was shown in Theorem 1 and Corollary 2 of [30] that LOCCy has a non-empty interior.
These results are not actually in contradiction, however, the reason being that our definitions of LOCCy
are different: whereas we consider quantum measurements, they consider quantum channels. While we have
shown here that every measurement My € LOCCy has measurements M, € LOCC, arbitrarily close to
it, it may be (indeed, must be, for the example given in |30]) that each of those nearby M. corresponds
to a quantum channel that has a different representation in terms of product Kraus operators, where that
different representation is a measurement that can be implemented by finite-round LOCC. Therefore, these
nearby measurements, M, € LOCC,, correspond to quantum channels £ € LOCCy. This explains how
the set of quantum channels implementable by finite-round LOCC can have non-empty interior, even when
the interior of the set of quantum measurements that can be so implemented is empty.

Whereas we have shown in the appendix that the bound in Theorem [ is tight for bipartite systems, we
have recently been able to show that it is not tight for P = 3 (and presumably also for P > 3). There are,
however, many interesting, related questions that remain to be explored for systems having more than two
parties, so we leave discussion of these results to a future publication.

We have seen that the distinction between A = 0 and A > 1 is significant in that it provides a separation
between LOCCy and LOCC,,, where A is defined in (). One may ask if a more detailed analysis using this
approach of counting distinct rays can provide additional information in the case A > 1, perhaps concerning
how many rounds are required to implement a given measurement by LOCC. It appears that by itself, this
may only yield limited results, though it may be more fruitful when combined with the notion of counting
distinct extreme rays, as was done in the context of a different necessary condition for LOCC [39, |41]. We
can, however, show that when A = 1, at least two rounds of communication are necessary unless N < 3, but
that there exist A = 1 measurements with any N > 4, including N — oo, for which two rounds is sufficient
(a protocol similar to that given for N — oo in the appendix is one way to construct such examples, and one
can there replace the initial infinite-outcome measurement by one with only a finite number of outcomes).

It is not difficult to see that LOCCy is a convex set, and the notion of convexity points to several
interesting issues. Even though the foregoing results indicate that LOCCy and LOCC,, are intimately
intertwined with each other, it is easy to construct examples of pairs of measurements in LOCC, for which
there is a continuous range of convex combinations of that pair which lie in LOCCy. That is, there are
pairs of measurements M, My € LOCC, and parameters 0 < A_ < Ay < 1 such that for A\ < XA < A4
the measurement M = v/ AM; + /I — AMy € LOCCy (the square roots appear here because it is the
POVMs that obey convexity, rather than measurements as we have here defined them in terms of Kraus
operators, and if a POVM element is multiplied by A, this is equivalent to multiplying the corresponding
Kraus operator by \/X) At the same time, there exist measurements in LOCCy that cannot be written as a
convex combination of measurements in LOCCy, at all. It therefore appears that there are many interesting
questions left to be understood about the detailed structure of LOCC.

Finally, we note that the measurement protocol of [26] for implementing a random distillation of the
tripartite W state to a maximally entangled state on a randomly chosen pair of the original three parties is
very similar to the protocols we have described in Sec. [[V] for the case L — co. Are there also examples
of measurements in LOCC, of the form constructed in Sec. [V] that arise out of physically motivated tasks,
such as random distillation? It would certainly be of interest to find such examples, which would then
correspond to physical tasks that cannot be exactly implemented by any finite-round protocol but which can
be approximated closely in some relatively small number of rounds.

Acknowledgments — The author would like to thank Bob Griffiths, Maris Ozols, and Dan Stahlke for very
helpful comments. This work has been supported in part by the National Science Foundation through Grant
No. 1205931.

Appendix: Achieving A =1 for bipartite systems

We now show that for finite-round LOCC, A = 1 is achievable for P = 2 and any number of distinct
operators K;. If this number, N, is finite, consider a bipartite LOCC protocol where the parties alternate
their two-outcome measurements. The first outcome of each of these measurements is terminal, the second
outcome is followed by the other party measuring with a subsequent two-outcome measurement. Then, after
N — 2 such measurements, one party does a final two-outcome measurement, giving a total number of N
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leaves in the full tree. It is not difficult to choose the I@;O‘) labeling each leaf such that the corresponding ray
A/€§a) is distinct from all the others, for each party «, and for these leaf nodes to be consistent with a valid

LOCC protocol. Each of these leaf nodes, say I€§a), has a parent node I@g’@) as its counterpart, with 5 # a.
One can also choose these parent nodes to be distinct from each other and from all that party’s leafs, for each
party, so that the measurement implemented by this protocol is such that for all «, I@ga) ok I@Ea), for all i # j,
except of course for that final two-outcome measurement, for which that parent node has multiplicity equal
to two. In this way, we have an LOCC protocol of N — 1 rounds where every ray but one has multiplicity
equal to unity, and thus A = 1, saturating the lower bound in Theorem [3] for every finite V.

When there are an infinite number of distinct operators, the lower bound can still be saturated. One
way to do this is for the first party to start with an infinite outcome measurement, followed for each of
her (distinct, by design) outcomes ICS,P = wmllﬁgl) + wmgléél), by the second party doing a two-outcome
measurement. For each of the latter measurements, one outcome terminates the protocol, and the other
outcome is proportional to l€§2) = 1652), and is followed by the first party again measuring, this time with
the two outcomes being wmllﬁgl) and wmgléél). We see that all of the first party’s operators are distinct—
even though I@gl) and I@gl) each appear at an infinite number of leafs, they only appear as /@gl) & I€§2) and
l@él) ® 1652) so still have unit multiplicity. One can easily choose the rest of the second party’s operators

such that the ray 1652) is the only one with multiplicity greater than one. Therefore, A = 1, as desired.
Actually, this construction also works for saturating the bound when N is finite, one just has to replace
that initial measurement by one with a finite number of outcomes. These protocols utilize two rounds of
communication, one for party 1 to send her outcome m to the other party, and the second round is to inform
that first party whether or not to measure again.
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