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Information recycling has been shown to improve the sensitivity of atom interferometers by ex-
ploiting atom-light entanglement. In this paper, we apply information recycling to an interferom-
eter where the input quantum state has been partially transferred from some donor system. We
demonstrate that when the quantum state of this donor system is from a particular class of number-
correlated Heisenberg-limited states, information recycling yields a Heisenberg-limited phase mea-
surement. Crucially, this result holds irrespective of the fraction of the quantum state transferred to
the interferometer input and also for a general class of number-conserving quantum-state-transfer
processes, including ones that destroy the first-order phase coherence between the branches of the
interferometer. This result could have significant applications in Heisenberg-limited atom interfer-
ometry, where the quantum state is transferred from a Heisenberg-limited photon source, and in
optical interferometry where the loss can be monitored.

When performing an interferometric measurement
with a limited number of particles, N , there can be sig-
nificant benefit to using a nonclassical input state to im-
prove the phase sensitivity beyond the standard quantum
noise limit (QNL) (shot-noise limit) of ∆φ ∼ 1/

√
N [1, 2].

The ultimate limit to sensitivity is the Heisenberg limit
∆φ ∼ 1/N [3, 4]. In particular, a Mach-Zehnder (MZ)
interferometer can achieve Heisenberg-limited phase sen-
sitivity if the input state has perfect number correlations
between the two interferometer modes [5, 6]. An exam-
ple is the two-mode squeezed vacuum state [7], which is
routinely generated in quantum optics laboratories [2].

There exist metrological devices, however, where
Heisenberg-limited input states are difficult to generate,
such as inertial sensors based on atom interferometry. In
such cases, Heisenberg-limited interferometry might still
be possible provided a Heisenberg-limited state from a
donor system (e.g., two-mode squeezed optical vacuum)
can be mapped to this acceptor system. This possibility
was demonstrated theoretically in [8], where quantum
state transfer (QST) between squeezed light and atoms
was shown to enhance the sensitivity of atom interferom-
etry well below the QNL. Similar results are also possible
in other contexts, as proposals exist for achieving QST
between donor photons and a range of acceptor systems,
including atomic motional states [9], room-temperature
and laser cooled atomic vapours [10], Bose-Einstein con-
densates of dilute atomic vapors [11–15], ions [16], solid
state systems [10], and mechanical oscillators [17].

Unfortunately, in practice any QST process is imper-
fect, and even a small degree of imperfection results in
a large degradation of the acceptor system’s phase sen-
sitivity from the Heisenberg limit [8, 18]. It was first
shown in [19] that atom-light entanglement can be used
to enhance the sensitivity of atom interferometry by ap-
plying the technique of information recycling. Further-
more, [8, 20] revealed that if this atom-light entanglement
takes the form of a QST process, then in very specific
situations, information recycling can help atom interfer-
ometers achieve Heisenberg-limited sensitivities. Here

we explicitly prove a generalized version of this result
and identify the precise (but still very general) condi-
tions under which it holds. That is, we show that if the
donor source displays perfect number correlations, then
the acceptor particles give Heisenberg-limited sensitivity
regardless of the QST efficiency when used in a Mach-
Zehnder (MZ) interferometer, provided information re-
cycling is applied. This is true regardless of the physical
mechanism for QST, provided that the QST process is
number conserving.

Number-correlated MZ interferometer. To determine
the best phase sensitivity possible for a given interferom-
etry scheme, we appeal to the quantum Fisher informa-
tion. As discussed in [6, 21], the quantum Fisher informa-
tion F places an absolute lower bound on the phase sen-
sitivity, ∆φ ≥ 1/

√
F , called the quantum Cramér-Rao

bound (QCRB), which applies regardless of the choice of
measurement and phase estimation procedure; the bound
depends only on the input state.

It is known [6, 21] that when a pure state is used as the
input to a lossless MZ interferometer (i.e., beamsplitter-
mirror-beamsplitter configuration), the quantum Fisher
information for estimating a differential phase shift is
given by F = 4(〈L̂2

y〉 − 〈L̂y〉2), where L̂k ≡ 1
2b
†σkb

defines pseudo-spin operators, b = (b̂1, b̂2)T , b̂j are the
usual bosonic annihilation operators for the two modes,
and σk are the set of Pauli spin matrices.

Consider now a two-mode state that displays perfect
number correlations between the two input modes,

|Ψb〉 =

∞∑
N=0

cN |N,N〉 . (1)

When used as the input to a MZ interferometer, the
quantum Fisher information is given by

Fb =
V (N̂t) +Nt(Nt + 2)

2
, (2)

where N̂t = b̂†1b̂1 + b̂†2b̂2 is the operator for the total

number of particles, Nt = 〈N̂t〉 is its expectation value,



2

and V (X̂) denotes the variance of X̂. For the twin-
Fock state |ΨTF〉 = |N/2, N/2〉, the variance is zero, so
Fb = Nt(Nt+2)/2. Two-mode squeezed vacuum [22–24],

|Ψsq(r)〉 = sech |r|
∞∑
N=0

(−e−iθ tanh |r|)N |N,N〉 , (3)

with r = |r|eiθ, has variance V (N̂t) = Nt(Nt + 2) and
thus Fb = Nt(Nt + 2).

For a particular choice of measurement signal, Ŝ, the

phase uncertainty is given by ∆φ =
√
V (Ŝ)/|∂φ〈Ŝ〉|. In-

put states of the form (1) have no mean field, so the re-
sulting interferometer runs on what would conventionally
be called noise; more precisely, they rely on second-order
coherence [25] between the branches of the MZ interfer-
ometer, in contrast to the first-order coherence that is re-
quired for conventional interferometry. The signal choice
Ŝ = L̂2

z is optimal at the operating points φ = 0, π, giving
a phase uncertainty [26]

∆φ =

√
2

V (N̂t) +Nt(Nt + 2)
(4)

for sensing small changes away from the operating point.
This signal choice thus achieves the QCRB.

Since the MZ interferometer does not require first-
order coherence between the branches, the phase uncer-
tainty (4) is achieved by any input (mixed) state of the
form [26]

ρ̂b =

∞∑
M,N=0

ρMN |M,M〉〈N,N | , (5)

not just by the pure states (1), for which ρMN = cMc
∗
N .

We define pN ≡ ρNN . When ρMN is diagonal, i.e.,
ρMN = pNδMN , the number correlations between the
input branches are purely classical.

Donor-enhanced MZ interferometer. Now suppose we
want to map the Heisenberg-limited state ρ̂b from this
donor system to some two-mode acceptor system. This
scenario is depicted in Fig. 1. At t = t0, the quantum
state of the system is prepared such that the state of the
donor system is ρ̂b, while the two modes of the acceptor
system (annihilation operators â1 and â2) are unoccu-
pied, giving a total state

ρ̂(t0) =

∞∑
M,N=0

ρMN |M, 0,M, 0〉〈N, 0, N, 0| . (6)

A QST process is implemented such that at t = t1, some
or all of the particles are transferred from mode 1(2) of
our donor system to mode 1(2) of our acceptor system.
The acceptor particles are then used as the input to a
MZ interferometer.

A perfect QST process performs the map |N, 0〉 →
|0, N〉 in each branch of the interferometer, and conse-
quently the MZ interferometer composed of the two ac-
ceptor modes is Heisenberg limited. In practice, however,

QST

QSTDonor

Source

FIG. 1. Schematic of a donor-enhanced MZ interferometer.
Initially, the two-mode donor system (annihilation operators

b̂1 and b̂2) is prepared in the state ρ̂b; both modes of the accep-
tor system (annihilation operators â1 and â2) are initially in
vacuum, so we do not depict their inputs to the QST processes
in the diagram. Each mode of the donor system undergoes
some QST process, transferring part or all of its quantum
state to the corresponding mode of the acceptor system at
time t1. The two modes of the acceptor system then form the
inputs to a conventional MZ interferometer, which is sensitive
to the differential phase shift φ = φ1 − φ2. Information recy-
cling is implemented by detecting the number of particles in
all four output modes.

the QST process is imperfect. Some particles remain in
the donor modes at time t1, and this results in a loss of
correlations when considering only the acceptor modes.
As was shown in [6, 8], even a small loss of correlations
can severely degrade sensitivity. Fortunately, we can re-
duce this degradation by monitoring those donor parti-
cles still remaining after the QST process and incorpo-
rating this information as part of our phase-estimation
procedure. This technique of information recycling has
been shown to enhance the sensitivity within specific
atom interferometric schemes reliant on two-photon Ra-
man transitions [8, 19]. The surprising result we show
here is that a Heisenberg-limited donor source coupled
with information recycling yields Heisenberg-limited in-
terferometry with the acceptor modes irrespective of the
QST efficiency or the physical mechanism of the QST
process.

To show this, we now consider the state after incom-
plete QST. Without specifying the physical mechanism
of the QST process, we apply the following physically
motivated constraints:

1. The QST process occurs in two independent

branches; i.e., donor mode b̂1(b̂2) can only exchange
particles with acceptor mode â1(â2), and neither
branch is affected by the other.

2. Each branch of the QST process conserves particle

number ; i.e., b̂†j b̂j + â†j âj is a conserved quantity for
j = 1, 2.

3. The QST process is symmetric with respect to the

exchange b̂1 ↔ b̂2 and â1 ↔ â2; i.e., the two inde-
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pendent branches of the QST process are identical.

Although a beamsplitter transformation, and (in the low
depletion regime), the atom-light QST process from [8]
satisfy these requirements, these conditions are also sat-
isfied by a broad class of QST processes, both unitary
and nonunitary. For example, they allow very compli-
cated QST processes where the QST Hamiltonian con-
tains higher-order couplings; heuristically, this might re-
sult in a QST efficiency that depends on the number
of particles in the donor mode. Furthermore, the con-
straints allow for situations where the QST process is
mediated by some other set of modes ĉk (e.g., a reser-
voir), which might be depleted and thus reduce the QST
efficiency as more particles are transferred, as seen in [8].
A somewhat fanciful, but certainly not the most general
Hamiltonian that satisfies the constraints of such a QST
process is

Ĥ=
∑
i=1,2

∑
n,m,l
q,p,k

hnmlqpk

[
(â†i âi)

n(b̂†i b̂i)
m(â†i b̂i)

l(ĉ†i,k)q ĉpi,k + h.c.
]
.

(7)

A general QST process that satisfies the conditions 1–3
performs the following map in each branch:

|M, 0〉〈N, 0| →
M∑
m=0

N∑
n=0

AMm,Nn|M −m,m〉〈N − n, n| .

(8)
There are no constraints on AMm,Nn other than the usual
physical constraints of normalization and complete pos-
itivity. Pn|N ≡ ANn,Nn is the conditional probability
that there are n particles in an acceptor mode, given N
particles initially in the corresponding donor mode.

Under the QST map (8), the state ρ̂(t0) of Eq. (6) is
mapped to the (generally mixed) state

ρ̂(t1) =

∞∑
M,N=0

ρMN

∑
m1,n1
m2,n2

AMm1,Nn1AMm2,Nn2

× |M −m1,m1,M −m2,m2〉〈N − n1, n1, N − n2, n2| .
(9)

Notice that we only require that number correlations be-
tween the branches be maintained; dephasing within or
between the branches is perfectly acceptable.

Introducing the pseudo-spin operators for the accep-
tor modes, Ĵk ≡ 1

2a
†σka, where a = (â1, â2)T , the

unitary operator for the MZ interferometer performs
the following transformations: Ĵz(tf ) = U†Ĵz(t1)U =

Ĵz(t1) cosφ − Ĵx(t1) sinφ, and L̂z(tf ) = U†L̂z(t1)U =

L̂z(t1), since only the acceptor particles take part in
the interferometric process. As in [8], we estimate the
phase by measuring the number of particles at the four
output ports (see Fig. 1) and constructing the signal

Ŝ = [Ĵz(tf ) + L̂z(tf )]2. Although only Ĵz contains phase

information, the noise in Ĵz is anticorrelated with L̂z, so
measuring both quantities allows us to correct for this
noise and therefore improve sensitivity.

To evaluate the phase sensitivity, we need the first and
second moments of Ŝ in the state (9). Since the QST pro-
cess and the angular-momentum operators preserve total
particle number, there is no interference between sectors
with different numbers of particles; the desired moments
are averages over pN = ρNN . The anticorrelation of Ĵz
and L̂z, expressed by Ĵz ρ̂(t1) = −L̂z ρ̂(t1), allows us to

convert L̂z in these moments to Ĵz. The anticorrelation
implies that ρ̂(t1) is invariant under rotations about the

z axis; in particular, a rotation by π, which takes Ĵx to
−Ĵx, implies that all terms with an odd number of Ĵx
operators have vanishing expectation value. At the most
sensitive operating point, φ = 0, the phase sensitivity
is [26]

∆φ =

√
V (Ŝ)∣∣∣∂φ〈Ŝ〉∣∣∣ =

1

2〈Ĵ2
x〉1/2

=

√
1

2〈N̂1N̂2〉+Na
, (10)

where N̂j = â†j(t1)âj(t1), and Na = 〈N̂1 + N̂2〉 is the av-
erage number of acceptor particles and thus the number
of particles that take part in the interferometric process.

We can put a lower bound on 〈N̂1N̂2〉 by noting that
a state of the form (9) gives

〈N̂1N̂2〉 =

∞∑
N=0

pN 〈N̂1〉N 〈N̂2〉N =

∞∑
N=0

pN 〈N̂1〉2N . (11)

Here 〈N̂j〉N =
∑N
nj=0 njPnj |N is the conditional expecta-

tion value of the number of particles in acceptor mode j,
given N initial particles in donor mode j. That the con-
ditional probabilities are the same in the two branches
ensures that 〈N̂1〉N = 〈N̂2〉N . Convexity implies that

〈N̂1N̂2〉 ≥
( ∞∑
N=0

pN 〈N̂1〉N
)2

= 〈N̂1〉2 =
1

4
N2
a , (12)

which gives an upper bound on the phase sensitivity of
any QST process applied to the initial state |Ψ(t0)〉,

∆φ ≤
√

2

Na(Na + 2)
'
√

2

Na
. (13)

The important feature of this result is that the Heisen-
berg limit is recovered, with respect to the number of
particles, Na, taking part in the interferometer, rather
than the total number of particles Nt. Although the ab-
solute sensitivity is less than with perfect QST, this is
purely due to loss of particles, rather than to loss of cor-
relations. We stress that this is not the true Heisenberg
limit, in the sense that we have used Nt ≥ Na particles
to make the measurement, but only Na of them have
passed through the interferometer. Without the applica-
tion of information recycling, however, the sensitivity is
significantly worse than 1/Na [26].
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For the specific case when the donor source is a twin-
Fock state, |Ψb〉 = |ΨTF〉, we get 〈N̂1N̂2〉 = 〈N̂1〉〈N̂2〉,
which gives a phase sensitivity that saturates the bound
(13) and is entirely independent of the QST efficiency or
even the form of the number-conserving QST interaction.
For other initial states, there might be a weak dependence
on the QST process (as seen for the beamsplitting case
below); nevertheless the phase sensitivity is guaranteed
to be at least as good as that given by the twin-Fock
state. To be more quantitative about the performance of
states other than |ΨTF〉, we need to specify a particular
Hamiltonian governing the QST process.

Beamsplitter QST process. We now consider the sim-
plest possible QST process, a beamsplitter. The Hamil-

tonian describing this process, Ĥ ∝∑j=1,2(âj b̂
†
j + â†j b̂j),

leads to the unitary transformation

âj(t1) =
√

1−Q âj(t0)− i
√
Q b̂j(t0) , (14a)

b̂j(t1) =
√

1−Q b̂j(t0)− i
√
Q âj(t0) . (14b)

Here Q is the QST efficiency, i.e., the fraction of donor
particles mapped to the acceptor modes.

The transformation (14) allows us to evaluate Eq. (10)
explicitly to determine the precise dependence on the
QST efficiency. With the initial state (6), we get

〈N̂1N̂2〉 =
(
Q2V (N̂t) + 〈Na〉2

)
/4, and the phase sensi-

tivity in the presence of information recycling is

∆φ =

√
2

Q2V (N̂t) +Na(Na + 2)
. (15)

For a twin-Fock input, which has V (N̂t) = 0, the phase
sensitivity does not depend on Q and is given by the
bound in Eq. (13). When the donor state is two-mode
squeezed vacuum, |Ψb〉 = |Ψsq〉, we find that ∆φ =

1/
√
Na(Na + 1 +Q), which has only a weak dependence

on Q. Indeed, it is clear that to leading order in the
total number of acceptor particles, Na = QNt, the sen-
sitivity (15) has Heisenberg scaling for any donor input
state (5), regardless of the QST efficiency Q. This gives
a clear illustration of the power of information recycling
as a tool to enable quantum metrology.

It is instructive to compute the quantum Fisher infor-
mation Fa for the donor-acceptor interferometer. With
the pure initial state (1) and a beamsplitter QST pro-
cess, the state remains pure, and the quantum Fisher
information is simply Fa = 4[〈Ĵy(t1)2〉 − 〈Ĵy(t1)〉2]. The
transformations (14) allow us to compute these expecta-
tions with respect to the initial state. Since the acceptor
modes are initially vacuum, we obtain

Fa = Q2Fb + (1−Q)Na =
Q2V (N̂t) +Na(Na + 2)

2
.

(16)
Comparing with the sensitivity (15), it is clear that
our information-recycled signal achieves the best possible
Heisenberg scaling, i.e., by saturating the QCRB.
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FIG. 2. Examples of the QST-dependence of the phase sen-
sitivity at the optimal operating point without information
recycling (i.e., Ŝ = Ĵ2

z ), assuming a beamsplitter QST pro-
cess, for initial donor states |ΨTF〉 (solid blue) and |Ψsq〉 (solid
red) and using Nt = 104. The upper and lower dashed lines
mark the standard QNL, ∆φ = 1/

√
Na, and the Heisenberg

limit, ∆φ = 1/Na. Heisenberg scaling is rapidly lost for small
departures from perfect QST. In contrast, the sensitivity (15)
with information recycling has Heisenberg scaling ∝ 1/Na for
all Q. The analytic expressions for the sensitivity ∆φ, as a
function of φ and at the optimal operating point, are in the
Supplemental Material [26].

In contrast to these results, when information recycling
is not applied, the beamsplitter QST process acts as a
linear loss mechanism and Heisenberg scaling is lost (see
Fig. 2). This loss of Heisenberg scaling occurs for rela-
tively small deviations of Q from perfect QST and affects
any initial state of the form (5) [26] (see also [27, 28]).

Applications. Donor-enhanced interferometry with in-
formation recycling requires the following: (i) a corre-
lated source of donor particles, (ii) partial QST between
the donor particles and some acceptor system that op-
erates in two independent and symmetric branches, and
(iii) the ability to detect both donor and acceptor parti-
cles. It might be particularly useful in situations where
there are abundant donor particles and a limited number
of acceptor particles [such as QST from photons (donor)
to atoms (acceptor) for the purposes of atom interferom-
etry], since the QST efficiency becomes irrelevant once
Na equals the total number of available acceptor par-
ticles. In addition to Heisenberg-limited atom interfer-
ometry, another potential application for this scheme is
optical interferometry which requires coupling into opti-
cal fibers before an interferometer (Fig. 3). Here, cou-
pling between the freely propagating modes (donor sys-
tem) and the fiber modes (acceptor system) represents
the QST process. Typically there will be some scattering
into other modes, which is a source of inefficient QST. In-
formation recycling could be implemented by detecting
the scattered photons. Since our scheme only requires
photon counting, rather than homodyne detection, in-
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Optical fibers

(to interferometer)
Donor
Source

FIG. 3. Free-space photons from a donor source are coupled
into optical fibers, which form the arms of a MZ interferom-
eter. By measuring scattered photons, information recycling
can be used to counteract the deleterious effects of inefficient
coupling between the donor photon source and the optical
fibers.

formation recycling could still be implemented even if
the scattering is incoherent, and into a range of spatial
modes.
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