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We consider the discrimination of two pure quantum states with three allowed outcomes: a correct
guess, an incorrect guess, and a non-guess. To find an optimum measurement procedure, we define a
tunable cost that penalizes the incorrect guess and non-guess outcomes. Minimizing this cost over all
projective measurements produces a rigorous cost bound that includes the usual Helstrom discrim-
ination bound as a special case. We then show that nonprojective measurements can outperform
this modified Helstrom bound for certain choices of cost function. The Ivanovic-Dieks-Peres unam-
biguous state discrimination protocol is recovered as a special case of this improvement. Notably,
while the cost advantage of the latter protocol is destroyed with the introduction of any amount
of experimental noise, other choices of cost function have optima for which nonprojective measure-
ments robustly show an appreciable, and thus experimentally measurable, cost advantage. Such an
experiment would be an unambiguous demonstration of a benefit from nonprojective measurements.

A fundamental consequence of quantum mechanics is
the inability to perfectly distinguish between two non-
orthogonal quantum states. Any attempt to guess which
state is which after making a measurement will have an
unavoidable probability of error that is bounded from
below, as shown originally by Helstrom [1, 2|, and in
related work by Holevo [3]. This lower bound, known as
the Helstrom bound (HB), grows with the overlap of the
two states being discriminated.

Intriguingly, Holevo also emphasized that nonprojec-
tive measurements [4, 5] can outperform projective mea-
surements for discrimination tasks that involve three or
more options [3]. The best known example of such an
improvement was provided by Ivanovic, Dieks, and Peres
[6-8], who observed that if one is also allowed to decline
to guess between the two states of the HB, then it is
possible to reduce the probability of error to zero while
still retaining a significant chance of guessing correctly.
A nonprojective measurement is required to obtain the
maximum correct guess probability in such an “Unam-
biguous State Discrimination” (USD) game.

This advantage of nonprojective quantum measure-
ments in state discrimination is so surprising (in compar-
ison with the classical counterpart) that it has become a
featured example in modern quantum information text-
books (e.g., [9, 10]), and has led to considerable research,
both in theory [11-29] and experiment [30-39] (reviewed,
e.g., in [40, 41]). Most of this work has focused on the
extreme cases of zero declining (as with the HB) or zero
error (as with USD), with fewer papers considering in-
termediate cases that minimize the declining probability
given a fixed nonzero error rate [23-29]. Of these works,
only a couple have pointed out that experimental imper-
fections further constrain which measurements can be re-
alized in practice [26, 29]. We are thus not aware of any
formulation of the discrimination problem that is suitable
for experimentally demonstrating a definitive advantage
of nonprojective measurements.

In this paper, we derive a simple but rigorous bound
that can be experimentally violated only by nonprojec-
tive measurements (similar to how violating a Bell in-
equality requires entangled states). This bound is the
minimum over all projective measurements of a cost func-
tion that interpolates between the HB and USD extremes
as special cases. To violate this bound, we provide an
explicit qubit implementation for the nonprojective mea-
surements. Adding realistic experimental noise changes
the accessible cost minima, affecting which violations can
be observed in practice. Notably, the cost advantage of
USD is completely destroyed with any amount of noise.
Nevertheless, we show that an appreciable advantage still
persists for intermediate cost functions, making this ad-
vantage accessible to current experiments, such as those
involving superconducting qubits [42-48].

State Discrimination.— Consider the following game:
A funding agent, whom we shall name Alice, prepares
one of two pure quantum states with equal probability,

|1/}0> = |O>a

and sends it to an investigator, Bob, who is tasked to
determine which state Alice has prepared. To write these
states, we have used the fact that any two states lie in
a plane that can be spanned by two orthogonal vectors,
which we label |0) and |1). These states form a basis
for an effective qubit, even though the implementation
Hilbert space may have more dimensions.

Once he has obtained a state from Alice, Bob is allowed
to measure it in any way that he pleases, after which he
must either guess the state or decline to guess. There
are thus three possible results for a single trial of this
game: (1) Bob can guess the state correctly, (2) Bob
can guess the state incorrectly, or (3) Bob can decline
to guess. Hence, if Bob uses a consistent measurement
strategy for many trials, three probabilities will emerge
that correspond to these results: (1) correctly guessing
with probability p., (2) wrongly guessing with probability

[t1) = cos0]0) +sinf 1), (1)



Pw, and (3) declining to guess with probability pg. These
probabilities will satisfy pe + pw + pg = 1.

To give Bob extra incentive, Alice grants Bob one fund-
ing unit for every trial of the game, but also demands
that he repay her a fraction w for each wrong guess, and
a fraction d for each declined guess. Bob wishes to maxi-
mize his funding, so decides to optimize his measurement
strategy by minimizing the average fractional cost per
trial

C = wpyw + dpg. (2)

Each proportion w : d of cost penalties corresponds to a
distinct betting game with a different optimal strategy.

For simplicity of discussion, in most of what follows we
will normalize this cost function by w (i.e., C — C/w),
to leave only a single parameter k,

C = pw + kpa, k=d/w, 3)
that indicates the penalty for not guessing relative to that
of incorrectly guessing. To analyze the limit w — oo, we
will use the modified cost C/k = py, /k + pa-

In terms of the single parameter k, we have the fol-
lowing limiting behaviors: (i) When k£ — oo, non-
guesses are intolerable, so the minimized cost effectively
reduces to min(C') = min(p,, ), subject to the constraint
pqg = 0. This limiting case corresponds to the standard
two-outcome discrimination game [1-3], so the minimized
cost will be equal to the usual HB. (ii) When k& — 0,
there is no penalty for non-guesses, so it is always better
to decline (pg = 1) to produce min(C) — 0. However,
after rescaling to C/k the limit & — 0 is non-trivial:
wrong guesses become intolerable, so the minimized cost
reduces to min(C'/k) = min(pg) subject to the constraint
pw = 0, which corresponds to the USD game [6-8].

We see that our formulation of the state discrimination
game with a linear cost function is sufficiently general to
contain both the HB and USD games as special cases
at extremes of k. For intermediate k, we analyze when
nonprojective measurements are advantageous compared
with projective measurements, and find the size of this
advantage under realistic experimental conditions.

Modified Helstrom Bound.— We first find a rigorous
lower bound for the cost function (2) if only projec-
tive measurements are allowed within the qubit space.
Nonprojective measurements will be able to violate this
bound. Note that a projective measurement of a qubit
fully determines the post-measurement state, so an ad-
ditional measurement would not bring additional infor-
mation. Therefore, there are only two possible optimal
strategies for discriminating two pure states:

(a) Always guess both states. That is, perform
one projective measurement in an orthogonal basis

{|0), |¢$1)}, identifying |¢o) as a guess of |¢g) and
the orthogonal state |¢1) as a guess of [t1).

(b) Only guess one state. That is, perform one projective
measurement in an orthogonal basis {|¢g), |#1) }, with
|po) used as a guess of [1g), while treating |¢1) as a
non-guess outcome.

Other intermediate strategies that probabilistically com-
bine these two will not be optimal due to the convexity
of the linear cost function. Trivial state exchanges 0 <> 1
give the same performance.

For strategy (a) the game probabilities are p; = 0 and

2 2
where A = (1 + [¥1) (1] — o) (¥o|) /2 and the factor of
1/2 indicates the 50:50 preparation probability for each
state |¢;). The minimum p,, is the minimum eigenvalue
of A, so the minimum cost in Eq. (2) for strategy (a) is
this eigenvalue scaled by w:

'l —w (1 - |sinf]) /2. (5)

min
The weight w vanishes when using the normalization of

Eq. (3), so the cost reduces to the usual HB [1, 2].
For strategy (b) the game probabilities are

golvn)|” d11%0)|” + (g1 [)”

D = [(Golvn)I” D = (@1 [Yo)l” + [l (6)
2 2

so the minimum cost is the minimum eigen-

value of the operator B = wl|y)(¥1]/2 +

d [1 = (|o) (ol + |1) (¥1]) /2], which is

2
® _wt+2d [[w—2d dw—d] .,
Choi = 1 1 + ) sin® 6. (7)

For the normalization of Eq. (3), this cost simplifies to
C®) =142k — \/T— 2k(1 — k)(I + cos 20)] /4.

min
The minimum cost of these two strategies is the best
that Bob can do using projective measurements; we will

call it the modified Helstrom (MH) bound

Omu = min{C%), ¢ }. (8)

This bound [with the normalization of Eq. (3)] as a func-
tion of k is illustrated with dashed lines in Figs. 1(a) and
1(b) for various choices of the separation angle § between
[tbo) and |1). Each kink indicates a switch between the

two projective strategies where C’r(ri)n = C’r(fi)n. As we
discuss later, nonprojective measurements maximally vi-
olate the MH bound at precisely these critical (optimal)

values of k, which depend on the separation angle 6,

1 vV1+3cos?20—2
kopt(0) = = |1 .
pt(0) 2 + |sin 6] (9)

Nonprojective Measurements.— Unlike projective
strategies that can have only two physical outcomes, non-
projective measurements can naturally use three physi-
cal outcomes for the three choices in the discrimination
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FIG. 1. (a) Minimum cost for discriminating |¢o) = |0) and
[1h1) = cos6]0) + sinf|1) by a measurement, using the cost
function C(k) = pw + kpaq to penalize wrong, p., and de-
clined, pq, guess probabilities. Shown are separation angles
0 in increments of 7/10. Dashed lines show the modified
Helstrom bound Cwmu, Eq. (8), attainable with a projective
measurement, with the horizontal part being the usual Hel-
strom bound. Solid lines (same colors in all panels) show the
minimum cost Cmin for nonprojective measurements, and vi-
olate the MH bound for a range of k. (b) Same as in (a)
for the scaled cost function C'(k)/k. This scaling permits the
case of unambiguous state discrimination to be recovered at
k — 0. (c) Violation of the MH bound, AChin = Cvm# — Chin,
showing the difference between the dashed and solid curves in
(a). (d) Violation of the scaled bound, ACnin/k. (e) and (f)
Same as (c,d) but with 5% probability ppp of depolarizing the
states. (g) and (h) Same as (c,d) but with 2% probability pm
of misidentifying the measured result. These imperfections in-
crease Cmin and therefore decrease the violation ACnin. Note
that for the USD case [k — 0 in (f) and (h)] the cost advan-
tage is fully destroyed by experimental imperfections, but the
MH bound violation is still possible for intermediate k.

game. This is what permits nonprojective measurements
to have an advantage over projective measurements. (It
is simple to show that using four or more physical out-
comes will not lead to further improvement.)

Without loss of generality, we consider a concrete im-

plementation of a three-outcome nonprojective strategy
as a cascade of two binary-outcome measurements, the
first being a partial projection (see, e.g., [48]) and the
second being a full projection. (For optimal cascaded
strategies, the second measurement will always be projec-
tive so that it extracts the maximum remaining informa-
tion.) The advantage of using this cascading strategy is a
relatively easy implementation with existing experimen-
tal qubit architectures, especially with superconducting
qubits [42-47].

To implement the three-outcome cascade, Bob uses the
following procedure:

(a) Measure in a basis that includes the state |¢él)> =
cos ¢1]0) + sin 1 |1), with a strength s € [0, 1] (see,
e.g., [48]). If the outcome |¢E)1)> is obtained, treat
this as a guess of |i)g).

(b) Otherwise, perform a second projective measurement
in a basis that includes the state |¢§2)> = cos ¢2|0) +

sin p2|1). If the outcome |¢§2)> is obtained, treat this
as a guess of |¢1).

(¢) The remaining outcome is treated as a non-guess.

Note that we omit relative phases in both bases above,
since optimal measurements of any strength will always
be in the same plane as the states being discriminated.

The three possible measurement outcomes of this cas-
cade then correspond to the following partial projection
operators [9, 48] that are parametrized by the two angles
©1, 92 € [—m, 7], as well as the strength s € [0, 1]:

Mo = |65y (0], (10a)
8 = 62 6211 - s21680) (@), (101)
Ny =1 - 626?11 - 2160) @ (100)

These operators satisfy the usual completeness condition
MJMQ + MfMl + M}Md = 1, and produce the game
probabilities:

pe = 5 (ol N NIk} + (n W[ N J)) , (11a)
pu = 5 (Wl 3 ) + (n B o)) . (11b)
Pa = % (<1/)0|M;Md|7/10> + (1/11|M;Md|1/)1>) . (11c)

With the strength s = 1 this cascading implementation
can reproduce either of the projective strategies consid-
ered before, thus recovering the MH bound Cyy when
projections are indeed optimal.

To find the minimum cost, as well as the optimum
parameters (¢1, @2, ), we numerically minimize [49] the
cost function in Eq. (3) for each k independently, using
a Nelder Mead optimization algorithm. In Fig. 1(a) we



show the resulting minimum cost Ci,i, for each k as the
solid curves. For each separation angle 6, there is a cer-
tain value kgp(0) < 1/2, above which the usual Helstrom
bound in Eq. (5) is recovered (the horizontal part of the
line): in this regime projective measurements are the op-
timal strategy. However, for 0 < k < kgp(6) the nonpro-
jective measurements violate the HB as well as the MH
bound (dashed lines). Using the results in Refs. [23-28],
we derive the analytic form of the ideal minimum cost in
this range (which coincides with the numerical results)

Cumin = k[k — (1 — k) cosf]/(2k —1).  (12)

For k > kup, Cmin is the HB in Eq. (5) (with w = 1).

The maximum violation for each 6 is shown in
Figs. 2(a) and (b), and occurs at the MH bound kinks
kopt(0) given by Eq. (9) [lower curve in Fig. 2(c)]. The
values of the optimal parameters (o1, @2, ) minimizing
the cost at these kinks are shown in Figs. 2(c) and (d)
as the solid lines. We also show the result for minimiz-
ing the scaled cost C'/k in Fig. 1(b), which recovers the
special case of USD in the limit ¥ — 0 (and the same
optimal parameters that minimize C). For visual clarity,
we show the cost improvement ACnin = Cyprg — Chin
(the difference between the MH bound and minimized
cost) in Figs. 1(c) and 1(d).

Ezperimental Imperfections.— We use two simple mod-
els to describe imperfections that may reduce or fully de-
stroy the possible violations of the MH bound. First, we
model decoherence with a generic depolarization process,
which effectively replaces the initial state prepared by Al-
ice by the fully mixed state with a probability ppp. Sec-
ond, we assume that the binary readouts of the cascaded
measurement can be spuriously misidentified with an er-
ror probability pp;. These imperfections model domi-
nant noise sources in recent superconducting qubit ex-
periments [42-47], with crude estimates ppp > 1072 and
pyv 21072

In Figs. 1(e) and (f) we show the effect of depolariza-
tion decoherence with ppp = 0.05 for the optimized cost
improvement. Similarly, in (g) and (h) we show the effect
of adding misidentification noise with pa; = 0.02. These
realistic noise choices can be compared to the ideal re-
sults in Figs. 1(c) and (d). Both types of imperfections
have a similar effect on the maximum violations (with
more sensitivity to pys than to ppp).

The cost improvement for the USD case (kK — 0) in
Fig. 1(d) is completely destroyed for any ppp > 0 or
par > 0, making this well-known protocol actually worse
than ideal projective measurements for any realistic im-
plementation of the state discrimination game. FEven
with these imperfections, however, nonprojective mea-
surements can still show an improvement over projec-
tive measurements around the critical parameter values
kopt(0) for sufficiently small 8. Moreover, the globally
maximum cost improvement, shown in Fig. 2(a) and (b),
only decreases approximately linearly as either ppp or
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FIG. 2. (a) Maximum violation of the modified Helstrom
bound as a function of the state-separation angle . The ideal
violation (solid line) is reduced in the presence of depolariza-
tion decoherence with strength ppp increasing in increments
of 2%. (dashed lines). (b) The ideal violation (solid line) is
similarly reduced in the presence of measurement misidenti-
fication errors with probability pas increasing in increments
of 1%. (c) Lower curve: the optimal cost parameter kopt(6)
for the maximum MH bound violation [Eq. (9), peaks in Fig.
1(c)] in the ideal case. Upper curves: the optimal measure-
ment strength s for the cascaded partial measurement scheme,
as a function of 0, for the optimal cost parameter kopt(0). (d)
Optimal angles ¢; (lower curves) and @2 (upper curves) for
the cascaded partial measurement scheme. In both (c¢) and (d)
the solid curves are for the ideal case, while the (almost iden-
tical) dashed curves include 2% misidentification noise. The
black dots indicate the globally maximum ideal violation.

0 0.25 0.5

pu increase. The angles and strength associated with
these maximum cost improvements including misidenti-
fication noise with pps = 0.02 are shown in Figs. 2(c) and
(d) as the dashed lines, which do not significantly differ
from the ideal values. The MH bound violation requires
ppp < 0.101 and py; < 0.041.

Conclusion.— We have considered the two-state three-
outcome discrimination game using a simple linear cost
function to penalize the unfavorable outcomes. The orig-
inal Helstrom discrimination problem, as well as the un-
ambiguous state discrimination of Ivonovic, Dieks, and
Peres are recovered as special cases. Minimizing the cost
function using only projective measurements produces
what we name the modified Helstrom bound.

Nonprojective measurements can violate this modi-
fied bound. Notably, for cost functions intermediate be-
tween the well-studied extremes, the violations are ro-
bust against the introduction of (small) experimental im-
perfections. In contrast, the cost advantage of the un-
ambiguous state discrimination is completely destroyed
with the addition of any amount of noise. An experi-
mental demonstration of modified Helstrom bound vio-
lations would require less than ~10% decoherence and
~4% readout error, making it a stringent-but-accessible
test for modern quantum computing implementations.
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