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Motional ground state cooling and quantum-coherent manipulation of mesoscopic mechanical systems are

crucial goals in both fundamental physics and applied science. We demonstrate that the motional ground state

can be achieved in the highly unresolved sideband regime, through coherent auxiliary cavity interferences. We

further illustrate coherent strong Rabi coupling between indirectly-coupled and individually-optimized mechan-

ical resonators and optical cavities through effective dark-mode interaction. The proposed approach provides a

new platform for quantum manipulation of mesoscopic mechanical devices beyond the resolved sideband limit.

PACS numbers: 42.50.Wk, 07.10.Cm, 42.50.Lc

I. INTRODUCTION

Preparing mechanical quantum states free of thermal noise

and with coherent manipulation are crucial goals in cavity

optomechanics [1–6]. Recently significant efforts on mo-

tional ground state cooling have been mounted through dis-

persive coupling [7–15], along with recent theoretical ef-

forts on dissipative coupling [16, 17], dynamic cooling [18–

22], atom-assisted cooling [23–25] and external cavity cool-

ing [26]. Quantum noise however sets a fundamental limit

for backaction cooling, and current dispersive ground state

cooling approaches must rely on the resolved sideband limit

[27, 28], requiring a cavity linewidth smaller than the sin-

gle harmonic oscillator level spacing. In parallel, interfer-

ence phenomena have been observed in optomechanical sys-

tems [29–32], including a mechanical mode interacting with

two optical modes [33–39], with the application of coherent

frequency conversion [40, 41] and dark mode observations

[42] in the weak optomechanical coupling regime. For coher-

ent exchange between optical and mechanical modes [43–46],

however, a dramatically large optomechanical coupling rate

exceeding that of optical decoherence has been deemed nec-

essary. Conventionally, this poses a serious requirement on

the optical Q-factor, i.e., the good-cavity and resolved side-

band limits.

Recently some approaches on ground state cooling in the

unresolved sideband regime [5] have been proposed. The dis-

sipative coupling mechanism [16, 17], parameter modulations

[18–21] and hybrid system approaches [23–25, 47] are shown

to be capable of loosening resolved sideband condition. How-

ever, experimental realization of these proposals are still dif-

ficult. Here we propose a practical coupled cavity system for

both ground state cooling of mechanical resonators and strong

optomechanical coupling in the highly unresolved sideband

condition, without requiring the coupled cavities in the nor-

mal mode splitting regime. We harness the destructive quan-
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FIG. 1: (color online) (a) Fabry-Pérot equivalent of the current sys-

tem with two coupled optical cavities. The first cavity is a low-Q cav-

ity and the second cavity is a high-Q cavity. The mechanical mode

only interact with the first cavity mode. (b) Energy level diagram of

the system in the displaced frame. |n1, n2,m〉 denotes the state of

n1 photons in mode a1, n2 photons in mode a2 and m phonons in

mode b. The red double arrow denotes the coupling between states

|n1 + 1, n2,m+ 1〉 and |n1, n2 + 1, m+ 1〉 with coupling strength

J . (c) Energy levels forming the three-level configuration.

tum interference in the all-optical domain of the coupled cav-

ity system to achieve these goals. We find that ground state

cooling is realizable for a large range of cavity decay rates by

coherently coupling to an auxiliary optical resonator or mode,

which does not directly interact with the mechanical mode.

We use effective dark-mode interaction model to analytically

describe the system, and demonstrate quantum-coherent cou-

pling between individually-optimized mechanical resonators

and optical cavities. This not only allows quantum manipula-

tion of massive mesoscopic mechanical devices with low fre-

quencies, but also enables quantum effects in a general plat-

form with optimized optical and mechanical properties.
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II. SYSTEM MODEL

Figure 1(a) illustrates two coupled optical cavities. The

first primary cavity supports the optical mode a1 (frequency

ω1, decay rate κ1) and the mechanical mode b (frequency

ωm, decay rate γ) with single-photon optomechanical cou-

pling strength g, while the second auxiliary cavity supports

the optical mode a2 (frequency ω2, decay rate κ2) and does

not interact with the mechanical mode b. The interaction be-

tween the two optical modes is denoted by the tunnel-coupling

parameter J [33, 48–55]. The continuous-wave input laser

excites mode a1 with driving strength Ω. In the frame ro-

tating at input laser frequency ωin, the system Hamiltonian

reads H = −∆1a
†
1a1−∆2a

†
2a2 + ωmb

†b+ ga†1a1(b
† + b) +

(Ja†1a2 + J∗a†2a1) + (Ω∗a1 + Ωa†1), where ∆1 ≡ ωin − ω1

and ∆2 ≡ ωin − ω2 are the detunings. After lineariza-

tion, the multi-photon optomechanical coupling strength reads

G ≡ gα1 with α1 the average intracavity field of mode a1.

The energy levels of the coupled system are depicted in Fig.

1(b), where a series of three-level configurations can be ex-

tracted. In Fig. 1(c), |1〉 represents a short-lived state with

high decay rate κ1, while |2〉 denotes a long-lived metastable

state with a small decay rate κ2. Destructive quantum inter-

ference occurs between the two different excitation pathways,

from |0〉 → |1〉 directly and from |0〉 → |1〉 → |2〉 → |1〉
indirectly. This allows the heating process through the opti-

cal field to be potentially suppressed. Meanwhile, the cooling

process is almost unaffected due to off-resonance interaction.

III. COOLING THROUGH COUPLED CAVITY

INTERACTIONS BEYOND THE RESOLVED SIDEBAND

LIMIT

To demonstrate the cooling, we derive and calculate the

spectral density of the optical force using the quantum noise

approach (see Appendix B)

SFF (ω) =
|G|2 κ1

x2
ZPF

|χ (ω)|2
[

1 +
κ2

κ1
|J |2 |χ2 (ω)|2

]

, (1)

where xZPF is the zero-point mechanical fluctuation,

χ−1(ω) = χ−1
1 (ω) + J2χ2(ω), χ

−1
1 (ω) = −i(ω +∆′

1) +
κ1/2, χ−1

2 (ω) = −i(ω +∆2) + κ2/2 and ∆′
1 = ∆1 +

2 |G|2 /ωm is the optomechanical-coupling modified detun-

ing. Without the second optical mode a2, the noise spec-

trum reduces to S
(J=0)
FF (ω) = |G|2 κ1 |χ1 (ω)|2 /x2

ZPF, a

Lorentzian noise spectrum. In the presence of mode a2,

SFF (ω) becomes a complex lineshape due to interaction of

the two optical modes. In Figs. 2(a) and 2(b) we plot the noise

spectrum SFF (ω) in the highly unresolved sideband regime

κ1/ωm = 104 by examining various detunings ∆′
1. An asym-

metric Fano (interference of a resonant scattering with con-

tinuum background) [56] lineshape or a symmetric narrow

electromagnetically-induced transparency (EIT, interference

of two resonant scattering or optical transitions) [57–60] line-

shape appears with sharp spectral change compared with the

low-Q spectral background. This greatly increases the asym-

metry between cooling and heating processes, with potential

for enhanced cooling rate A− ≡ SFF (ωm)x
2
ZPF and sup-

pressed heating rate A+ ≡ SFF (−ωm)x
2
ZPF. Here A− (A+)

represents the rate for absorbing (emitting) a phonon by the

intracavity field, as illustrated in Fig. 2(c) and 2(d). In the

single cavity highly unresolved sideband regime, the cooling

rate A− and heating rate A+ are almost the same, with net

cooling rate Γopt ≡ A− −A+ near zero [Fig. 2(c) and 2(e)].

In the presence of the second optical mode a2, the quantum

interference results in large suppression of A+ while A− is

almost unchanged, leading to a very large net cooling rate

Γopt [Fig. 2(d) and 2(f)]. Moreover, we note that the clas-

sical cooling limit nc
f (≃ γnth/Γopt) is largely lowered, re-

laxing the requirement for initial cryogenic pre-cooling, i.e.,

higher bath thermal phonon number nth can be tolerated. Fur-

thermore, the quantum limit nq
f (≃ A+/Γopt) is significantly

reduced, breaking the resolved sideband requirement of back-

action cooling. For the single cavity case, the lowest achiev-

able quantum limit, obtained for detuning ∆′
1 = −κ1/2 in

the unresolved sideband condition, is given by κ1/(4ωm). In

the coupled cavity approach here, κ1 is no longer a limit on

the final phonon occupancy through cancellation of quantum

backaction heating.

By solving the quantum master equation and employing the

covariance approach (see Appendix C), exact numerical re-

sults are obtained, with an example time evolution of the mean

phonon number presented in Fig. 2(g). In the presence of the

second cavity the mean phonon occupancy is cooled from an

initial 104 to below 1 even for highly unresolved sideband case

κ1/ωm =104, while in the absence of the second cavity, the

mechanical motion cannot be cooled for such a large κ1/ωm.

Compared with the conventional single cavity cooling case,

a significant difference here is that the input laser can be blue

detuned. In the quantum noise approach, the positive slope

of SFF (ω) is used for cooling while the negative slope cor-

responds to heating. For single cavity setup, positive slope

of SFF (ω) only appears on the left wing of the Lorentzian;

while for coupled cavity system, the Fano or EIT spectrum

has rich structures. For example, the EIT lineshape can be

viewed as an inverse Lorentzian lineshape. In Fig. 3(a) we

plot exact numerical results of the steady-state final phonon

number nf as a function of two detunings ∆′
1 and ∆2 for

fixed inter-cavity interaction strength J . It shows optimal de-

tunings are approximately described by ∆′
1 (∆2 + ωm) = J2

(blue solid curve), calculated from Eq. (1) by maximizing the

cooling rate A−. In Figs. 3(b)-3(d) we plot nf = nq
f + nc

f ,

the quantum part nq
f and classical part nc

f as functions of

∆′
1 and ∆2 for optimized inter-cavity interaction tuned by

J =
√

∆′
1 (∆2 + ωm) [along the blue solid curve in Fig.

3(a)]. It shows that ground state cooling can be achieved for

broad range of detunings. For the first cavity, this range ex-

ceeds 5×104ωm; for the second cavity, significant cooling can

be realized in the span of −0.5 < ∆2/ωm < 1. In Fig. 3(c)

the quantum limit nq
f minimum is obtained for large ∆′

1 and

negative ∆2 (for Fano-like lineshapes), from a small quantum

backaction heating ∝ SFF (−ωm). On the other hand, the

classical limit nc
f minimum is achieved for small ∆′

1 and pos-
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FIG. 2: (color online) (a) Optical force spectrum SFF (ω) for κ1/ωm = 104 and various ∆′
1. From top to bottom, ∆′

1 decrease from κ1 to

−κ1 with step 0.25κ1 . (b) Zoom-in view of central one-fortieth of the dashed-box region in (a). (c) and (d): Frequency domain interpretation

of optomechanical interactions with a single cavity (c) and coupled cavities (d). The black vertical arrows denote the input laser, the gray

vertical arrows denote the scattering sidebands, and the red (blue) arrows denote the anti-Stokes (Stokes) scattering processes A− (A+). (e)

and (f): Net optical cooling rate Γopt as functions of ∆′
1 and κ1 for a single cavity (e) and coupled cavities (f). (g) Exact numerical results

of the mean phonon number nb(t) for coupled cavities (red closed circles) with ∆′
1 = J2/(∆2 + ωm). The single cavity case (J = 0) with

∆′
1 = −κ1/2 and G/ωm = 10 is plotted for comparison (blue open circles). The shaded region denotes nb < 1. Other unspecified parameters

are κ1/ωm = 104, κ2/ωm = 1, ∆2/ωm = 0.5, J =
√
κ1ωm, G = 0.5J , γ/ωm = 10−5 and nth = 104.

itive ∆2 near ∆2/ωm ∼ 1 (for EIT-like lineshapes), which

leads to a large cooling rate ∝ SFF (ωm). The balance be-

tween these two limits lead to an optimal ∆′
1/κ1 ∼ 3 and

∆2/ωm ∼ 0.3 for the parameters in Fig. 3(b).

Figures 3(e) and 3(f) demonstrates the broad parameter

space for ground state cooling in the unresolved sideband

limit. With optimized couplings J and G, the final phonon

number nf for different ratios κ1/ωm up to 106 are almost

the same, which reveals that, arising from the unique inter-

ferences, the first cavity decay only acts as a background

and have negligible influence on cooling for such large opti-

cal damping case. Figure 3(f) shows that for κ2/ωm = 0.5,

the tolerable initial bath phonon number nth is up to 3 ×
104 (green triangles), corresponding to T = 288 K for

ωm/2π = 200 MHz, readily available in physical measure-

ments.

IV. EFFECTIVE DARK-MODE INTERACTIONS:

ANALYTICAL COOLING LIMITS, STRONG COUPLING

AND DYNAMICAL STABILITY

A. Analytical cooling limits

To gain more physical insights into the coupled cavity op-

tomechanical system, we analyze the eigenmodes of the sys-

tem. For large detuning , two of the system’s eigenmodes

are linear combinations of the mechanical mode and the high-

Q cavity mode a2, i.e., they are dark modes with respect to

the low-Q cavity mode a1. This dark mode doublet can be

considered as a result of the effective interaction between the

mechanical mode and the high-Q mode a2. The interaction is

concisely described by the effective parameters (see Appendix

D)

|Geff | = η |G| , κeff = κ2 + η2κ1, ∆eff = ∆2− η2∆′
1, (2)

where η is the scaled inter-cavity coupling strength given by

η =
|J |
|∆′

1|
(3)

for large detuning |∆′
1| > κ1. Note that mode a2 does not

directly interact with mode b, and the indirect effective inter-

action is mediated by mode a1 [Fig. 4(a) inset]. It reveals

from Eq. (2) that the effective detuning ∆eff is a combination

of ∆′
1 and ∆2, uniquely allowing blue detuned ∆′

1 and ∆2 to

obtain a red detuned ∆eff . With the effective dark-mode inter-

action model, the cooling limits can be analytically described

by (see Appendix D)

neff
f =

γnth

Γeff
+

κ2
eff

16ω2
m

, (4)

where Γeff = 4 |Geff |2 /κeff is the effective cooling rate. It

reveals that ground state cooling requires κ2 + η2κ1 . 4ωm,

only slightly dependent on the first cavity decay rate κ1 for

η ≪ 1. The ultimate limitation is the second cavity decay rate
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FIG. 3: (color online) (a) Exact numerical results of the final phonon

number nf as functions of ∆′
1/ωm and ∆2/ωm for J/ωm = 100,

G = 0.5J . The blue curve corresponds to ∆′
1 (∆2 + ωm) = J2.

(b)-(d): Final phonon number nf (b), its quantum part nq

f (c) and

classical part nc
f (d) as functions of ∆′

1/ωm and ∆2/ωm for J =
√

∆′
1 (∆2 + ωm) and G = 0.5J . In (a)-(d), κ1/ωm = 104 and

nth = 104. The black curves denote that the phonon number is

1. (e) and (f): Final phonon number nf as a function of κ2/ωm

(e) and nth (f). In (e), nth = 104, κ1/ωm =106 (red closed cir-

cles), 104 (blue solid curve) and 102 (black dashed curve); in (f),

κ1/ωm = 104, κ2/ωm = 2 (red closed circles), 1 (blue open cir-

cles) and 0.5 (green triangles). Other unspecified parameters are

J =
√
κ1ωm, G = 0.5J , ∆2/ωm = 0.5, ∆′

1 = J2/(∆2 + ωm)
and γ/ωm = 10−5. The shaded regions denote nf < 1.

κ2, which should be comparable to ωm. Notably, since b is not

directly couple to a2, the optical and mechanical properties

of the whole system can be optimized individually, without

simultaneous requirements in the same resonator. Particularly,

the second cavity does not need to support any mechanical

modes, and the only requirement is relatively high optical Q.

B. Strong coupling

The current system also enables strong coupling between

mode a2 and mode b even when mode a1 is highly dissipative,

with the similar mechanism of strong-coupling cavity quan-

tum electrodynamics in highly dissipative cavities [61]. Fig-

ure 4(a) and 4(b) shows that Rabi oscillation occurs for modes

a2 and b with κ1/ωm = 104. It reveals reversible energy ex-

change between these two indirectly coupled modes, with de-

coherence time much longer than the coherent exchange pe-

riod. Note that the analytical results (red solid curve) calcu-

lated from the effective dark-mode interaction model (see Ap-

pendix D) agrees well with the exact numerical results. In this

case the effective strong coupling condition |Geff | > κeff is

satisfied. As shown in Eq. (2) and Fig. 4(c), for η ≪ 1,

both the effective coupling strength |Geff | and effective cavity

decay rate κeff are smaller than the original |G| and κ1, re-

spectively. However, κeff decreases more rapidly than |Geff |
for decreasing η. Therefore, strong coupling regime can be

reached, corresponding to the shaded region in Fig. 4(c).
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FIG. 4: (color online) Exact numerical results of the mean phonon

number nb(t) (red closed circles), mean photon numbers n2(t)
(blue open circles), n1(t) (green triangles) for κ1/ωm = 104,

J/ωm = 200 and G = 0.5J . In (a), κ2/ωm = 0.01; In (b),

κ2/ωm = 0.1. The red solid curves are the analytical result for

nb(t). Inset of (a): Schematic energy diagram of the effective

dark-mode interaction. (c) Parameters G/ωm (red dashed curve),

κ1/ωm (blue dashed curve), Geff/ωm (red solid curve) and κeff/ωm

(blue solid curve) as functions of η. The shaded region denotes

Geff > κeff . The grey dotted line denotes the value of 1 in the

unit of ωm. (d) Dynamical stable regions for coupled cavities with

J/ωm = 200 (below the red solid curve) and J/ωm = 100 (below

the blue dashed curve), and single cavity case (below the gray dash-

dotted curve). Other unspecified parameters are ∆2/ωm = −0.5,

∆′
1 = J2/(∆2 + ωm), γ/ωm = 10−5 and nth = 104. This param-

eter regime can be reached, for example, in coupled microtoroids

with ωm = 100 MHz, J = 20 GHz, κ2 = 1 ∼ 10 MHz [33].

From Eq. (2), it can be obtained that the strong coupling con-

dition is relaxed to |G| > 4κ1κ2. For parameters examined

in Fig. 4(a), we obtain η = 2.5 × 10−3, Geff/ωm = 0.25,

κeff/ωm = 0.07 and ∆eff/ωm = −1. With nth = 2 × 104,

we find Geff > (κeff , γnth), which is in the quantum-coherent

coupling regime. This establishes an efficient quantum inter-

face between the mechanical resonator and the photons, and

allows the control of the mechanical quantum states.
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C. Dynamical stability

To examine the dynamical stability of the coupled-mode

optomechanical interactions, we calculate the stable regions

through the Routh-Hurwitz criterion (see Appendix E) as pre-

sented in Fig. 4(d). It reveals that large optomechanical cou-

pling G can be allowed to keep the system in the stable region,

and it is more stable than the single cavity case, because the

inter-cavity coupling provides additional restoring force to the

mechanical oscillator. With the large allowed |G|, the effec-

tive coupling strength |Geff | far exceeds the effective decay

rate κeff , bringing the system deeply in the strong coupling

regime.

V. CONCLUSIONS

In summary, we have proposed the harnessing of coupled

cavity interferences and dark mode interaction for ground

state cooling of mechanical resonators and strong quantum-

coherent optomechanical coupling beyond the resolved side-

band limit. Through destructive quantum interferences, we

demonstrate that the coupled cavity system not only signifi-

cantly accelerates the cooling process, but also dramatically

reduces the cooling limits. Ground state cooling is achiev-

able for large cavity decay rate κ1 when the coupled auxil-

iary cavity has modest decay rate κ2 ∼ ωm. The auxiliary

cavity mode is not directly coupled to the mechanical mode,

allowing individual optimization of the optical and mechan-

ical properties. Therefore, the first cavity only need to pos-

sess good mechanical properties while the second cavity only

need to possess relatively high optical Q. Unlike the dissi-

pative coupling mechanism [16, 17], we use pure dispersive

coupling and all-optical EIT effect to realize destructive inter-

ference, and the interference comes from two resonant contri-

butions. Note that the cavity decay rate in our case is the total

decay rate where the intrinsic decay rate has been taken into

account. This is important because in real experiments the

external decay rate is usually tunable while the intrinsic cav-

ity decay rate is the fundamental limitation. Different from

the proposal using two-level atomic ensembles [23] and pre-

cooled atoms [25], our approach makes use of pure cavity

optomechanical cooling effect arising from dynamical back-

action, and it is quite practical in experimental realization,

for instance, in a photonic crystal cavity system with highly

unresolved sideband condition [62]. With dark-mode inter-

action in the strong coupling regime, the coupled cavity sys-

tem allows for quantum-coherent coupling between mechani-

cal mode and auxiliary cavity modes, with potential for quan-

tum network applications [63–65]. This system establishes

an efficient quantum interface between indirectly-coupled

and individually-optimized mechanical resonators and opti-

cal cavities, which opens up the possibility for application

of cavity quantum optomechanics beyond the resolved side-

band regime, addressing the restricted experimental bounds at

present.
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Appendix A: System Hamiltonian and quantum Langevin

equations

The Hamiltonian of the coupled cavity system is given by

H = Hfree +Ho−m +Ho−o +Hdrive. (A1)

The first term Hfree represents the free Hamiltonian of the op-

tical and mechanical modes, described by Hfree = ω1a
†
1a1 +

ω2a
†
2a2 +ωmb

†b, where ω1, ω2 and ωm are the resonance fre-

quencies of the first (or primary) cavity mode a1, the second

(or auxiliary) cavity mode a2 and the mechanical mode b. The

second term of Eq. (A1) (Ho−m) describes the optomechan-

ical interaction between the first cavity mode a1 and the me-

chanical mode b, which is written as Ho−m = ga†1a1(b
† + b)

[66], where g represents the single-photon optomechanical

coupling strength. The third term of Eq. (A1) (Ho−o) de-

scribes the coupling between the two cavity modes a1 and a2,

with the Hamiltonian

Ho−o = Ja†1a2 + J∗a†2a1, (A2)

where J describes the interaction strength [33, 48–55]. The

last term of Eq. (A1) (Hdrive) describes the optical driv-

ing. Assume that the system is excited through simultane-

ous driving of the two cavity modes with the same input

laser frequency ωin. In this case the Hamiltonian is given

by Hdrive = (Ω∗
1e

iωinta1 + Ω1e
−iωinta†1) + (Ω∗

2e
iωinta2 +

Ω2e
−iωinta†2), where Ω1 =

√

κex
1 P1/(~ωin)e

iφ1 and Ω2 =
√

κex
2 P2/(~ωin)e

iφ2 denote the driving strengths, P1 (P2) is

the input power and φ1 (φ2) is the initial phase for the first

(second) input laser, and κex
1 (κex

2 ) is the input-cavity cou-

pling rate for mode a1 (a2). Alternatively, the system can also

be excited through single-mode driving of either cavity mode,

corresponding to Ω1 = 0 or Ω2 = 0. This only affects the

mean intracavity field of the two cavity modes and the equi-

librium position of the mechanical resonator, while the quan-

tum fluctuations and thereby the linearized quantum Langevin

equations (see below) remain the same.

In the frame rotating at the input laser frequency ωin, the

Hamiltonian is written as H = −∆1a
†
1a1−∆2a

†
2a2+ωmb

†b+

ga†1a1(b
† + b) + (Ja†1a2 + J∗a†2a1) + (Ω

∗

1a1 + Ω1a
†
1) +

(Ω∗
2a2 + Ω2a

†
2), where ∆1 ≡ ωin − ω1, ∆2 ≡ ωin − ω2

are the detunings.
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The quantum Langevin equations are given by

ȧ1 =
(

i∆1 −
κ1

2

)

a1 − iga1(b
† + b)

−iJa2 − iΩ1 −
√
κ1ain,1, (A3)

ȧ2 =
(

i∆2 −
κ2

2

)

a2 − iJ∗a1 − iΩ2−
√
κ2ain,2, (A4)

ḃ =
(

−iωm −
γ

2

)

b− iga†1a1 −
√
γbin, (A5)

where κ1 ≡ ω1/Q1, κ2 ≡ ω2/Q2, and γ ≡ ωm/Qm
are the decay rates of the modes a1, a2 and b, respectively;

Q1, Q2 and Qm are the corresponding quality factors; ain,1,

ain,2 and bin are the corresponding noise operators, which

satisfy 〈ain,1(t)a†in,1(t′)〉 = 〈ain,2(t)a†in,2(t′)〉 = δ(t − t′),

〈a†in,1(t)ain,1(t′)〉 = 〈a
†
in,2(t)ain,2(t

′)〉 = 0, 〈bin(t)b†in(t′)〉 =
(nth+1)δ(t− t′) and 〈b†in(t)bin(t′)〉 = nthδ(t− t′). Here nth

is the thermal phonon number given by n−1
th = exp(~ωm

kBT )−1,

where T is the environmental temperature and kB is Boltz-

mann constant.

Now we apply a displacement transformation a1 → α1 +
a1, a2 → α2 + a2, b → β + b, where α1, α2 and β are

c-numbers denoting the displacements of the optical and me-

chanical modes. The quantum Langevin equations are rewrit-

ten as

ȧ1 =
(

i∆′
1 −

κ1

2

)

a1 − igα1(b
† + b)

−iga1(b† + b)− iJa2−
√
κ1ain,1, (A6)

ȧ2 =
(

i∆2 −
κ2

2

)

a2 − iJ∗a1−
√
κ2ain,2, (A7)

ḃ =
(

−iωm −
γ

2

)

b− ig
(

α∗
1a1 + α1a

†
1

)

− iga†1a1 −
√
γbin, (A8)

with the optomechanical-coupling modified detuning ∆′
1 =

∆1 − g(β∗+β). Under strong driving condition, the non-

linear terms iga1(b
† + b) and iga†1a1 in the above equations

are neglected. Then the quantum Langevin equations become

linearized, and the linearized system Hamiltonian can be ex-

tracted as

HL = −∆′
1a

†
1a1 −∆2a

†
2a2 + ωmb

†b

+(Ga†1 +G∗a1)(b
† + b) + (Ja†1a2 + J∗a†2a1), (A9)

where G ≡ gα1 is the coherent intracavity field enhanced

optomechanical coupling strength.

Appendix B: Quantum noise approach

From Eq. (A9) we obtain the optical force acting on the

mechanical resonator F = −(G∗a1 +Ga†1)/xZPF, where

xZPF ≡
√

~/(2meffωm) is the zero-point fluctuation and

meff is the effective mass of the mechanical resonator. The

quantum noise spectrum of the optical force is given by the

Fourier transform of the autocorrelation function SFF (ω) ≡
∫

dteiωt 〈F (t)F (0)〉.

In the frequency domain, the operators ã1(ω), ã2(ω) and

b̃(ω) obey

−iωã1(ω) =
(

i∆′
1 −

κ1

2

)

ã1(ω)− iG
[

b̃†(ω) + b̃(ω)
]

−iJã2(ω)−
√
κ1ãin,1(ω), (B1)

−iωã2(ω) =
(

i∆2 −
κ2

2

)

ã2(ω)− iJ∗ã1(ω)

−√κ2ãin,2(ω), (B2)

−iωb̃(ω) =
(

−iωm −
γ

2

)

b̃(ω)− i
[

G∗ã1(ω) +Gã†1(ω)
]

−√γb̃in(ω). (B3)

Then we obtain

b̃ (ω) ≃
√
γb̃in (ω)− i

√
κ1A1 (ω)−

√
κ2A2 (ω)

iω − i [ωm+Σ(ω)]− γ
2

, (B4)

where we have neglected b̃†(ω) terms and

A1 (ω) = G∗χ (ω) ãin,1 (ω) +Gχ∗ (−ω) ã†in,1 (ω) , (B5)

A2 (ω) = J [G∗χ (ω)χ2 (ω) ãin,2 (ω)

−Gχ∗ (−ω)χ∗
2 (−ω)ã†in2 (ω)

]

, (B6)

Σ (ω) = −i |G|2 [χ(ω)− χ∗(−ω)] , (B7)

χ(ω) =
1

1
χ1(ω) + |J |

2
χ2(ω)

, (B8)

χ1(ω) =
1

−i(ω +∆′
1) +

κ1

2

, (B9)

χ2(ω) =
1

−i(ω +∆2) +
κ2

2

, (B10)

χm(ω) =
1

−i(ω − ωm) +
γ
2

, (B11)

where A1,2 (ω) accounts for the contribution of the first and

second cavities, Σ (ω) represents the optomechanical self en-

ergy, χ(ω) is the total response function of the coupled cav-

ities, χ1(ω), χ2(ω) and χm(ω) are the response functions of

the first cavity, the second cavity and the mechanical mode.

The optomechanical coupling induced mechanical frequency

shift δωm and damping Γopt are given by δωm= ReΣ (ωm)
and Γopt= −2 ImΣ (ωm).

Using F (ω) = −[G∗a1 (ω) +Ga†1 (ω)]/xZPF, the spectral

density of the optical force is obtained as

SFF (ω) =
|Gχ (ω)|2
x2
ZPF

[

κ1 + κ2 |J |2 |χ2 (ω)|2
]

. (B12)

This equation corresponds to Eq. (1) of the main text.
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Appendix C: Quantum master equation and covariance

approach

The quantum master equation of the system reads

ρ̇ = i[ρ,HL] +
κ1

2

(

2a1ρa
†
1 − a†1a1ρ− ρa†1a1

)

+
κ2

2

(

2a2ρa
†
2 − a†2a2ρ− ρa†2a2

)

+
γ

2
(nth + 1)

(

2bρb† − b†bρ− ρb†1b1

)

+
γ

2
nth

(

2b†ρb− bb†ρ− ρbb†
)

, (C1)

where HL is the linearized system Hamiltonian given by Eq.

(A9).

To calculate time evolutions of the mean phonon num-

ber nb(t) = 〈b†b〉(t), we need to determine the mean val-

ues of all the time-dependent second-order moments, 〈a†1a1〉,
〈a†2a2〉, 〈b†b〉, 〈a

†
1a2〉, 〈a

†
1b〉, 〈a†2b〉, 〈a1a2〉, 〈a1b〉, 〈a2b〉,

〈a21〉, 〈a22〉, and 〈b2〉, which are determined by a linear system

of ordinary differential equations ∂t〈ôiôj〉 = Tr(ρ̇ôiôj) =
∑

k,l ηk,l〈ôk ôl〉, where ôi, ôj , ôk and ôl are one of the oper-

ators a1, a2, b, a†1, a†2 and b†1, and ηk,l are the corresponding

coefficients determined by Eq. (C1) [22]. Initially, the mean

phonon number is equal to the bath thermal phonon number,

i. e., 〈b†b〉(t = 0) = nth, and other second-order moments

are zero. The numerical results in the main text are obtained

by solving these differential equations.

Appendix D: Effective dark-mode interaction

The second cavity mode a2 does not directly interact with

the mechanical mode b. However, there exists indirect inter-

action between them, which is mediated by the first cavity

mode a1. From Eqs. (A6)-(A8), after neglecting the non-

linear terms, we obtain the formally integrated form for the

operators as

a1(t) = a1(0) exp(i∆
′
1t−

κ1

2
t) + exp(i∆′

1t−
κ1

2
t)

×
∫ t

0

[−iGb(τ)− iGb†(τ) − iJa2(τ)−
√
κ1ain,1(τ)] exp(−i∆1τ +

κ1

2
τ)dτ, (D1)

a2(t) = a2(0) exp(i∆2t−
κ2

2
t) + exp(i∆2t−

κ2

2
t)

∫ t

0

[−iJ∗a1(τ) −
√
κ2ain,2(τ)] exp(−i∆2τ +

κ2

2
τ)dτ, (D2)

b(t) = b(0) exp(−iωmt−
γ

2
t) + exp(−iωmt−

γ

2
t)

∫ t

0

[−iG∗a1(τ) − iGa†1(τ)−
√
γbin(τ)] exp(iωmτ+

γ

2
τ)dτ, (D3)

Consider the effects of mode a1 as perturbations, and solve

Eqs. (D2) and (D3), we obtain

a2(t) ≃ a2(0) exp(i∆2t−
κ2

2
t) +Ain,2(t), (D4)

b(t) ≃ b(0) exp(−iωmt−
γ

2
t) +Bin(t), (D5)

where Ain,2(t) and Bin(t) denote the noise terms. By plug-

ging Eqs. (D4) and (D5) into Eq. (D1) and with the condition

|∆1| ≫ |∆2|, κ1 ≫ (κ2, γ) we obtain

a1(t) ≃ −
iG

[

b(t) + b†(t)
]

−i∆1 +
κ1

2

− iJa2(t)

−i∆1 +
κ1

2

+ a1(0) exp(i∆1t−
κ1

2
t) +Ain,1(t), (D6)

where the noise term is denoted by Ain,1(t). By neglecting

the fast decaying term containing exp(−κ1t/2) and plugging

the expression back to Eqs. (A7) and (A8), we compare the

equations with the effective single cavity case and obtain

i∆2 −
κ2

2
+

|J |2
i∆′

1 − κ1

2

←→ i∆eff −
κeff

2
, (D7)

∣

∣

∣

∣

J∗G

i∆′
1 − κ1

2

∣

∣

∣

∣

←→ |Geff | , (D8)

where Geff is the effective coupling strength, κeff is the ef-

fective decay rate of the optical cavity mode and ∆eff is

the effective detuning between the input light and the opti-

cal resonance. Then the indirect interaction between mode

a2 and mode b can be described by the effective parameters

|Geff | = η |G|, κeff = κ2 + η2κ1 and ∆eff = ∆2 − η2∆′
1

with η = |J | /[∆′2
1 +(κ1/2)

2]1/2 ≃ |J | / |∆′
1| for |∆′

1| > κ1.

These correspond to Eq. (2) and (3) of the main text.

From these effective parameters, we obtain the effective

spectral density of optical force as

Seff
FF (ω) =

κeff |Geffχeff (ω)|2
x2
ZPF

, (D9)

where we have defined the effective response function

χeff (ω) =
1

−i(ω +∆eff) +
κeff

2

. (D10)
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In Fig. 5 the comparison between Seff
FF (ω) [Eq. (B12)] and

Seff
FF (ω) [Eq. (D9)] is displayed. It reveals that for the region

near the Fano resonance, the effective optical force spectrum

is a good approximation.

In the effective resolved sideband limit (ωm > κeff) and

weak coupling regime (κeff > Geff ), the cooling limit reads

neff
f =

γnth

Γeff
+

κ2
eff

16ω2
m

, (D11)

where Γeff = 4 |Geff |2 /κeff is the effective cooling rate.

After eliminating mode a1, the effective system Hamilto-

nian is given by

Heff = −∆effa
†
2a2 + ωmb

†b+ (Ga†2 +G
∗
a2)(b + b†),

(D12)

Then the quantum master equation reads

ρ̇ = i[ρ,Heff ] +
κeff

2

(

2a2ρa
†
2 − a†2a2ρ− ρa†2a2

)

+
γ

2
(nth + 1)

(

2bρb† − b†bρ− ρb†b
)

+
γ

2
nth

(

2b†ρb− bb†ρ− ρbb†
)

. (D13)

By solving the differential equations of all the second-order

moments relevant with modes a2 and b [22, 67], we obtain the

time evolution of the mean phonon number in the effective

strong coupling regime (|Geff | > κeff ) as

nb(t) ≃ nthexp
(

−κeff

2
t
)

cos2(Gefft)

+
γnth

κeff
+

8 |Geff |2 + κ2
eff

16ω2
m

. (D14)

The red dashed-dotted curves in Fig. 4(a) and 4(b) of the

main text are plotted according to this expression. Note that

nb(t → ∞) = γnth/κeff + (8 |Geff |2 + κ2
eff)/(16ω

2
m) cor-

responds to the cooling limit in the strong coupling regime.

In our plots nth ≫ nb(t → ∞), so in Eq. (D14) we

just simply add nb(t → ∞) to the damped oscillation parts

nthexp (−κefft/2) cos
2(Gefft). In this case nb(0) ≃ nth can

be satisfied in Eq. (D14).
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FIG. 5: Optical force spectrum SFF (ω) (blue dots) and Seff
FF (ω)

(red solid curve) for κ1/ωm = 104, κ2/ωm = 1, ∆2/ωm = 0.5,

J/ωm = 200, G = 0.5J , ∆′
1 = |J |2 /(∆2 + ωm), γ/ωm = 10−5

and nth = 104. The inset is a zoom-in view of the Fano region.

Appendix E: Dynamical stability condition

For single cavity case, the dynamical stability condition is

given by

∆′
1

[

16∆′
1 |G|

2
+ (4∆′2

1 + κ2
1)ωm

]

< 0, (E1)

which is calculated from the Routh-Hurwitz criterion [68]. In

the resolved sideband regime, for ∆′
1 = −κ1/2, inequality

(E1) reduces to

|G|2 <
κ1ωm

4
. (E2)

For the coupled cavity case, with the now derived ef-

fective parameters, the dynamical stability condition reads

∆eff [16∆eff |Geff |2+(4∆2
eff+κ2

eff)ωm] < 0. Assume that the

effective optomechanical interaction is in the resolved side-

band regime, with the detuning ∆eff = −ωm, the stability

condition reduces to |Geff |2 < ω2
m/4 + κ2

eff/16, which corre-

sponds to

|G|2 <
4ω2

m +
(

κ2 + η2κ1

)2

16η2
. (E3)

Define the right-hand side of the inequality as S, then the min-

imum value of S is given by

Smin =
κ1

4

√

ω2
m+

κ2
2

4
+

κ1κ2

8
, (E4)

which is obtained when η = ηmin ≡ 4

√

4ω2
m+κ2

2/
√
κ1 . It

reveals that, for the coupled cavity system, even in the worst

case it allows larger optomechanical coupling to keep the sys-

tem in the stable region, compared with the single cavity sys-

tem for ∆′
1 = −κ1/2 [inequality (E2)]. In Fig. 4(d) of the

main text, the gray shaded region is plotted according to in-

equality (E2), the blue and red shaded regions denote inequal-

ity (E3) for J/ωm = 100 and 200, respectively.
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[9] S. Gigan, H. R. Böhm, M. Paternostro, F. Blaser, G. Langer, J.

B. Hertzberg, K. C. Schwab, D. Bäuerle, M. Aspelmeyer, and
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