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Light propagation in optical waveguides with periodically modulated index of refraction and al-
ternating gain and loss are investigated for linear and nonlinear systems. Based on a multiscale
perturbation analysis, it is shown that for many non-parity-time (P7) symmetric waveguides, their
linear spectrum is partially complex, thus light exponentially grows or decays upon propagation, and
this growth or decay is not altered by nonlinearity. However, several classes of non-P7-symmetric
waveguides are also identified to possess all-real linear spectrum. For P7T-symmetric waveguides,
phase transition is predicted analytically. In the nonlinear regime longitudinally periodic and trans-
versely quasi-localized modes are found for P7T-symmetric waveguides both above and below phase
transition. These nonlinear modes are stable under evolution and can develop from initially weak

initial conditions.

PACS numbers: 42.65.Tg, 05.45.Yv

I. INTRODUCTION

Parity-time (PT)-symmetric wave systems have the
unintuitive property that their linear spectrum can be
completely real even though they contain gain and loss
[1]. In spatial optics, PT-symmetric systems can be real-
ized by employing symmetric index guiding and an anti-
symmetric gain-loss profile [2-4]. In temporal optics and
other physical settings, P7T-symmetric systems can be
obtained as well [5-12]. So far, a number of novel phe-
nomena in optical P7 systems have been reported, in-
cluding phase transition, nonreciprocal Bloch oscillation,
unidirectional propagation, distinct pattern of diffrac-
tion, formation of solitons and breathers, wave blowup,
and so on [1-6, 9, 13-23]. Novel photonic devices such as
PT lasers have also been demonstrated [12].

Research into optical PT systems has been largely de-
voted to waveguides where the gain and loss is distributed
along the transverse direction. This leads to the natural
question: what role does P7T symmetry play when the
gain and loss is distributed in the direction of propaga-
tion? In the study of PT systems which exhibit unidirec-
tional propagation or Bragg solitons [9, 16, 17], this has
been touched upon. However, the models in those works
ignored the transverse effects on light propagation. For
real waveguides (i.e., without gain and loss), control of
light through modulation of the refractive index has been
well documented [24], and just recently researchers have
studied these modulations with added gain and loss dis-
tributed in the transverse direction [25].

In this article, we study the propagation of light in
complex waveguides with periodically modulated index
of refraction as well as alternating gain and loss along the
direction of propagation. When this system is non-P7 -
symmetric, we show that linear modes often grow or de-
cay over distance, and this growth or decay is not affected
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by nonlinearity. However, several classes of non-P7T-
symmetric waveguides are found to possess completely
real linear spectrum, thus all linear modes propagate
periodically over distance. For P7T-symmetric waveg-
uides, phase transition is predicted analytically and ver-
ified numerically. In the nonlinear regime, families of
longitudinally periodic and transversely quasi-localized
solutions exist for P7T-symmetric waveguides both be-
low and above phase transition. These nonlinear modes
are stable under evolution and can develop from weak
initial conditions. By applying multiscale perturbation
theory, a reduced ordinary differential equation is derived
for the modes’ linear and nonlinear propagation, and this
reduced model agrees well with direct simulations of the
original system.

Propagation of light in a modulated waveguide with
gain and loss can be modeled under paraxial approxima-
tion by the following nonlinear Schrédinger equation

i, +¢CECE+V($72)¢+U|¢|2¢ =0, (1)

where z is the direction of propagation, x is the transverse
direction, 1 is the envelope function of the light’s elec-
tric field, V(z, z) is a complex periodic potential whose
real part is the refractive index of the waveguide and
the imaginary part represents gain and loss (negative
imaginary part for gain and positive imaginary part for
loss), and o is the coefficient of the cubic nonlinearity. A
schematic diagram of our system is given in Fig. 1. The
paraxial model (1) is valid when the waveguide modula-
tion is weak and the light frequency is not near the Bragg
frequency of the periodic waveguide, in which case back
wave reflection is negligible. This waveguide would be
PT-symmetric if

V*(x,z) =V(x,—2), (2)

where the asterisk ‘*’ represents complex conjugation.
Note that in this PT condition, coordinate reflection is
only in the z-direction, not z-direction. This differs from
the usual multi-dimensional P7T symmetry [13] and more
resembles the partial PT symmetry proposed in [26].
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FIG. 1: (Color online) A schematic diagram for an optical
waveguide with modulated index of refraction and alternating
gain-loss regions. The periodic change in height represents the
change in index of refraction, while the alternating regions of
red and blue represent regions of gain and loss.

To be consistent with the paraxial approximation, in
this article we consider complex waveguides where the
z-direction modulation appears as a small perturbation

V(z,z) = Vo(z) + eVi(x, 2), (3)

where Vp(z) is the unperturbed real refractive index
which is assumed to be localized, ¢ < 1, and the per-
turbation Vi(z,z) is periodically modulated along the
z direction whose period is normalized as 2w. Assum-
ing Vi(x,z) has the same transverse profile as the un-
perturbed index Vy(z), V7 then can be expanded into a
Fourier series

o0
Vi(z,z) = Vo(x) Z ane™, (4)
n=—oo
where a,, are complex Fourier coefficients. Without loss
of generality, we take ag = 0. The perturbed waveguide
is PT-symmetric when all the Fourier coefficients a,, are
strictly real.

II. MULTISCALE PERTURBATION ANALYSIS

Assume that the unperturbed real waveguide Vj sup-
ports a linear discrete eigenmode 1) = ug(x)e”#0* where
1o is a real propagation constant, and ug is a real local-
ized function satisfying

Then in the presence of the above longitudinal waveg-
uide perturbations and weak nonlinearity, the perturbed
solution to Eq. (1) can be expressed as

P(x,2) = u(z, 2, Z)e 07, (6)
where

u(z, 2, Z) = eA(Z)ug(x) + 2 A(Z)uy (z,2) + Uy + .. .,

™)
A(Z) is a slowly varying complex envelope function, and
7 = €2z is the slow distance variable. Substituting this
expansion into Eq. (1), at order €2 we have

(162 + aww + ‘/O + /1*0) uy = _’U/O‘/I-

Defining the operator
Ln:amm+VO+M0_n7

and expanding the solution wu;(x, z) into a Fourier series

oo

ur(w,z) = Y uf (2)e,

(n)

each term u;y ’(x) is then determined from the equation

Lnugn)(:v) = —anuo(z)Vo(z). (8)

Since ag = 0, the right hand side is zero for n = 0. With-

out loss of generality we take ugo) (x) = 0 as well. Since
the potential V() is localized, assuming no other dis-
crete eigenvalues of Vj differ from pg by an integer, then
when n > po there is no solvability condition and a lo-

calized real solution ugn) (x) is admitted. When n < po,
however, the L, operator has non-vanishing bounded
homogeneous solutions, and as a result the correspond-
ing solution ugn) is non-vanishing at large |x| as well if
an, # 0. In this case, for the solution to make sense
physically, ugn) may be uniquely determined by impos-
ing the Sommerfeld radiation condition, which says that
the energy radiation must travel away from the source.
In the present context, this condition translates to the

boundary conditions

z>1,
T << —1,

" R eikx,
@) - { fre

where k = /ug — n, and Ry are complex constants which
measure the radiation amplitudes at x — +o0o. A conse-
quence of the Sommerfeld radiation condition is that the
resulting physical solution ugn)(:zr) must be complex. To
impose these boundary conditions, we write the solution

ugn) (x) as

9)

Ugn)(iﬂ) =Up(z) + C1Upg1(z) + C2Upna(x),

where Up(z) is a real particular solution to equation (8),
and Ug(z), Uga(x) are two real homogenous solutions.
Utilizing the boundary conditions of these homogeneous
and particular real solutions and enforcing the Sommer-
feld radiation condition (9), radiation amplitudes R4 and
constants C 2 can then be derived.

At order €3 equation (1) gives

(18z + 811 + ‘/0 + ,LL()) UQ = —iAZ’lLO —Au1V1 —0’|A|2A’UJ8

Decomposing the solution Us into a Fourier series in z,
the equation for the constant mode UQ(O) is found to be

LoUQ(O) = —iAZuo +A Z a*mamﬁgm)‘/o _ 0’|A|2A’U,g,

m=—0oo



(m) _ ~(m)

where u; ' = —apty , and

Lnii{™ = ugVp.

In view of Eq. (5), up is a homogeneous solution of the
above inhomogeneous equation. Since L is self-adjoint,
in order for this equation to be solvable, its right hand
side must be orthogonal to wug. This solvability condi-
tion leads to the following ordinary differential equation
(ODE) for the evolution of the slowly-varying envelope
function A(Z),

Az +ipA —ig|APPA =0, (10)
where
R I Voued™dz [ ud da
H= m;m A—mQm, ffooo ugdx , 0= Uiffooo u%dx .

(11)
This reduced ODE model will be helpful for the under-
standing of linear and nonlinear dynamics of solutions in
the original equation (1) as we will elucidate below.

First we consider the solution to the linear equation
(10), i.e., with the cubic term in (10) dropped. As a con-
crete example we take a waveguide where all modulations
of Vj are in the first harmonics,

Vi(z, z) = Vp(x) (eiz + Be_iz) , (12)

where [ is a complex constant. In this case, 1 = fec,
where

ffooo Vouo (ﬂg_l) + ﬂgl)) dz

= ffooo uddx

(13)

(n)

Recall from the earlier text that the solution u; ~ is real

when n > g and complex when n < pq, so is ﬂgn). Thus
the constant ¢ will be real when pg < —1 and complex
when pg > —1.

Since 11 = B¢, the linear envelope equation (10) yields

A(Z) = Age B2, (14)

where Ag is the initial envelope value. In view of Eqs.
(6)-(7), this A(Z) solution can be absorbed into a shift
of the eigenvalue

4= o + e (15)
in the linear Bloch mode of Eq. (1),
U(x,2) = e 2z, 2). (16)

Then we immediately see that for generic complex /3 val-
ues in the first-harmonic perturbation (12), a complex
eigenvalue bifurcates out from every discrete real eigen-
value of the unperturbed waveguide. Even for real g
values in that waveguide perturbation, a complex eigen-
value can still bifurcate out if ¢ is complex, and this

eigenvalue yields an exponentially growing eigenmode for
one sign of 8. Noticing this waveguide perturbation (12)
is PT-symmetric when f is real, we conclude that the
linear spectrum of the waveguide is generically partially
complex when the waveguide is non-P7-symmetric. In
addition, when the waveguide is P7T-symmetric, phase
transition can still occur at 8 = 0, where exponentially
growing modes appear in the linear spectrum.

Next we consider the solution to the nonlinear ODE
(10). This nonlinear equation is exactly solvable, and its
general solution is

- . A0l opeipyz
A(Z) = ApExp |—inZ 12Re[iﬂ] (e 1) ,
(17)

where Ag is the initial envelope value. The amplitude of
this nonlinear solution evolves as

|A(Z)| = |Ao|e™ RebIZ, (18)

which is exactly the same as that of the linear solution
A(Z) = Ape "2, This indicates that nonlinearity does
not affect the magnitude of the envelope solution (re-
gardless whether the nonlinearity is self-focusing or self-
defocusing). In particular, for the first-harmonic pertur-
bation (12) where i = e, when Re[ifc] < 0, the linear
solution will grow exponentially. In this case, nonlin-
earity will not arrest this exponential growth at larger
amplitudes.

The above predictions for the solution dynamics are
verified with direct numerical computations of the origi-
nal system (1). For this purpose, we first take

Vo = 2sechx, €=0.2 (19)
in our waveguides (3) and (12). In this case, the un-
perturbed real waveguide Vj has a single discrete eigen-
value pp ~ —1.245 < —1, hence c is real and numer-
ically found to be ¢ ~ —0.369. Then our theoretical
analysis predicts that for any non-real value of 3 in the
first-harmonic perturbation (12), a complex eigenvalue
bifurcates out from pg according to formula (15). Nu-
merically this is confirmed. In addition, it is found that
this bifurcated eigenvalue is the only complex eigenvalue
in the linear spectrum. To verify the nonlinear amplitude
formula (17), we choose two § values of i and —i. The
corresponding z-direction modulations of the perturbed
waveguide at = 0 are displayed in Fig. 2(a,b) respec-
tively. In these perturbed waveguides, we take the initial
condition ¥ (x,0) = eApuo(z), where Ag = 1 and ug(z)
is the eigenmode of eigenvalue o in the unperturbed
waveguide Vj with normalized peak height of 1. The
simulation of the original equation (1) under this initial
condition is plotted in Fig. 2(c,d) for 8 = i and —i re-
spectively. Here the solution’s amplitude at x = 0 versus
z is displayed. For comparison, the analytical amplitude
solution |eA(Z)uo(0)| with |A(Z)| given by (18) is also
plotted. As predicted by the ODE model (10), the solu-
tion for 8 = i exponentially decays, while that for § = —i



exponentially grows. In the latter case, this growth is not
arrested by nonlinearity (even for longer distances than
those shown in panel (d)), in agreement with the analyt-
ical solution (18). It is noted that amplitude oscillations
in the numerical solution are due to higher order terms in
the perturbation expansion (7), which are not accounted
for in our leading-order analytical solution plotted in this
figure. Physically these amplitude oscillations are due to
periodic gain and loss in the waveguide.
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FIG. 2: (Color online) (a,b) z-direction modulations of the
waveguide (3) at x = 0 for § = i and f = —i in the first-
harmonic perturbations (12) with parameters (19) respec-
tively; solid blue is refractive-index variation and dashed red
gain-loss variation (positive for gain and negative for loss);
(c,d) amplitude evolution in the nonlinear simulation of Eq.
(1) with o = 1 for 8 =i and 8 = —1i respectively; the analyti-
cal solution is also plotted as dashed red lines for comparison.

The growth and decay of solutions in Fig. 2 for dif-
ferent values of 5 can be intuitively understood. When
Im(B) > 0, modulations of the real and imaginary parts
of the waveguide V' have a phase difference between 0
and 7/2. Recalling Im(V)> 0 corresponds to loss and
Im(V)< 0 to gain, we see that the region with strongest
index of refraction, where the beam is at its strongest,
corresponds to a region of loss [see Fig. 2(a)], thus the
beam decays over distance. Conversely, when Im(3) < 0,
modulations of the real and imaginary parts of V have
a phase difference between /2 and 7. This means the
region with strongest index of refraction corresponds to
a region of gain [see Fig. 2(b)], thus the beam grows over
distance.

The prediction of phase transition at 5 = 0 in the PT-
symmetric first-harmonic perturbation (12) (with real 3)
is also numerically confirmed. In this case, the perturbed
waveguide can be rewritten as

V(z,z) = Vo(x)[1 + €(1 + S)cosz + ie(1 — B) sin z],
(20)
thus 1 — 8 controls the strength of gain and loss. In the

numerics, we take

Vo =sechz, €=0.2. (21)

Then the unperturbed potential V[ has a unique discrete
eigenvalue pp ~ —0.518 > —1, which results in a com-
plex constant ¢ ~ —0.014 + 0.162i from formula (13).
Consequently Eq. (15) predicts an exponentially grow-
ing linear mode when f < 0. Since the waveguide is
PT-symmetric, all complex eigenvalues come in conju-
gate pairs. For 8 < 0 this means a pair of complex
eigenvalues bifurcate out at § = 0, which is verified nu-
merically in Fig. 3(a). As seen in the figure, the predic-
tion from the analytical eigenvalue formula (15) matches
numerical values very well.

The asymptotic nature of the eigenvalue formula (15)
for € < 1 is numerically verified as well. For this pur-
pose, we fix § = 1 and allow € to vary. The imaginary
part of the numerically obtained eigenvalue u versus e is
displayed in Fig. 3(b). This figure reveals a quadratic
dependence on € when € < 1. Comparison between the
numerical values and the theoretical prediction (15) as
illustrated in the figure shows good agreement.
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FIG. 3: (Color online) (a) Complex eigenvalues for the phase
transition in 8 in the PT-symmetric waveguide (20) with pa-
rameters (21). (b) Complex eigenvalue bifurcation in € in the
waveguide (20) with f# = 1. In both figures, solid blue is
numerical values and dashed red analytical predictions.

For 5 > 0 in the perturbed waveguide (20)-(21), the
theoretical formula (14) predicts a decaying amplitude
for eigenmode wg(x). This seems to suggest a complex
eigenvalue (15) for a decaying eigenmode in the linear
spectrum. However, due to P7T-symmetry of the waveg-
uide, any complex eigenvalue of a decaying eigenfunction
would have to be paired with the complex conjugate of
this eigenvalue for a growing eigenfunction. Since our
perturbation theory does not detect growth in the physi-
cal solution, we conclude that the decay of the eigenmode
uo(z) for 8 > 0 is due to the shedding of radiation and
that the spectrum remains real. This matches, numeri-
cally, both computations of the spectrum and evolutions
of the initial eigenmode ug(z).



IIT. NON-PT7T-SYMMETRIC WAVEGUIDES
WITH ALL-REAL LINEAR SPECTRUM

It is seen from the previous section that for first-
harmonic perturbations (12), the linear spectrum is
generically partially complex for non-real values of 3, i.e.,
when the perturbed waveguide is non-P7T-symmetric.
However, we have found two notable families of com-
plex waveguides which are non-P7T-symmetric but still
possess all-real linear spectra. This is quite surprising,
since in complex waveguides with transverse gain-loss
variations, all-real spectra are very rare for non-P7T-
symmetric systems [27].

The first family consists of waveguides (3)-(4) with uni-
directional Fourier series decomposition, i.e., a,, = 0 for
either n < 0 or n > 0. In our calculation of the shifted
eigenvalue p = o + €21 with i given in Eq. (11), notice
that i = 0 for a unidirectional Fourier series, hence the
eigenvalue pp does not shift at all under these complex
waveguide perturbations. Regarding other eigenvalues
in the linear spectrum, we have verified numerically that
they do not shift to the complex plane either, thus the
linear spectrum is all-real for waveguides of this type.

The second family consists of separable waveguides,
V(z,z) = Vu(z) + Vp(x), where fo% Im[V,(2)]dz = 0
(meaning that the gain and loss are balanced along the
propagation direction), and Vj(z) is real. In this case,
Bloch modes (16) in the linear equation (1) can be de-
composed as i1 = fiq+pp and u(z, z) = uq(2)up(z), where
(U, fha), (up, 1p) satisfy the following one-dimensional
eigenvalue problems

[iaz + Va(z)]ua = —Hala,
Oz + Vo) up = —ppyus.

The first eigenvalue problem has an exact solution

uq(z) = Exp {maz +i /0 va(é)dg} .

Thus for waveguides with equal amounts of gain and loss,
ie., OQW Im[V,(z)]dz = 0, its pe-spectrum is all-real. The
second eigenvalue problem is a Schrdédinger eigenvalue
problem. Thus for real waveguides Vj(z), its spectrum
is also all-real. Together, we see that for the separable
waveguides of the above form, the linear spectrum is all-
real. Notice that these separable waveguides are non-
PT-symmetric in general, thus they constitute another
large class of non-P7T-symmetric waveguides with all-real
spectra.

IV. LONGITUDINALLY-PERIODIC
NONLINEAR MODES

In this section we consider nonlinear z-periodic modes
in these modulated waveguides. Such modes are of the
form

U(x, 2) = e " u(x, 2), (22)

where 4 is a real propagation constant, and wu(z,z) is
27m-periodic in z. From the reduced ODE model (10) for
the first-harmonic perturbation (12), we see that when
the waveguide is non-P7-symmetric (i.e., 8 is non-real)
the solution (17) will generically grow or decay (since
it = Bc is generically complex), thus nonlinear z-periodic
modes are not expected. But when the waveguide is PT-
symmetric and pg < —1, where fi = fc is real, the non-
linear solution to the ODE model is

A(Z) = AoExp [—1BcZ +i5|Ao|*Z] . (23)

Since both fc and & are real, when this A(Z) function is
substituted into the perturbation series solution (6)-(7),
analytical z-periodic nonlinear modes (22) with

= po + €(Be — 5|Aol?) (24)

are then obtained. In this p formula, the amplitude pa-
rameter Ag is arbitrary. Thus a continuous family of non-
linear z-periodic modes parameterized by the propaga-
tion constant p are predicted. Our perturbation analysis
also reveals another important property about these z-
periodic modes, i.e., they contain weak transversely non-
local tails and are thus not fully localized. The order
at which these nonlocal tails appear in the perturbation
series depends on the unperturbed waveguide Vy(x) as
well as the waveguide perturbation V;(z). For the first-
harmonic perturbation (12) with Vj = 2secha [as in (19)],
po ~ —1.245, thus nonlocal tails appear at the O(e®)
term of expansion (7) in the e~2* harmonics. For per-
turbations with Vo = sechx [as in (21)], po ~ —0.518,
thus nonlocal tails appear at the O(e?) term of expan-
sion (7) in the e~** harmonics. Since these transversely
nonlocal tails occur at higher orders of the perturbation
series, the resulting z-periodic nonlinear mode is then
quasi-localized, i.e., the height of the solution’s tails at
x — F00 is much less than the solution’s peak amplitude.
Numerically we have confirmed the existence of these
z-periodic and transversely quasi-localized nonlinear
modes in Eq. (1) for PT-symmetric waveguides. In ad-
dition, we have found that these modes exist both below
and above phase transition. These solutions are com-
puted as a boundary value problem in the (z, z) space by
the Newton-conjugate-gradient method [28]. To demon-
strate, we take the first-harmonic perturbation (12) with
Vo = 2sech®z, €=0.2. (25)

We also take o = 1 (focusing nonlinearity). These waveg-
uides with 5 values of 0.5 and —0.5 (below and above
phase transition) are illustrated in Fig. 4(a,b) respec-
tively. For 8 = 0.5 below phase transition, this fam-
ily of nonlinear modes is displayed in Fig. 4(e). It is
seen that these modes bifurcate from p ~ —1.011 where
its amplitude approaches zero. The analytical bifurca-
tion point from formula (24), with Ay set to zero, is
Lanal &~ —1.014, since pg = —1 and ¢ ~ —0.691 for the
present waveguide. Apparently the numerical and ana-
lytical bifurcation points are in good agreement. Further
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FIG. 4: (Color online) Families of longitudinally periodic
and transversely quasi-localized nonlinear modes in P7T-
symmetric waveguides below and above phase transition. The
waveguide is (3) with first-harmonic perturbations (12) and
parameters (25), and o = 1. (a,b) Modulated waveguides
versus z at = 0 for 8 = 0.5 (below phase transition) and
B = —0.5 (above phase transition) respectively; solid blue is
refractive-index variation and dashed red gain-loss variation
(positive for gain and negative for loss); (c,d) example non-
linear modes in waveguides of (a,b) respectively; (e,f) nonlin-
ear modes’ peak amplitude versus the propagation constant
w in waveguides of (a,b); solid blue lines are numerical values,
while the dashed red line in (e) is analytical predictions. The
locations of example modes in (c,d) are marked by black dots.

comparison between the numerically obtained peak am-
plitudes of these modes and analytically obtained eAq
values from Eq. (24) for varying u values can be seen
in Fig. 4(e). An example solution, with p = —1.04, is
shown in Fig. 4(c). Notice that this solution is strongly
localized, since its nonlocal transverse tails are very weak
and thus almost invisible.

At 8 = —0.5 above phase transition, these nonlinear
modes are found as well, whose peak amplitude versus the
propagation constant u is depicted in Fig. 4(f). These so-
lutions do not bifurcate from infinitesimal linear modes,
thus its peak amplitude does not reach zero. An example
solution at p = —1.044 is shown in Fig. 4(d). This solu-
tion is also strongly localized with tails almost invisible.

We have examined the stability of these z-periodic non-
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FIG. 5: (Color online) Evolution of a weak initial condition
in a PT-symmetric waveguide above phase transition. (a)
Solution evolution in the (z,z) plane; (b) amplitude evolu-
tion versus distance z. In this figure, solutions are plotted
at distances z = 2nm, where n is an integer, thus amplitude
oscillations inside each z-period 27 (caused by gain and loss
regions) is invisible.

linear modes by simulating their evolution under pertur-
bations in Eq. (1), and they are found to be stable. This
stability holds even when the waveguide is above phase
transition. In the latter case, an initial localized function
whose amplitude is above the threshold of periodic non-
linear modes in Fig. 4(f) would evolve into one of these
modes. If the initial amplitude is very small, then it
will first grow exponentially due to the existence of com-
plex (unstable) eigenvalues in the linear spectrum above
phase transition. Subsequently in the nonlinear regime,
we find that its growth saturates, and the solution ap-
proaches a z-periodic nonlinear state. This evolution is
illustrated in Fig. 5 for the waveguide of Fig. 4(b) (with
o = 1) under the initial condition ¥ (z,0) = 0.02sechz.
This growth saturation by nonlinearity in P7 -symmetric
waveguides (above phase transition) contrasts that in
non-P7T-symmetric waveguides, where the exponential
growth is not arrested by nonlinearity [see Sec. II and
Fig. 2(d)].

V. SUMMARY

In summary, we have studied light propagation in com-
plex waveguides with periodic refractive index modula-
tions and alternating gain and loss along the direction
of propagation. Our analysis is based on a multi-scale
perturbation theory, supplemented by direct numerical
simulations. We have shown that non-P7T-symmetric
waveguides often possess complex eigenvalues in their
linear spectrum, but several classes of such waveguides
with all-real linear spectra are also identified. We have
also shown that P7T-symmetric waveguides can exhibit
phase transition. In the nonlinear regime, we have shown
that for non-P7T-symmetric waveguides, cubic nonlinear-
ity does not alter the exponential growth or decay of
the related linear system. But for P7T-symmetric waveg-
uides, continuous families of longitudinally periodic and
transversely quasi-localized nonlinear modes exist both



below and above phase transition. In the latter case,
low-amplitude initial conditions eventually develop into
these nonlinear periodic states.
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