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We study the non-equilibrium coherent spin mixing dynamics in ferromagnetic spin-1 and antifer-
romagnetic spin-2 thermal gases of ultracold 87Rb atoms. Long lasting spin population oscillations
with magnetic field dependent resonances are observed in both cases. Our observations are well
reproduced by Boltzmann equations of the Wigner distribution function. Compared to the equation
of motion of spinor Bose-Einstein condensates, the only difference here is a factor of two increase
in the spin-dependent interaction, which is confirmed directly in the spin-2 case by measuring the
relation between the oscillation amplitude and the sample’s density.
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I. INTRODUCTION

Ultracold spinor quantum gas has been a subject of
growing interest in recent years due to its internal degrees
of freedom which connect it naturally to quantum mag-
netism and many other important physics problems. Ex-
tensive experimental and theoretical investigations have
been carried out on both the spinor gas itself and its vari-
ous applications, such as ground state phase diagram, do-
main formation, topological excitations, spin squeezing,
magnetometry and spin mixing dynamics [1, 2]. Cen-
tral to the understanding of these intriguing phenom-
ena is the spin-dependent interaction and its competition
with other relevant energy scales [3–6]. Non-equilibrium
coherent spin mixing dynamics, manifested as coherent
spin population oscillations, is a direct paradigm of the
spin-dependent interaction and its interplay with Zee-
man energies [7, 8]. Such dynamics have been observed
in spin-1 [8–10] and spin-2 87Rb [11], and spin-1 23Na
Bose-Einstein condensates (BECs) [12] early on.

In analyzing the coherent spin mixing dynamics in
spinor BECs, nice agreements can typically be obtained
under the single-mode approximation (SMA), in which
the external spatial and the internal spin degrees of free-
dom are separated from each other [5, 9, 11, 12]. It is
thus natural to ask whether such dynamics can be ob-
served with multi-spatial-mode spinor gases. Although
collisions in these gases are typically considered random
or incoherent in the spatial degrees of freedom, coher-
ence among spin degrees of freedom can persist for a
long time [13]. Indeed, coherent spin mixing dynamics
were observed recently in a thermal spin-1 23Na gas [14]
and a quantum degenerate Fermi gas of 40K with large
spin [15, 16]. Results from these experiments were ex-
plained well by dynamics in the spin degrees of freedom
only, indicating spin and spatial modes can still be largely
decoupled under right conditions even without conden-
sates.

In this work, we present experimental investigations of
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coherent spin mixing dynamics in ultracold thermal 87Rb
spinor gases. Different from the antiferromagnetic spin-
1 Na spinor gas [17], the spin-dependent interaction in
spin-1 87Rb is ferromagnetic and typically much smaller
in magnitude [18, 19]. Amazingly, we still observe robust
and long-time coherent spin mixing dynamics driven by
the 70 pK spin-dependent interaction in thermal sam-
ples with a typical temperature of 400 nK. In addition,
we also observe clean coherent spin mixing dynamics in
spin-2 87Rb thermal gas, which has more spin mixing
channels and thus richer dynamics [20, 21]. In both cases,
dependences of the spin dynamics on external magnetic
fields are studied in detail and are explained well by a
theoretical model developed under a single-spatial-mode
approximation.

The rest of this paper is organized as follows. In sec-
tion II, we derive the collisionless Boltzmann equation for
modeling the spin dynamics of thermal spin-1 and spin-2
Bose gases. In section III, we describe the experimental
setup and data taking procedure. In section IV, experi-
ment results are presented and compared with numerical
simulations based on the model. We then conclude the
paper in section V.

II. THEORY

While spinor BECs are well described by coupled
Gross-Pitaevskii equations, pure thermal spinor gases
can be dealt with the semiclassical Boltzmann transport
equation with the Wigner function as the distribution
function. Following this approach, several groups have
predicted the existing of spin waves and spin mixing oscil-
lations in spin-1 thermal gases [22, 23]. These theoretical
results were successfully applied to the spin-1 Na thermal
spinor gas in reference [14]. It was found that under the
right experimental conditions, the spin dynamics can be
separated from the multi-spatial modes. Compared with
spin-1 spinor BECs, one needs only to multiply a factor
of two in the spin-dependent interaction coefficient to ac-
count for the fact that thermal atoms are correlated [14].
Here we follow the same formalism but generalize it to
include both spin-1 and spin-2 cases.
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In the second-quantization language, the Hamiltonian
for spin-1 and spin-2 atoms of mass m in an external
magnetic field B can be expressed jointly as

H =
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where q = (gµBB)2

∆Ehf
is the quadratic Zeeman energy, which

is positive for spin-1 and negative for spin-2 87Rb atoms.
Here g is the hyperfine Landé g-factor, µB is the Bohr
magneton, and ∆Ehf is the ground-state hyperfine split-
ting. The linear Zeeman energy is gauged out due to
total spin conservation. V (r) is the external potential,

F is the vector spin operator and ψ̂k (ψ̂†k) is the bosonic
field annihilation (creation) operator for spin projection
k. ~ is the reduced Planck’s constant.

The interaction coefficients g0, g1, and g2 can be ex-
pressed in terms of the s-wave scattering lengths a0, a2,
and a4 in the total spin 0, 2 and 4 channels of two col-
liding atoms. For the spin-1 case, the total spin can
be 0 and 2, and only g0 = 4π~2(a0 + 2a2)/3m which
represents the density-dependent interaction, and g1 =
4π~2(a2 − a0)/3m which represents the spin-dependent
interaction, are present. The interaction between spin-1
87Rb is ferromagnetic with g1 negative. For the spin-
2 case, the total spin can be 0, 2 and 4. Besides
g0 = 4π~2(4a2 + 3a4)/7m and g1 = 4π~2(a4 − a2)/7m,
there is also a third term g2 = 4π~2(7a0−10a2+3a4)/7m,
which represents the singlet-pairing interaction. Spin-2
87Rb is believed to be antiferromagnetic with g1 positive
and g2 negative but of much smaller magnitude [24].

Following the derivation of spin-1 Boltzmann equa-
tion [14, 22, 23], we introduce the Wigner distribution
function which has matrix elements

fkj(r,p, t) =

∫
dr′e−ip·r

′/~〈ψ̂†j (r− r′/2, t)

ψ̂k(r + r′/2, t)〉.
(1)

From the Wigner function, we can obtain experimen-
tal observables such as the local density nkj(r, t) ≡∫
dp fkj(r,p, t)/(2π~)3. Taking the Hatree-Fock approx-

imation, we have the standard collisionless Boltzmann
equation of the Wigner function

∂
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where we have introduced matrix elements of the inter-

action potential U ,
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Here µ = x, y and z, and Tr is the trace operation. The
factor of two in the last term is a result of equal Hartree
and Fock term contributions. Note that this term van-
ishes for spin-1 case.

In the limit of strong trapping potential where the
spatial motion is moderately faster than the spin dy-
namics characterized by interaction energies g1,2Tr(n),
the spatial dependent interactions can be averaged out.
Thus we can decouple the spinor evolution σkj(t) =√
ρke

iθk√ρje−iθj from the spatial and momentum distri-
bution w(r,p) and express the Wigner function matrix
elements as fkj(r,p, t) = w(r,p)σkj(t), in analogous to
the popular SMA in dealing with spin dynamics in BECs.
Substituting this into Eq. (2) and integrating over posi-
tion and momentum, we obtain the following equation of
motion for the coherent spinor dynamics in a thermal gas

∂

∂t
σkj =

1

i~
[
U spin, σ

]
kj
, (4)

where the spin-dependent interaction potential

U spin
kj (r) =

[
qF 2

z + g1n̄
∑
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]
kj
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(−)k−j

5
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(5)

Here, n̄ =
∫
dr[Tr(n(r))]2/N with N the total atom num-

ber.

For spin-1, σ is represented by 3×3 matrices. With
the identity

∑
µ
FµAFµ = TrA + A +

∑
µ

Tr (FµA)Fµ

for any 3×3 matrix A, it can be easily shown that
the two g1 terms have equal contributions in Eq. (4).
Thus the spin-dependent interaction can be summed as
2g1n̄

∑
µ

Tr (Fµσ)Fµ, which is a factor of two larger than

that in spin-1 pure BECs [14].

In the case of spin-2, σ is represented by 5×5 matrices
and the above identity is not true in general. However,
if σ is constructed from pure state spinor wavefunctions,
which is the case in our experiment, contributions from
the two g1 terms are again the same and thus the factor of
two still holds. Combined with the factor of two in the
g2 term, the overall spin-dependent interaction is also
doubled compared with spin-2 pure BECs.
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FIG. 1. (color online) Coherent spin population oscillation of 87Rb spin-1 normal gas and its dependence on magnetic field.
(a) and (b) are exemplary temporal evolution of ρ0 at magnetic fields of 0.1 G and 0.18 G, respectively. Red solid curves are
for eye guiding. (c) and (d) show the magnetic field dependence of the oscillation period (◦) and amplitude (�) with a resonant
feature located near 0.14 G. Error bars here are from fitting of the oscillations. Blue solid curves are fittings with Eq. (4).

III. EXPERIMENTS

Our single vacuum chamber experimental setup has
been descried before [25, 26]. In brief, we prepare the
ultracold 87Rb sample by evaporative cooling in a hybrid
magnetic quadrapole plus optical dipole trap(ODT) [26–
28] first. The magnetic trap ensures a hundred percent
spin polarized sample in the |1,−1〉 hyperfine Zeeman
state. The sample is then transferred to a crossed ODT
in which the final evaporation is performed within a
weak magnetic field to preserve the atom’s spin state.
In the same setup, we can produce a pure 87Rb BEC
with 2 × 105 atoms. For the current experiment, we
control the atom number and stop the evaporation be-
fore the BEC phase transition to make pure thermal
gases. The measured typical final trap frequencies are
(ωx, ωy, ωz) = 2π × (190, 211, 113) Hz.

For investigating the spin-1 case, after the final evap-
oration, we hold the sample in the ODT for several
hundred milliseconds to ensure full thermalization be-
fore the magnetic field is set to a desired value along
the z-axis, with the transverse magnetic fields compen-
sated to less than 3 mG. To initialize the spin dy-
namics, we directly apply a resonant radio frequency
(rf) π/2-pulse to transfer the sample from |1,−1〉 hy-
perfine state to the fully transversely magnetized ini-
tial state ζ1(0) = (1/2, 1/

√
2, 1/2)T . Here ζ1 =

(
√
ρ+1e

−iθ+1 ,
√
ρ0e
−iθ0 ,

√
ρ−1e

−iθ−1)T with ρ−1,0,+1 and
θ−1,0,+1 as fractional populations and phase in each spin
components respectively. The system’s magnetization is
defined as ρ+1 − ρ−1.

To investigate spinor dynamics in the spin-2 case,
we first transfer the atoms to |2,−2〉 hyperfine state
with a microwave rapid adiabatic passage at a B field
of 1.3 G with a near unity efficiency. The magnetic

field is then changed adiabatically to a desired value
before a fully transversely magnetized state ζ2(0) =

(1/4, 1/2,
√

3/8, 1/2, 1/4)T is prepared with a rf π/2-
pulse. The magnetization is defined as 2ρ+2 − 2ρ−2 +
ρ+1 − ρ−1 in this case.

After initialization, the system is in a far-from-
equilibrium state and spin mixing dynamics will start.
After holding the sample in the trap for a range of
time for the dynamics to evolve, the ODT is turned
off abruptly and atoms in different spin states are de-
tected with the time-of-flight Stern-Gerlach absorption
imaging technique after 12 ms expansion. Our absorp-
tion imaging setup is calibrated with the high saturation
method [29, 30]. The number of atoms in each spin state,
Ni, is extracted from the images and the fractional pop-
ulation ρi = Ni/N is then calculated.

IV. RESULTS AND DISCUSSIONS

A. Spin-1 case

In Fig. 1(a) and (b) we present spin population oscilla-
tions for 87Rb thermal spin-1 gases at magnetic fields of
0.1 G and 0.18 G, respectively. We can immediately see
that the oscillation depends strongly on magnetic field.
This can be understood from U spin which has only the 2g1

term and the quadratic Zeeman q term for spin-1. While
the negative 2g1 term favors the ferromagnetic state, the
positive q favors the polar state [3]. Non-equilibrium spin
mixing dynamics is just the result of the competition be-
tween them. Similar to spin-1 BEC, depending on their
relative strengths, spin dynamics can be divided into the
interaction regime and the Zeeman regime [8]. With the
2g1 term fixed by the density, external magnetic fields
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can be applied to tune the system into either regimes.

When the magnetic field is low and thus q is small, the
system is in the interaction regime and the oscillation
period is predominately determined by the 2g1 term [8].
This is the case in Fig. 1(a). At higher magnetic field B,
q (∼72B2 Hz/G2) dominates the rather small 2g1 term
(2g1〈n〉 ∼ 1.45 Hz for our typical density), and the system
enters the Zeeman regime in which the oscillation period
is ∝ 1/q [8]. In both cases, these oscillations last for a
rather long time, although only data in the first 3 seconds
are shown. For longer time, the oscillation continues but
becomes non-periodic. To extract the oscillation period
and amplitude, we fit the first several oscillations to a
damped sinusoidal function.

For the current initial state, the crossover between
these two regimes happens when q ≈ 2g1〈n〉 [7, 14]. A
resonance feature is observed near this crossover in our
experiment, as illustrated in Fig. 1(c) and (d). The res-
onance happens at about 0.14 G, evident by the longest
period and the largest amplitude at this field. On the
higher field side where the dynamics is dominated by
q, the oscillations become faster with smaller amplitude.
This is similar to the detuned Rabi oscillations in driven
two level systems. Eventually, when the magnetic field is
too large, which corresponds to the large detuning case,
the oscillation amplitude becomes too small to be ob-
served. On the lower field side, the behavior is quite
different. While the amplitude also keeps decreasing, the
period levels off to ∼ 1/2g1〈n〉.

As illustrated by the solid curves in Fig. 1(c) and (d),
these behaviors are well captured by the simulation with
Eq. (4). These curves are fits to the data points with
the measured mean density of 〈n〉 ≈ 3.0 × 1013cm−3

and a residual magnetization of 0.06(2) due to imperfect
control of the rf pulse area in the initial state prepara-
tion. With g1 as the only fitting parameter, we obtain
a2 − a0 ≈ −1.00± 0.12 aB (aB is the Bohr radius), con-
sistent with the reported value of a2 − a0 ≈ −1.07 aB
in reference [31]. The rather small but non-zero mag-
netization also explains the non-diverging on resonance
oscillation period [7].

To our knowledge, the current work is the first obser-
vation of magnetically tuned spin oscillation resonance in
the spin-1 87Rb spinor gas. Previous works with BECs
were performed with either an initial state with large
magnetization [9] or in a quasi-one-dimensional trap [8].
In the former case, the resonance does not exist [7]. For

the latter, the spin healing length ξ = ~/
√

2mn|g1| is
smaller than the size in the elongated direction and thus
SMA is violated. Spin mixing dynamics is unstable [32] in
this case, as perturbations can cause irreversibly conver-
sion of the spin-dependent energy to collective excitation
modes. This will lead to the formation of multiple spin
domains and destroy the spin coherence within a single
full oscillation, making it impossible to observe the reso-
nance. This problem is mitigated in the current work by
the tight and near 3-D crossed trap.

B. Spin-2 case

The interaction between spin-2 87Rb atoms is antifer-
romagnetic with g1 > 0, g2 < 0, and |g2| � g1 [24]. Un-
like the spin-1 case, spin-2 spinor oscillations can have
more than one interaction channel and the spin-2 equa-
tion of motion has no exact analytic solutions. The spin-2
87Rb gas is also subject to inelastic hyperfine changing
collisions which greatly limit its lifetime to be about 0.5
s.

As shown in Fig. 2(a) and (b), several full oscillations
show up within hundreds of milliseconds. The observed
behaviors are similar with those studied previously on
spin-2 87Rb BECs with the same initial state [11, 33]
and can be understood intuitively from the competition
between q and the spin-dependent interactions. Indeed,
ignoring the small g2 term, for the chosen initial state
ζ2, approximate solutions have been obtained in refer-
ences [11, 33] both in the deep interaction and Zeeman
regimes. These solutions can be directly generalized to
our case by replacing the g1 factor with 2g1, as discussed
in Section II.

The factor of two thermal enhancement of the spin-
dependent interaction can be verified experimentally. In
the Zeeman regime, spin mixing process (0) + (0) ↔
(−1) + (1) dominates and the oscillation follows the fun-
damental period π/q [11, 33], as depicted by the dashed
curve in Fig. 2(c). Although the amplitude is typically
small, the oscillations are quite fast so that several pe-
riods can be observed clearly. As shown in the insets of
Fig. 2(c) and (d), with the density varied from 1.3×1013

cm−3 to 2.9×1013 cm−3 at 0.6 G, the periods are nearly
constant, while the amplitudes increase linearly with a
slope of 0.022(2.5)/1013cm−3. With the best known value
a4− a2 ≈ 6.95 aB [31], this slop gives the oscillation am-
plitude as 2.0(3) × 3g1 〈n〉 /8q. While for F = 2 spinor
BEC, the oscillation amplitude is 3g1 〈n〉 /8q [11, 33].
This measurement thus confirms our theoretical predic-
tion that, given a pure initial spin state, the factor of two
enhancement in the g1 term holds for the spin-2 thermal
gas.

Fig. 2(a) is taken in the interaction regime at 0.1 G,
where q is smaller than the g1 term; while Fig. 2(b) is
taken at 0.45 G with q much larger than the g1 term.
Besides the rather different oscillation amplitudes and
periods, we also find that in the interaction regime, pop-
ulations only oscillate between mF = 0 and mF = ±2
states, while those of the mF = ±1 states are nearly
0.25. In the other regime, all spin states are involved,
but the mF = ±2 states have a smaller oscillation am-
plitude. In the interaction regime at very low field, the
oscillation period is π/4g1 〈n〉 [11, 33], which is typically
long as g1〈n〉 is small. As a result, few oscillations can be
observed within the sample lifetime and these oscillations
also show strong damping.

We have carried out similar measurements with mag-
netic fields ranging from 0.1 G to 0.6 G and extracted
the amplitudes and periods by fitting the oscillations
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FIG. 2. (Color online) Spinor dynamics and its dependence on magnetic field for the 87Rb spin-2 normal gas. (a) and (b) show
evolutions of ρ0(N), ρ1(•), ρ−1(O), ρ2(�), and ρ−2(C) at 0.1 G and 0.45 G, respectively. Red solid curves in (a) and (b) are
fits to the damped sinusoidal function for ρ0, ρ1, and ρ2 only. The measured periods (◦) and amplitudes (�) of ρ0 vs. magnetic
fields are summarized in (c) and (d). The accompanying error bars are fitting errors. The blue solid curves here are obtained
from numerical calculations with Eq.(4) and the black dashed curve is a plot of π/q. The insets of (c) and (d) show respectively
dependence of the oscillation periods (up triangle) and amplitudes (squares) on densities at 0.6 G (see text).

to the damped sinusoidal function. As summarized in
Fig. 2(c) and (d), a resonance is observed near 0.3 G.
Close to resonance, the approximate solution fails. Nu-
merical calculation of the equation of motion in Eq. (4)
is thus necessary to fully describe the magnetic field de-
pendence. This is performed with the g1 term obtained
from the enhancement factor verification above and the
experimentally measured number densities. As shown by
the solid curves in Fig. 2(c) and (d), without any free
parameters the results already agree with our measure-
ments very well.

V. CONCLUSION

We have observed and analyzed the non-equilibrium
interaction-driven collective spin mixing dynamics in fer-
romagnetic spin-1 and antiferromagnetic spin-2 gases of
ultracold but non-condensed 87Rb atoms. These dynam-
ics and their magnetic field dependence are proved to be
the same as those found in spinor BECs under SMA, with
only a factor of two enhancement in the spin-dependent

interactions. In the spin-1 case, we can observe oscilla-
tions lasting for a very long time limited only by the trap
lifetime. Although these oscillations already become ir-
regular at 3 s, we nevertheless cannot tell any obvious
equilibrium state is reached within 10 s. Spin domains
formation are fully suppressed in both cases, but even for
the spin-1 case without hyperfine changing losses, damp-
ing is still observed for most oscillations. This maybe
come from the ignored collisional integral in the Boltz-
mann equation [16] as well as technical imperfections,
such as the residual magnetic field gradient.
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mer, E. Rasel, J. Arlt, C. Klempt, F. Ramirez-Martinez,
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