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We study scattering of quasi one-dimensional matter-waves at an interface of two spatial domains, one with re-

pulsive and one with attractive interatomic interactions. It is shown that the incidence of a Gaussian wavepacket

from the repulsive to the attractive region gives rise to generation of a soliton train. More specifically, the num-

ber of emergent solitons can be controlled e.g. by the variation of the amplitude or the width of the incoming

wavepacket. Furthermore, we study the reflectivity of a soliton incident from the attractive region to the repul-

sive one. We find the reflection coefficient numerically and employ analytical methods, that treat the soliton as

a particle (for moderate and large amplitudes) or a quasi-linear wavepacket (for small amplitudes), to determine

the critical soliton momentum – as function of the soliton amplitude – for which total reflection is observed.

PACS numbers: 03.75.Kk, 03.75.Lm

I. INTRODUCTION

For almost two decades, the study of nonlinear phenom-

ena occurring in atomic Bose-Einstein condensates has expe-

rienced an enormous increase of interest [1, 2]. A prominent

example, in the quasi one-dimensional (1D) setting, is the ex-

perimental observation of robust matter-wave solitons of the

bright [3] and dark [4] type, and the study of their properties

(see, e.g., the reviews [5] and [6] for bright and dark solitons,

respectively). Such coherent nonlinear excitations of BECs

are also interesting from the viewpoint of potential applica-

tions, ranging from coherent matter-wave optics to precision

measurements and quantum information processing. Indeed,

the formal similarities between nonlinear and matter-wave op-

tics [7] indicate that coherent matter-waves may in princi-

ple be controlled similarly to their optical siblings in optical

fibers, waveguides, photonic crystals, and so on [8].

In that respect, it is not surprising that there exist many

works devoted to the manipulation of matter waves. Among

various techniques that have been proposed, an experimen-

tally tractable one refers to engineering the “environment” of

the matter-wave, by magnetically [9] or optically [10] induced

Feshbach resonances, which makes it possible to control the

effective nonlinearity in the condensate. The application of

such a “Feshbach resonance management” (FRM) technique

[11] in the temporal domain was used for the realization of

matter-wave bright solitons by switching the interatomic in-

teractions from repulsive to attractive [3]; it was also pro-

posed as a means to stabilize attractive higher-dimensional

BECs against collapse [12, 13] and to create robust quasi-1D

matter-wave breathers [11, 14]. On the other hand, the FRM

technique in the spatial domain, which gives rise to the so-

called “collisionally inhomogeneous condensates” [15] with

a spatially modulated nonlinearity, has also been extensively

studied. In particular, novel phenomena and a variety of ap-

plications have been proposed in this context, including the

adiabatic compression of matter-waves [15, 16], Bloch oscil-

lations of matter-wave solitons [15], atomic soliton emission

and atom lasers [17], enhancement of transmittivity of mat-

ter waves through barriers [18], formation of stable conden-

sates exhibiting both attractive and repulsive interatomic in-

teractions [19], solitons in combined linear and nolinear po-

tentials [20], generation of solitons [21] and vortex rings [22],

control of Faraday waves [23], vortex dipole dynamics in a

spinor BEC in which magnetic phases are spatially distributed

[24], and many others. A detailed recent review of such in-

homogeneously nonlinear settings, especially in the context

of periodic (i.e., nonlinear lattice) variations can be found

in Ref. [25]. It should also be noted in passing that similar

studies have also been performed in the context of nonlinear

optics; relevant investigations include (but are not limited to)

light-beam scattering at interfaces separating nonlinear dielec-

tric media [26], transformation of waves passing an interface

between regions of normal and anomalous group velocity dis-

persion [27], surface soliton dynamics at interfaces between

inhomogeneous periodic media [28], and others.

In this work, we study the scattering of matter-waves in a

collisionally inhomogeneous environment. In particular, we

consider a quasi-1D setting (whereby matter waves are ori-

ented along the x-direction) and assume that the scattering

length a is piecewise constant for x ≪ 0 and x ≫ 0, taking

respectively the values −a1 < 0 and a2 > 0, and changes

sign at x = 0. In other words, we assume that the normalized

scattering length a(x) takes the form:

a(x) =
1

2

[(

a2
a1

− 1

)

+

(

a2
a1

+ 1

)

tanh
( x

W

)

]

, (1)

where W is the spatial scale over which the transition from

the asymptotic values a1 and a2 takes place. For the above

setting, and in the framework of the mean-field approxima-

tion, we will investigate two different scattering processes; a

description of our considerations and the organization of the

paper are as follows.

First, in Section II, we study the incidence of a nearly linear

(Gaussian) wavepacket from the repulsive region (x > 0) to

the attractive region (x < 0), and demonstrate the generation

of a train of bright solitons. By numerically integrating the

pertinent Gross-Pitaevskii (GP) equation, we determine the
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number of created solitons as functions of the initial data (am-

plitude, width and momentum of the incident wavepacket), as

well as the difference of the values of the scattering length.

In Section III, we study the reflectivity of a bright soliton

from the scattering length interface; the soliton is assumed to

exist and travel from the attractive region (x < 0) towards the

repulsive region (x > 0). We find numerically the reflection

coefficient as a function of the soliton momentum and ampli-

tude, and find that it has a step-like dependence on momentum

for sufficiently weak solitons. In the case of total reflection,

we use an analytical approximation (treating the soliton as a

particle) and find the equation of motion for the soliton cen-

ter. This equation is used to determine the critical value of

momentum below which total reflection occurs, which turns

out to depend linearly on the soliton amplitude. Addition-

ally, for extremely weak solitons, employing results from lin-

ear quantum mechanics [29], we also find a (different) linear

dependence of the critical momentum on the soliton ampli-

tude. Both analytical estimates, for weak and strong solitons

are found to be in very good agreement with the numerical

results, with the latter also encompassing a transition region

between the two regimes.

Finally, Section IV concludes our findings and presents a

number of directions for future study.

II. REFLECTIVITY OF A GAUSSIAN WAVEPACKET

FROM THE SCATTERING LENGTH INTERFACE

A. Model and creation of a soliton train

Our considerations start from the following Gross-

Pitaevskii (GP) equation, which describes a quasi-1D BEC

oriented along the x-axis [1, 2]:

i~
∂Ψ

∂t
= − ~

2

2m

∂2Ψ

∂x2
+ 2~ω⊥a|Ψ|2Ψ. (2)

Here Ψ(x, t) is the mean-field order parameter, m is the

atomic mass, ω⊥ is the transverse confining frequency, and

a the s-wave scattering length [a > 0 (a < 0) corresponds to

repulsive (attractive) interatomic interactions]. Considering a

situation where proper spatially dependent fields close to Fes-

hbach resonances are employed, we assume that the scattering

length a is piecewise constant for x < 0 and x > 0, taking the

form

a(x) = (1/2)[(a2 − a1) + (a1 + a2) tanh(x/W )], (3)

where W is the spatial scale over which the transition from

the asymptotic value −a1 < 0 (for x/W → −∞) to a2 > 0
(for x/W → +∞) takes place.

A strategy for developing a corresponding experimental im-

plementation can be based on the interaction tunability of spe-

cific atomic species by applying external magnetic fields. For

example, for cesium the s-wave scattering length a changes

sign through a zero-crossing at an external field strength of

17 G [30]. Confining cesium atoms in an elongated trapping

potential near the surface of an atom chip [31] will allow for

appropriate local engineering of a to form steps of varying

widths W , where the atom-surface separation sets a scale for

achievable minimum step widths. The trapping potential can

be formed optically, possibly also by a suitable combination

of optical and magnetic fields, whereby care has to be taken

as the magnetic field will influence both the external potential

and the scattering length profile a(x); see e.g. the relevant

discussion of [32].

Normalizing time and space in Eq. (2), as t → ω⊥t and

x → x/a⊥ (where a⊥ = (~/mω⊥)
1/2 is the transverse har-

monic oscillator length), as well as the density as |ψ|2 →
2α1|u|2, we cast Eq. (2) into the following dimensionless

form:

i
∂u

∂t
+

1

2

∂2u

∂x2
− a(x)|u|2u = 0, (4)

where the function a(x) is given by Eq. (1). For our analytical

and numerical considerations below, we will use the values

a2/a1 = 0.95, and W = 0.01. The former choice is made so

as to consider the case in which a1 and a2 take similar values

(and not, e.g., cases with a2/a1 ≪ 1 or a2/a1 ≫ 1); the

specific value a2/a1 = 0.95 is not crucial for our analysis –

i.e., qualitatively similar results are obtained for other similar

choices. On the other hand, the choice corresponds W =
0.01 corresponds to an abrupt, step-like transition from the

repulsive to the attractive region.

It is relevant to point out here that, generally, Eq. (2) as

well as its variants attempting to more adequately capture

transverse degrees of freedom (see the quasi-1D models of

Refs. [33] and [34]), suggest that the variations/modulations

in transverse trapping strength can be used in a way equivalent

to longitudinal variations of the scattering length. This idea

has been used even in a quantitative fashion, e.g., to explain

the phenomenology of the formation of Faraday wave patterns

– cf. Ref. [35] (and relevant work in Ref. [23]). Nevertheless,

this type of consideration is not applicable in the present set-

ting, given the sign changing nature of the nonlinearity.

We now assume that a Gaussian wavepacket of amplitude

U0 and width l, initially located at x = x0 > 0 (i.e., in the

repulsive region), moves towards the attractive region. The

specific form of the wavepacket, which is used as an initial

condition for Eq. (4) in our simulations, is:

u(x, 0) = U0 exp

(

− (x− x0)
2

l2

)

exp (−iKx) , (5)

where K is the initial momentum of the wavepacket. Notice

that this form of the wavepacket approximates the ground state

profile that would be created in – and potentially “released”

from, in an experimentally relevant setting – a parabolic trap,

in the repulsive region under consideration, and in the case

of relatively small atom numbers (corresponding to a weak

nonlinearity).

Using the parameter values x0 = 20, l = 10, and K = 1.5
(as well as U0 = 1, W = 0.01 and a2/a1 = 0.95), we depict

the corresponding configuration in the top panel of Fig. 1. In

the middle and bottom panels of the same figure, we show the

subsequent dynamics: it is observed that the wavepacket is
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FIG. 1: (Color online) Motion of a Gaussian wavepacket from the

region with repulsive interactions to the region with attractive inter-

actions. Top and middle panels show, respectively, the density pro-

files of the wavefunction at at t = 0 and t = 200 [solid (blue) lines];

the normalized scattering length profile for W = 0.01 is also de-

picted [dashed (red) line]. The bottom panel represents a contour

plot showing the evolution of the density; middle and bottom panels

clearly show the creation of a bright soliton train. Parameter values

are: U0 = 1, x0 = 20, l = 10, K = 1.5, and a2/a1 = 0.95.

transmitted through the discontinuity of the scattering length

at x ≈ 0 and, after entering the region with attractive interac-

tions, it transforms into a train of bright solitons. Notice that

the soliton generation process is such that each generated soli-

ton is larger than the one that will be generated at a later time.

This is due to the fact that once a portion of the condensate

enters the attractive side and is self-organized into a soliton,

the number of atoms of the wavepacket on the repulsive side is

decreased and, thus, a smaller soliton will be generated next.

Naturally, larger-amplitude solitons travel faster than smaller-

amplitude ones. It is interesting to observe, however, that the
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FIG. 2: (Color online) The top and bottom panels show, respectively,

the number of solitons, Ns, observed at t = 200, as a function of the

initial amplitude U0 (for fixed l = 10) or as a function of the initial

wavepacket width l (for fixed U0 = 1) of the Gaussian wavepacket.

The other parameter values are W = 0.01, a1 = 1, a2 = 0.95,

K = 1.5, and x0 = 20.

ratio of the velocities of two adjacent solitons in the train is

constant; as a result, for each certain time instance, the dis-

tance between adjacent solitons is the same. Additionally, it

should be noted that the initial Gaussian wavepacket (which

is not an exact solution in the repulsive region), spreads as it

approaches the step, having a velocity equal to its initial one,

which is generally different than the produced solitons’ veloc-

ities.

Here, it is worth mentioning that the results on the gener-

ation and characteristics of the atomic soliton train described

above are reminiscent to the ones found in Ref. [17], but by

means of a somewhat different physical mechanism: in that

work, the soliton train was produced via a sufficiently deep

spatially-dependent nonlinearity which acted on a trapped

Gaussian wavepacket (existing between a region of vanish-

ing and that of negative scattering length). The depth of the

(abrupt) negative step was found to control the number of

emitted solitary waves.

We find that the number of the created solitons, Ns, de-

pends on the momentum K , the amplitude U0 and the width

l of the Gaussian wavepacket, as well as the height of the in-

terface a2/a1. Results pertaining to the count of the soliton

number are shown in Fig. 2: larger initial amplitudes and/or

widths of the wavepacket result in a larger number of solitons.

On the other hand, increasing the initial momentum k and/or

the height a2/a1 of the interface the number of solitons seems

to have a weaker effect on the process; for the particular ex-

ample shown in Fig. 1, the number of solitons is 7 at time

t = 200. Here, we should note that for the counting of the

number of solitons, we have included only solitons of ampli-

tudes at least 10% of the first created soliton.
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FIG. 3: (Color online) Contour plots showing the evolution of the

density of a bright soliton of initial velocity k = 0.7, scattered at the

interface between the attractive and repulsive region, at x = 0 [de-

picted by the dashed (white) line]. From top to bottom, the amplitude

of the soliton is η = 0.2, η = 0.6 and η = 1. Top (bottom) panel

corresponds to total transmission (reflection); middle panel shows

partial reflection.

III. REFLECTIVITY OF A SOLITON FROM THE

SCATTERING LENGTH INTERFACE

Next, we consider the reflectivity of a bright soliton at the

scattering length interface. We assume, in particular, that a

bright soliton moves from the attractive (x < 0) to the repul-

sive region (x > 0) and is, thus, scattered at the interface, at

x = 0, caused by the change of the sign of the nonlinearity.

This dynamical scenario is, effectively, complementary to the

one studied in Section II.

The bright soliton propagating in the attractive region has

the form:

u(x, t) = ηsech [η (x− x0(t))] exp (i (kx− ωt)) , (6)

where η, k, x0 and ω respectively denote the amplitude, ve-

locity, initial position and frequency of the soliton. Then, we

numerically integrate Eq. (2) with the initial condition taken

as

u(x, 0) = ηsech [η (x− x0(0))] exp (ikx) exp (iφ) , (7)

and observe the dynamics of the scattering process. Typical

outcomes are shown in Fig. 3; in all cases, we fix the initial

soliton momentum, at k = 0.7, and vary the amplitude η.

We observe that if the soliton amplitude is sufficiently small

(large) then total transmission (reflection) is found –cf. top

(bottom) panel of the figure for η = 0.2 (η = 1). On the other

hand, for a moderate value of η (e.g., η = 0.6 –cf. middle

panel) the soliton is partially transmitted and reflected. Notice

that in the case of total or partial transmission (top and middle

panels), the transmitted wavepacket rapidly disperses in the

repulsive region, with its velocity being roughly the same as

the one it had in the attractive region.
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FIG. 4: (Color online) The reflection coefficient R as a function of

the initial soliton momentum k, for various values of large soliton

amplitudes η. The inset shows cases corresponding to weak solitons.

The soliton reflectivity can be calculated numerically upon

determining the reflection coefficient R, defined as the num-

ber of atoms remaining in the x < 0 (attractive) region over

the number of atoms of the incident soliton. Taking into re-

gard that the latter is given by
∫∞

−∞
|u(x, 0)|2dx = 2η, we can

express R as:

R =
1

2η

∫ 0

−∞

|u(x, t⋆)|2dx. (8)

Here, t⋆ is a time sufficiently large such that the reflected and

transmitted parts of the soliton are spatially well separated;

this separation is set by a spatial region of extent ∆x ≈ kt⋆
around x = 0 and, accordingly, t⋆ is appropriately chosen for

each individual numerical experiment.

Figure 4 shows the reflection coefficient as a function of

the initial soliton momentum (for 0 ≤ k ≤ 10) and vari-

ous values of the soliton amplitude η. We observe that when

η is increased, the respective reflection coefficient curves

drift towards larger momentum values and the curves become

smoother: the transition from total reflection to total trans-

mission becomes less sharp. This means that the interval of

momenta for which partial transmission and reflection occur

(as in the middle panel of Fig. 3) increases with increasing

soliton amplitude.

From the above discussion, it is obvious that the soliton

keeps its particle-like character only in the case where it is

totally reflected (cf. bottom panel of Fig. 3): in the cases of

total or partial transmission, the soliton is not supported in the

repulsive regime and it is eventually destroyed. We can thus

adapt the particle picture for the soliton dynamics in the total

reflection regime, and describe analytically the soliton trajec-

tory and its reflectivity properties. Our approach based on

the center of mass (defined below) extends the corresponding

considerations of Ref. [37], where a similar methodology was

developed for the case of a linear step potential.

We start with the soliton’s center of mass, given by:

x =

∫ ∞

−∞

x|u(x, t)|2dx, (9)
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which is connected with the soliton momentum P =
(i/2)

∫∞

−∞
(uu∗x − u∗ux) dx through the equation dx/dt =

P . Then, differentiating the latter expression with respect to t,
and using Eq. (4), it is straightforward to derive the following

equation of motion for x:

d2x

dt2
=

1

2

∫ ∞

−∞

da(x)

dx
|u(x, t)|4dx. (10)

The integral on the right-hand side of Eq. (10) can be cal-

culated in an analytical form, upon approximating a(x) [cf.

Eq. (1)] by a Heavyside function in the limiting case where

W ≪ 1/η. Then, da(x)/dx is approximated by a delta func-

tion, and integrating the right-hand side of Eq. (10), we end

up with the following result:

d2x

dt2
≈ −1

2

(

1 +
a2
a1

)

η4sech4 (ηx0 (t)) . (11)

Then, taking into regard that the soliton center is connected

with the center of mass through the equation x = 2ηx0, we

can express Eq. (11) as follows:

d2x0
dt2

= −dVeff
dx0

, (12)

where the effective potential Veff is given by:

Veff(x0) =
1

12

(

1 +
a2
a1

)

η2

×
[

3tanh (ηx0)− tanh3 (ηx0)
]

. (13)

Equation (12) shows that the soliton can be regarded as a New-

tonian unit-mass particle, which evolves in the presence of the

effective potential Veff ; the latter, has a shape of a step-like

barrier, as depicted in Fig. 5. Thus, according to this par-

ticle picture, the soliton will be totally reflected if its initial

energy Es is less than the “height” of the barrier. Since the

soliton is expected to interact with the effective potential only

through its exponential leading tail, the soliton center is an-

ticipated to never reach the interface at x = 0, but it will

approach it only up to a distance roughly equal to the half-

width at half-maximum (HWHM) of the soliton; the above

situation is schematically illustrated in Fig. 5. Thus, tak-

ing into regard that the soliton’s HWHM, denoted by ∆x,

is connected with the inverse width η through the equation

∆x = ln(1 +
√
2)/η, we can find that the relevant barrier

height is given by Veff(∆x)− Veff(x0(0)), where x0(0) is the

initial soliton position. According to the above arguments, the

soliton will be totally reflected if the initial soliton energy is

less than (or equal to) the effective barrier height, namely:

Es ≡
1

2
k2 + Veff(x0(0)) ≤ Veff(∆x) (14)

We have numerically checked the validity of this analysis

by comparing, at first, the numerically obtained soliton trajec-

tory [by means of direct numerical integration of Eq. (4) in the

case of total reflection] with the approximate analytical result

Veff

x (0)0
x00

Δx

FIG. 5: (Color online) A sketch of the effective potential Veff (blue

line) as a function of x0. Shown also is the soliton, initially located

at x0(0) [left (green) curve], far from the scattering length interface,

and in close proximity to the interface [right (red) curve], where the

location of its center is x0(|∆x|).
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FIG. 6: (Color online) Contour plot showing the space-time evolu-

tion of the motion of the soliton center. The bright soliton is initially

placed at x0(0) = −10, while its amplitude and momentum are

η = 0.4 and k = 0.1. The dashed (black) curve represents the an-

alytical result of Eq. (12), while the horizontal (white) line depicts

x = 0.

of Eq. (12). A typical example, corresponding to a soliton am-

plitude η = 0.4 and momentum k = 0.1, is shown in Fig. 6.

There, the numerical result is displayed in the form of a con-

tour plot for the evolution of the soliton density, as well as the

analytical result of Eq. (12) – cf. dashed line in the figure.

Note that similar results were obtained for soliton amplitudes

0.2 < η < 2. It can be seen that the dashed line follows with

a fairly good accuracy the evolution of the soliton center. The

slight discrepancy observed can be explained as follows: the

tail of the bright soliton, in case of total reflection (cf. Figs. 5

and 6), interacts with the interface and enters the repulsive

area, and eventually comes back to the attractive region. This

effect, which cannot be explained via the particle approach,

causes a slight shift in the soliton trajectory. Thus, the trajec-

tory obtained from Eq. (10) has naturally a slight discrepancy

for any soliton amplitude η.

Next, employing Eq. (14), it is possible to derive analyti-

cally the critical value of the initial momentum kcr [when the

equality in Eq. (14) holds], for which total reflection occurs,

as a function of the soliton amplitude and the parameters char-
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FIG. 7: (Color online) The critical momentum kcr, below which total

reflection occurs, as function of the soliton amplitude η. The (red)

dots depict the numerical result, while the left (blue) and right (green)

straight lines correspond to the analytical predictions of Eqs. (19) and

(15), respectively. The parameter values are a1 = 1, a2 = 0.95 and

W = 0.01.

acterizing the scattering length profile. The result is:

kcr =

[

1

3

(

1 +
a2
a1

)

(1 + C)

]1/2

η, (15)

where constantC = (1/2)[ 3 tanh(η∆x)−tanh3(η∆x)] and

η∆x = − ln(1+
√
2) ≈ −0.88. Note that Eq. (15) suggests a

linear dependence of kcr on η, which is confirmed by our nu-

merical simulations. Indeed, as shown in Fig. 7, for solitons

of sufficiently large amplitudes, i.e., for η & 0.2, this ana-

lytical prediction [depicted by the solid (green) straight line]

is in an excellent agreement with the numerical result for kcr
[depicted by the (red) dots]. Notice that the numerically ob-

tained values for kcr are calculated so that the respective re-

flection coefficient values become less than unity by a factor

of 10−3; however, we note here that the results presented are

only weakly sensitive to the selection of the particular thresh-

old.

For weaker solitons it is expected that our analytical ap-

proximations described above should be less accurate: this is

due to the fact that for small values of η, the nonlinearity be-

comes extremely weak, and thus a linear description of the

problem would be more appropriate. In such a case, the soli-

ton can be treated as a linear wavepacket, which is scattered

from an effective step barrier; the latter, is basically formed

by the step-like change of the scattering length profile. Then,

the reflection coefficient can be approximated from the corre-

sponding linear problem [29] as follows:

R = 1− 4
√

(E − V0)E

(
√
E +

√
E − V0)2

, (16)

where E and V0 denote, respectively, the energy of the

wavepacket and the height of the effective potential barrier.

Notice that Eq. (16) stands for plane waves; however, it can

still provide a reasonable approximation as long as the soli-

ton width η−1 is sufficiently large, i.e., for sufficiently weak

solitons. In our case, the soliton energy is given by (see, e.g.,

Ref. [2]):

E = ηk2 − 1

3
η3, (17)

while the strength of the effective barrier potential is given by:

V0 =
1

2

∫ ∞

−∞

a(x)|u|4dx =
1

3

(

a2
a1

− 1

)

η3. (18)

Then, total reflection, i.e., R = 1 in Eq. (16), occurs for E =
V0; the latter equation leads to the following result for the

critical momentum kcr:

kcr =

(

a2
3a1

)1/2

η. (19)

The above approximate analytical result, which is relevant to

weak solitons, also shows a linear dependence of kcr on η
and is in a very good agreement with the numerical results, as

shown in Fig. 7 for η . 0.1.

In summary, we capture the regime of small η by means of

the linear/wave theory, and the regime of large η by our soliton

particle theory, while between the two we interpolate via the

use of numerical computations as shown in Fig. 7.

IV. CONCLUSIONS

In this work, we studied the scattering of quasi-1D matter-

waves in a spatially inhomogeneous environment, character-

ized by a piecewise constant profile of the scattering length a,

such that a = −a1 < 0 for x < 0, a = a2 > 0 for x > 0,

and a changes sign at x = 0. This way, in the region x < 0
(x > 0) the interatomic interactions are attractive (repulsive).

We investigated two different dynamical scenarios:

(i) the scattering of a quasi-linear (Gaussian) wavepacket

at the scattering length interface, with the wavepacket

traveling from the repulsive to the attractive region, and

(ii) the scattering of a matter-wave bright soliton at the scat-

tering length interface, with the soliton traveling from

the attractive to the repulsive region.

In case (i), we found that when the wavepacket enters

the attractive region it evolves into a train of bright soli-

tons. The soliton train is such that each generated soliton

is larger than the one that will be generated at later times,

while the distance between adjacent solitons is the same. We

counted the number of the created solitons, as a function of

the wavepacket’s initial characteristics (momentum, ampli-

tude, and width) and the height of the nonlinearity interface

a2/a1, and found that larger initial amplitudes and/or widths

of the initial wavepacket result in a larger number of solitons.

For case (ii), we found that the incidence of the soliton at

the scattering length interface generally leads to total trans-

mission, total reflection, or partial transmission/reflection.

The reflection coefficient was determined numerically as a

function of the initial soliton momentum, for different soli-

ton amplitudes. For sufficiently weak solitons, we found an
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almost abrupt change from total transmission to total reflec-

tion, effectively associated with the linear phenomenology in

a step potential. For stronger solitons, the reflection coeffi-

cient featured a smoother dependence on the momentum.

We also developed analytical approximations – that treated

the solitons as particles (for large amplitudes) or linear

wavepackets (for small amplitudes) – to determine the crit-

ical value of soliton momentum, kcr, below which total re-

flection occurs. We found that kcr depends linearly on the

soliton amplitude, but with different slopes in the purely non-

linear and the quasi-linear regimes. Numerically, we find a

smooth crossover between these two regimes, which can be

interpreted as a gradual continuous change of the soliton from

being dominated by wave-like to particle-like properties. Our

analytical predictions were found to be in very good agree-

ment with the corresponding numerical results.

There are numerous directions that may be worth consid-

ering for future efforts. One of these is to consider the pos-

sibility of multiple steps and their interplay. Another is to

examine the interplay of the nonlinear step with an external

linear potential or with a non-trivial background (e.g. on the

repulsively interacting side which can support such a back-

ground) and to explore the dynamics of incident wavepackets

in such settings. Potentially, probing the soliton dynamics in

such configurations could be utilized towards retrieving quan-

titative information about the nature of linear and/or nonlinear

unknown potentials.

From a more rigorous mathematical perspective, it will be

interesting to attempt to connect the present setting to the

extensive developments in treating integrable problems with

suitable boundary conditions (e.g. on the half line), as de-

tailed e.g., in Ref. [38]. A way to make this connection may

be to consider the GP equation e.g. solely on the attractive

domain with a boundary condition inferred by the incidence

of the Gaussian wavepacket at x = 0 (i.e., a Gaussian in time

boundary condition). A potential by-product of such a for-

mulation might be the identification of the number of solitary

waves that will emerge, as a function of the properties of this

effective (and localized in time) boundary drive.

Finally, it would be of particular interest to extend con-

siderations to the two- or higher-dimensional setting. There,

understanding the properties of the formed solitons, e.g., on

the attractive interaction “domain”, taking into consideration

the collapse feature that arises in the critical or super-critical

higher-dimensional case [39], would be especially relevant.
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