
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Testing gravity with cold-atom interferometers
G. W. Biedermann, X. Wu, L. Deslauriers, S. Roy, C. Mahadeswaraswamy, and M. A.

Kasevich
Phys. Rev. A 91, 033629 — Published 24 March 2015

DOI: 10.1103/PhysRevA.91.033629

http://dx.doi.org/10.1103/PhysRevA.91.033629


Testing Gravity with Cold-Atom Interferometers

G. W. Biedermann,∗ X. Wu, L. Deslauriers, S. Roy, C. Mahadeswaraswamy, and M. A. Kasevich†

Physics Department, Stanford University, Stanford, CA 94305

We present a horizontal gravity gradiometer atom interferometer for precision gravitational tests.
The horizontal configuration is superior for maximizing the inertial signal in the atom interferom-
eter from a nearby proof mass. In our device, we have suppressed spurious noise associated with
the horizonal configuration to achieve a differential acceleration sensitivity of 4.2×10−9g/

√
Hz over

a 70 cm baseline or 3.0×10−9g/
√
Hz inferred per accelerometer. Using the performance of this

instrument, we characterize the results of possible future gravitational tests. We demonstrate a sta-
tistical uncertainty of 3×10−4 for a proof-of-concept measurement of the gravitational constant that
is competitive with the present limit of 1.2×10−4 using other techniques. From this measurement,
we provide a statistical constraint on a Yukawa-type fifth force at 8×10−3 near the poorly known
length scale of 10 cm. Limits approaching 10−5 appear feasible. We discuss improvements that can
enable uncertainties falling well below 10−5 for both experiments.

PACS numbers: 06.30.Ft

I. INTRODUCTION

Light-pulse atom interferometers demonstrate excep-
tional inertial sensitivity. The nature of their construc-
tion lends long-term stability and intrinsic accuracy mak-
ing them compelling candidates for advancing our knowl-
edge of gravitational physics. Recent work has shown the
promise of this technology in a precision measurement
of the gravitational constant [1, 2] as well as precision
gradiometry [3], single-atom force sensors [4], and nav-
igation sensors [5–9]. New experiments aim to test the
Weak Equivalence Principle by measuring the differential
acceleration between atom species in a dual species ac-
celerometer [10, 11] and future missions are being devel-
oped to deploy space-based gravity wave detectors [12].
The weakness of the gravitational coupling presents a

significant challenge for precision measurements of grav-
itational forces. The 2010 CODATA values G with a
relative standard uncertainty of 1.2× 10−4 [13]. If taken
as a steady trend, the uncertainty has improved by only
one order of magnitude per century since the first mea-
surements of G by Cavendish in 1798 [14]. High accuracy
measurements following the first CODATA adjustment in
1986 disagreed with each other at the 10−3 level though
their accuracies exceeded 10−4 [15]. New understandings
of systematic shifts in these measurements [16] and subse-
quent precision measurements have lead to the improved
precision on G in 2010. Therefore, an independent eval-
uation of G is welcome for determining the true value
of G with greater accuracy. In this paper, we present
an atom interferometer that offers a new contribution to
this endeavor with a forecast precision well below 10−5.
In a related manner, inextricably linked are the pre-

cision of these measurements and the exploration of the

∗ Present address: Sandia National Laboratories, Albuquerque,

NM 87123
† kasevich@stanford.edu

dependence of gravity on the spatial separation of the
participating test masses. A myriad of theories predict
departures from the Inverse Square Law (ISL) model just
below the resolution of current experiments [17]. These
theories often predict the existence of a new force me-
diated by a massive particle exhibiting a characteristic
range of λ = ~/mγc where mγ is the particle mass.
In this case, the gravitational force would arise from a
Yukawa potential of the form:

U(r) = −Gm1m2

r

(

1 + αe−r/λ
)

, (1)

where α is the coupling strength, m1 and m2 are the two
participating masses and r is the spatial separation of
the masses. The work shown here offers the possibility to
constrain α near 10−5 for λ ∼ 10 cm for an improvement
of 102 over current limits [18–20].
In this paper we present preliminary gravity tests using

our technique with two experiments: a determination of
the statistical uncertainty for a measurement of the gravi-
tational constant and a forecast of a statistical constraint
upon a putative Yukawa-type fifth force. Our promising
results motivate further work to realize the full potential
of this approach. In the remainder of this paper we first
discuss the atom interferometer measurement including
the theoretical treatment along with our measurement
technique in section II. We then describe the apparatus
and the current sensitivity in section III followed by a
characterization of the atom interferometer performance
in section IV. Our evaluation of the statistical uncer-
tainty for a measurement of G is found in section VA
and a forecast of a constraint upon the Yukawa potential
is found in section VB.

II. ATOM INTERFEROMETER

MEASUREMENT

The experiment measures acceleration using a pulsed-
light, π/2-π-π/2 atom interferometer [21]. The functional
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principle of the interferometer can be understood with a
simple model. This model encapsulates much of the be-
havior exhibited by the measurement process while ne-
glecting several small yet important nuances such as the
effect of magnetic fields, large local gradients in gravity
and wavepacket overlap, as discussed below.
Consider the case of a test mass undergoing constant

acceleration. A measurement of the position of the mass
at three equi-spaced points in time defines the curvature
or acceleration associated with its path as

a =
x1 − 2x2 + x3

T2 (2)

where T is the time between successive position mea-
surements xi. For the atom interferometer, the test mass
is the cesium atom and the position measurements are
referenced to a pulsed, resonant optical field where the
optical phase fronts act as the ticks of a ruler. If this
optical field is referenced to a stable frame, then the fi-
nal interferometer phase shift reveals the acceleration of
the atom with respect to that frame along the direction
defined by the light propagation. Contributions from a
constant velocity vanish in Equation 2.
The detailed theory of light pulse atom interferometry

is available in Refs. [22, 23]. In brief, to perform these
measurements, we interrogate the atoms with a velocity-
sensitive, two-photon stimulated Raman transition cou-
pling the 6S1/2, F = 3 and F = 4 hyperfine ground states
of atomic cesium. These transitions imprint the optical
phase associated with the Raman coupling onto the phase
difference of the hyperfine ground state atomic wavefunc-
tions. This phase is a measure of the atom’s position
during the Raman pulse. In the limit of short, resonant
pulses, the transition rules between these two states take
a simple form of

|3,p〉 → eiφ(t) |4,p+ ~keff〉
|4,p+ ~keff〉 → e−iφ(t) |3,p〉 , (3)

where φ(t) = keff ·x(t). Here x(t) is the mean position of
the wavepacket at the pulse time t, p is the mean atom
momentum and keff is the Raman wavevector defined by
keff = k1 - k2, where k1 and k2 are the wavevectors of two
counter-propagating Raman beams. Conservation of mo-
mentum dictates that the atomic momentum change by
~keff for an atom undergoing a Raman transition. This
amounts to a velocity change of ≈ 7 mm/s in our exper-
iment, which leads to a macroscopic wavepacket separa-
tion of 0.6 mm over the duration of the interferometer
which is 170 ms in this work.
These Raman pulses drive coherent Rabi oscillations

between the F = 3 and F = 4 ground states. The
pulses are characterized by the pulse area defined here
as Θ ≡ ΩR τ , where ΩR is the Rabi frequency which
is assumed to be constant, and τ is the duration of the
pulse. As an example, for an atom initially in F = 3,
a Θ = π/2-pulse leaves the atom in an equal superposi-
tion of F = 3 and F = 4 analogous to an optical beam
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FIG. 1. (Color online) Interferometer recoil diagram in an
atomic fountain with a gravity gradient. The prepared wave
packet, |3,p〉 interacts with the first π/2 pulse and splits in
the lateral direction into a coherent superposition of states
|3,p〉 and |4,p+ ~keff〉 while ascending to the apex of the
trajectory. At the apex the wave packets are redirected back
toward one another by the π pulse. The final π/2 pulse recom-
bines the wave packets near the original launch location. The
direction of keff determines that the interferometer measures
gx, the lateral acceleration.

splitter. It follows that a Θ = π-pulse transfers an atom
in F = 3 to F = 4 (and vice versa) corresponding to
a mirror. Therefore a π/2-π-π/2 pulse sequence creates
a Mach-Zehnder style atom interferometer by splitting,
redirecting and then recombining the atom wavepackets.
In practice, we employ an atomic fountain to loft atoms
vertically upward and apply keff in the lateral direction
(see Figure 1). The force of earth’s gravitational pull
causes the atoms to arc in a parabolic trajectory, return-
ing them to the launch position such that they are in
free-fall for the entire duration of the interferometer.
Each aforementioned position measurement is encap-

sulated in the phase φ(t). Using the rules in Eq. 3 for
a π/2-π-π/2 interferometer, the transition amplitude for
an atom beginning in state F = 3 is

P (|4,p+ ~keff〉) =
1

2
(1− cos(∆φ)) (4)

where,

∆φ = φ1 − φa
2 − φb

2 + φ3 (5)

in analogy to Equation 2. Here φj
i indicates the phase

acquired during the ith pulse for path j. For an atom in
a uniform gravitational field it follows that

∆φ = −keff · gT2 +∆φ0 (6)
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FIG. 2. (Color online) A scaled schematic of the Raman laser delivery in the experiment (note that the sensor separation
is reduced for the gravitational tests). The Raman light enters the low vacuum enclosure through optical fiber vacuum
feedthroughs. Two collimated Raman beams counter-propagate in free space through both sensors and reflect from a corner
cube giving two tiers for optical excitation. The schematic shows the relative locations of the two UHV chambers in which the
atom interferometers occur. The fountain trajectories are exaggerated horizontally to depict motion.

where g is the local acceleration due to gravity, T is the
time between interferometer pulses and ∆φ0 is an off-
set phase which vanishes when the measurement is refer-
enced to a stable frame.
Additional effects contribute to the overall interferom-

eter phase shift. These include the phase evolution of
the wavepackets in the two interferometer arms accord-
ing to the Feynman path integral approach [24], as well
as a phase shift arising from imperfect overlap of these
wavepackets following the final π/2-pulse. These contri-
butions are small relative to the light phase shift yet are
important for high-accuracy metrology and are detailed
in Refs. [1, 23].

III. APPARATUS

Two simultaneous acceleration measurements at dif-
ferent spatial locations typically constitute a gravity gra-
diometer. Such a measurement approximates the spa-
tial rate of change in the gravity field. Accordingly, our
gradiometer employs two spatially-separated gravimeters
based on atom interferometry. Each gravimeter is config-
ured to measure the lateral component of gravity and the
gravimeters are as well spatially separated in the lateral
direction (see Figure 2) . A key feature of this technique
is that both gravimeters are interrogated with a common
measurement laser which ideally propagates undisturbed
between the gravimeters. Since both gravimeters refer-
ence this laser, common mode platform noise is highly
suppressed in the differential acceleration measurement,
as discussed below.
Each gravimeter is a compact package with support-

ing opto-mechanical hardware densely arranged around
an independent ultra-high vacuum chamber of < 10−9

Torr [25]. This package is surrounded by two layers of
magnetic shielding to isolate the measurement. To elimi-
nate spurious noise associated with beam steering as dis-
cussed below, the entire gradiometer is enclosed in a low
vacuum chamber of ≈ 50 mTorr. The structure of the
low vacuum chamber is carefully designed using finite-
element-analysis to avoid significant misalignment of the
Raman beams due to the large forces experienced by the
structure from evacuation.

Using atomic fountain techniques, we prepare a 2.3 µK
[26], 3 mm 1/e2 radius cloud of ≈ 108 cesium atoms in
the 6S1/2 F = 3, mf = 0 hyperfine ground state mov-
ing upward at 1 m/s. The atoms are in darkness dur-
ing the fountain except for three temporally separated
pulses of resonant Raman light which interrogate the
trajectory as previously described. Following the inter-
ferometer the atoms return back to approximately the
same location from which they were launched. At this
point acceleration information is encoded in the prob-
ability distribution between the two ground states. In
order to determine these two populations, and thus the
probability distribution, we project the superposition
and spatially separate the atoms according to their state
with radiation pressure. We then measure the respec-
tive populations of the two states with a simultaneous
fluorescence detection technique described in Ref. [27].
Counting the number of atoms in both states enables
the computation of a normalized transition probability
to |F = 4〉, PF=4 = N4/(N4 +N3) where Ni is the num-
ber of atoms measured in state |F = i〉. This immunizes
the result against shot-to-shot atom number fluctuations.
An alternative use of this apparatus as an atomic clock
is presented in [28].

Due to the equivalence principle, it is impossible to
distinguish between acceleration of the atoms and the
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FIG. 3. (Color online) (a) An example of the measured nor-
malized transition probability PF=4 of the two interferome-
ters, Sensor 1 and Sensor 2, which comprise the gradiometer.
Common-mode noise in the optical delivery delivery system
masks the phase information in the individual sensors while
the difference phase is preserved. (b) Common-mode accel-
eration noise is suppressed when the normalized transition
probabilities of Sensor 1 and Sensor 2 are plotted parametri-
cally. 200 data points form this example of a low phase noise
ellipse. The shot-to-shot fluctuations of the phase readout
indicate a noise of 1.6 mrad per 20 point ellipse.

reference mirror. In practice, platform vibrations cause
spurious phase shifts (∆φ0 6= 0 in Eq. 6) which severely
limit the measurement sensitivity if not properly con-
trolled [29]. In the present setup, this noise randomizes
the phase of the interferometer at levels larger than π-
radians. However, our instrument uses two interferome-
ters that share this noise in common such that the differ-
ence phase is preserved with high fidelity. Plotting the
two transition amplitudes parametrically (see Figure 3)
reveals a well-defined phase relationship between the si-
nusoidal outputs of the two interferometers characterized
by the ellipticity [30]. Accordingly, we use ellipse-specific
fitting to determine the differential phase and therefore

n(r)

g
Raman beam

S1

S2

FIG. 4. Index of refraction variations in the air between the
sensors (S1 and S2) result in an angular deviation of the Ra-
man beam. Stochastic variations cause shot-to-shot fluctu-
ations in the differential projection of the two measurement
axes onto g which limits sensitivity if not properly controlled.

the differential acceleration signal between the two sen-
sors as discussed further in section IV.

The Raman laser is sourced from a cavity-locked diode
laser. This system consists of a New Focus Vortex
6017 laser locked to an optical cavity via the Pound-
Drever-Hall technique [31]. The cavity is built from low-
expansion Zerodur and has a hemispherical mirror ge-
ometry with a 10 cm separation and a finesse of 8000.
The cavity length is piezo controlled and in this manner
locked to a Cs resonance to eliminate drift and reduce
low frequency acoustic noise. The cavity output has a
linewidth of ≈ 15 kHz and calculations show that the
gradiometer noise floor associated with this laser is be-
low the current sensitivity as is discussed below.

The scrubbed output from the cavity is fiber cou-
pled and routed into the vacuum enclosures after further
amplification and frequency control. We use Photline
fiber modulators to generate the required 9.1926 GHz
hyperfine splitting frequency difference between the two
counter-propagating Raman beams. The final amplifica-
tion is performed inside the low vacuum enclosure with
an Eagleyard tapered amplifier. The tapered amplifier
output is spatially filtered then collimated to a radius
of r1/e = 6 mm. We achieve an intensity of ≈ 100

mW/cm2 per beam with a single-photon detuning of 670
MHz blue of the |6P3/2, F

′ = 5〉 resonance, resulting in
a two-photon Rabi frequency of ΩR = 2π × 100 kHz.
These two beams are routed through a periscope and the
two-level Raman beam configuration shown in Figure 2.
A corner cube reflector (PLX HM-25-1G) guarantees the
parallelism of the two beam levels to within 5 µrad which
is essential for good interferometer contrast. In this con-
figuration, the atoms interact with the first π/2-pulse im-
mediately after the launch via the lower beam tier. The
second pulse (π-pulse) is applied with the upper beam
tier at the apex of the fountain and the final π/2-pulse
again uses the lower tier as the atoms travel down to the
detection region. A crossed linear polarization Raman
excitation geometry is used to reduce susceptibility to
parasitic reflections which give rise to standing wave AC
Stark noise.

Using this apparatus, we observe continuous time
records with a short term phase noise of 3.1 mrad/

√
Hz

inferred per interferometer. For our system parameters,
this corresponds to a differential acceleration sensitivity
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FIG. 5. Ellipse plots representing key noise limits. The nor-
malized transition probabilities, PF=4, of Sensor 1 and Sen-
sor 2 are plotted parametrically for three exemplary cases. (a)
Typical data with air between the sensors giving a differential
phase noise of 190 mrad/

√
Hz. (b) Typical data after evac-

uating the air but generating the Raman beams with a DBR
diode laser giving a differential phase noise of 38 mrad/

√
Hz.

(c) Typical data using a cavity-locked laser giving a differen-

tial phase noise of 4.4 mrad/
√
Hz.

of 4.2 ng/
√
Hz or 3.0 ng/

√
Hz inferred per accelerom-

eter. It is noteworthy that Bayesian techniques can be
applied to the ellipse phase estimation routine to reduce
the noise and systematic offset associated with simple

ellipse fitting [32].
Although many parameters are explored to achieve this

performance, two key experimental factors bear discus-
sion here: intersensor beam steering effects and Raman
laser frequency stability. Perturbations to the Raman
beam between the sensors produce a differential projec-
tion of each sensor’s measurement axis onto g (see Fig-
ure 4). Considering that |keff|gzT2 ≈ 106 rad for typi-
cal instrument parameters, it is clear that beam steering
at the nrad level will produce mrad interferometer phase
shifts, commensurate with the device noise floor. We find
that in practice, stochastic index of refraction variations
in the air between the sensors pose a severe limitation
for horizontal gradient measurements such as this where
keff is perpendicular to g (see Figure 5(a)). In our sys-
tem, this effect limits the differential phase noise to >
190 mrad/

√
Hz. Although phase readout below 1 mrad

is routine in optical interferometers [33], heat sources in
our apparatus such as magnetic field coils frustrate con-
ventional solutions. We find that enclosing the entire
gradiometer in a low vacuum chamber eliminates the as-
sociated differential phase noise.
To a lesser degree, we find that Raman laser frequency

noise limits the differential phase noise as shown in Ref.
[3] and later in Ref. [34]. To illustrate this effect, consider
that a discrete laser frequency change for one interferom-
eter pulse results in a phase error of δφ = 4πδνL/c where
δν is the laser frequency change, c is the speed of light
and L is the separation distance of the two interferom-
eters. We have measured that for a mid-interferometer
frequency jump of 1.161 MHz, a phase jump of 71.57
mrad results corresponding to an optical path length of
L = 72.29 ± 0.09 cm after accounting for the effect of the
vacuum windows. This agrees with our physical measure-
ment of 72.39 ± 0.25 cm. In general, the interferometer
phase noise is a function of the laser frequency noise spec-
trum up to a cutoff frequency commensurate with the
Rabi frequency [34]. We find that sourcing the Raman
laser with a δν ≈ 1 MHz linewidth DBR diode limits
the differential phase noise to 38 mrad/

√
Hz as shown

in Figure 5(b). In contrast, a δν ≈ 15 kHz linewidth

cavity-locked laser enables a noise of 3.1 mrad/
√
Hz in-

ferred per interferometer (see Figure 5(c)). Calculations
show that this cavity-laser performance is not a limit for
the current device performance.

IV. GRADIOMETER SENSITIVITY

In this section, we present the current performance of
the gradiometer including an evaluation of short and long
term noise performance. As previously discussed, the
highly common-mode noise shared by the interferome-
ters allows the use of ellipse-specific fitting to extract the
differential phase signal between the two interferometers.
In our experiment, an optimal fit is typically achieved
with 20 data points. For a larger sample, the fit gains
a susceptibility to slight drifts in detection offsets and
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FIG. 6. An Allan deviation analysis of the phase stability
from the differential acceleration measurement shows that the
system can integrate as white noise for periods of 2.5×103 sec-
onds. Here 0.1 mrad corresponds to 96 ×10−12 g. No attempt
is made to correlate the data with system environmental pa-
rameters.

interferometer phase during the collection of the ellipse
points which typically takes 8 seconds for the 20 points.
We find that more than ten points are needed to achieve
a good fit and at times corresponding to more than 100
points, system drifts degrade the ellipse fit performance.

We determine the short term sensitivity of the interfer-
ometers from the rms of a double, 3 sigma outlier cut on
a version of the time record with drift removed as briefly
elaborated here. We log a time record of the ellipse phase
values with 20 points per ellipse and calculate the mean
values of successive groupings of 20 ellipse phases. We
subtract the slow drift from the original time record us-
ing a shape-preserving piecewise cubic interpolation of
the mean value time record. We calculate the rms of this
smoothed record to reveal 3 sigma outliers that we then
remove. We then smooth the resultant data set a sec-
ond time following the same procedure and again remove
3 sigma outliers. This protects the smoothing routine
from the effects of very large outliers and the second cut
removes much fewer points than the first.

With this technique we observe continuous time
records with a short term noise of 1.6 mrad per ellipse.
In this case T = 85 ms and our repetition rate was
2.55 Hz giving a differential acceleration sensitivity of
4.2 ×10−9g/

√
Hz or 3.0 ×10−9g/

√
Hz inferred per ac-

celerometer. The long term performance shows white
noise averaging for 2× 103 seconds (See Figure 6). Elec-
tronic noise and noise caused by intensity and frequency
fluctuations of the detection laser are negligible. The
long term noise is likely caused by environmental factors
such as temperature drift.

V. GRAVITATIONAL TESTS

In this section we explore the suitability of the device
for gravitational tests using a laboratory source mass. We
first show the instrument’s viability for a measurement
of G with a precision approaching 10−4. Second, we in-
terpret this measurement as a test of the inverse-square
law. In both cases we provide an outlook for future grav-
ity tests using atom interferometers.

A. Gravitational Constant

In our measurement of the gravitational signal, we take
advantage of a symmetric source mass configuration to
reduce sensitivity to atom-source positioning (see Fig-
ure 7). Relative positioning of the source mass and atoms
is a significant source of error in previous measurements
of G using atom interferometry [1]. By placing the source
mass between the sensors, we make second-order the de-
pendence of the field on source position deviations along
x̂. For technical reasons, our experiment is performed
with a small asymmetry in the distance of the two sen-
sors from the source masses. This does not inhibit the
present demonstration as calculations show that our po-
sition repeatability of < 5 µm is sufficient for a precision
approaching 10−5, nor do the results indicate the pres-
ence of any slow drifts in the mass signal.
In the setup shown in Figure 7 each of the two 540

kg source masses consists of 45 securely stacked labo-
ratory lead bricks (2”x4”x8”) strapped firmly to a Lin-
Tech 174630 precision positioning table. The positioning
system enables rapid relocation of the source mass be-
tween the two end points or a 70 cm travel in less than
8 seconds. The table, motors and drivers are specifically
chosen to manage the torque and linear accelerations re-
quired for this motion profile. The positioning achieves
this repeatability with simple mechanical limit switches
at either end triggered by sloped flags. These switches are
approached slowly at ≈ 1 mm/s to avoid overshoot due
to the large inertia of the system. To modulate the grav-
itational field, the source masses are chopped between
positions I and II at regular intervals (see Figure 7). The
signal at each position is averaged for 40 s which is empir-
ically chosen to minimize the introduction of noise from
slow drifts in the gradiometer phase. The mass motion is
synchronized with the interferometer timing system and
data collection procedure.
Using the technique described above, we measure the

signal associated with modulating the gravity field be-
tween two values, giving a square wave output (see Fig-
ure 8(a)). Slow systematic drifts contaminate this signal
such that simple subtraction of adjacent values is inad-
equate to determine the wave amplitude. We use three
adjacent values to approximate the local linear rate of
drift and largely remove this perturbation. Explicitly, we
report ∆θk = ΦII

i − 1
2 (Φ

I
i−1+ΦI

i+1), where measurement
i is the average of 5 consecutive ellipse phase values and
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FIG. 7. (Color online) Mass-sensor configuration for G mea-
surement where S1 and S2 are the positions of the atom inter-
ferometer ensembles. The source masses are chopped between
positions I and II, subfigures (a) and (b) respectively. A side
view is shown in (c) depicting the ≈ 8” horizontal by ≈ 6”
vertical opening to allow Raman beam propagation between
the sensors.

the superscript refers to the mass position in Figure 7.
Our simulations show that this analysis underestimates
the short term noise by 13 % but does not affect the
interpretation of the long term sensitivity. We remove
occasional sections of data that are excessively noisy due
to the loss of Raman laser cavity-lock. The resulting
time records are concatenated as shown in Figure 8(b).
An Allan deviation of this record (see Figure 9) reveals
that the brick chop signal integrates as τ−1/2 for 105 sec-
onds. Extrapolating the τ−1/2 trend to the full length
of the data set gives a phase resolution on the gravita-
tional square wave of ∆θ = 67.85 ± 0.02 mrad. This is
equivalent to a resolution of 20 × 10−12 g. We therefore
determine that this system can perform a measurement
of the gravitational constant with a precision of δG/G =
3 × 10−4.

This demonstrates that our system has the potential
to produce a measurement of the gravitational constant
competitive with the current precision of 1.2 × 10−4

[13]. Achieving atom shot-noise limited sensitivity can
enhance this result 20-fold [27]. Using a higher density
material such as tungsten for the source mass, and ar-
ranging the source mass closer to the atoms with an op-
timized source mass geometry as discussed in section VB
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FIG. 8. (Color online) (a) The gravity potential is chopped
between two values to remove the sensitivity to long term
drifts in phase. This modulates the differential gravity vector
along keff by (64.93 ± 0.02) ×10−9 g at a repetition rate of
0.01 Hz. (b) Difference signal of the chopped gradiometer
phase for a 2.6-day averaging interval. The resulting phase
shift is determined to be ∆θ = 67.85 ± 0.02 mrad.

can increase the signal more than 6-fold. Furthermore,
increasing the averaging time to 1 month can improve the
result 3-fold. Combining these possibilities, we forecast
a precision of 1 × 10−6. For comparison, an evaluation
of the sensitivity of a vertical gradiometer approach for
measuring G [1, 2] can be found in [35]. A unique pos-
sibility for the horizontal configuration is that the sensi-
tivity can be further enhanced by increasing the interro-
gation time and extending the vertical dimension of the
source mass, giving the potential for an additional order
of magnitude improvement. Finally, intrinsic sensitivity
improvements via large momentum transfer atom optics
[36, 37] offer avenues for further investigation.

B. Testing the Inverse Square Law

This experiment may also be configured as a test of
Newton’s inverse square law (ISL) by directly measuring
the spatial dependence of the gravitational field. In this
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FIG. 9. Allan deviation of the difference phase. The local
(3-point) de-drift algorithm results in a signature rise in the
signal between 102 and 104 seconds. At longer times, the ac-
curacy of the Allan deviation is restored giving an uncertainty
of ± 0.02 mrad when extrapolated to the end of the data set,
corresponding to 20 × 10−12 g.

section we characterize a test that is possible with the
current apparatus and then describe an optimized test
using upgrades to the sensitivity and the mass configu-
ration.
To place constraints on the strength and length scale

of a Yukawa-type force, it is convenient to form ratio
quantities in which both the absolute value of the mass
as well as the gravitational constant cancel, leaving only
the spatial dependence of the force law [38]. This avoids
the necessity of comparison with the poorly known value
of G and an absolute mass reference.
In our experiment we measure relative quantities,

chopping the test mass between a null reference position
and a position of interest, to eliminate slow drifts in the
interferometer phase. We therefore construct the ratio

∆ ≡ (a1 − ar)− (a2 − ar)

a2 − ar
=

a1 − a2
a2 − ar

, (7)

where ai are acceleration measurements performed at dif-
ferent positions and ar is a reference position. In Equa-
tion 7 the numerator and denominator quantities can be
considered as two independent measurements with a sta-
tistical error equivalent to that described in section VA.
Using this measured error, we predict the performance
of a Yukawa test with our apparatus by forming the con-
straint

∆Y −∆N ≤ σm, (8)

where the subscripts Y and N refer to the Yukawa and
Newtonian quantities respectively, and σm is calculated
using error propagation of the measured 2σ precision in
section VA or 40 ×10−12g. We note that this precision

  10 mm, 1000 kg
  10 mm, 5000 kg
  1 mm,   5000 kg

 

 

[m]

Excluded AI limit

AI limits
(with improvements)

FIG. 10. (Color online) Statistical atom interferometer (AI)
Yukawa constraint using 2-σ confidence bounds (shaded dark
grey) is compared with the present limits from [18–20] (shaded
light grey). This apparatus could be used to constrain α at
the 8 × 10−3 level for λ near 20 cm. Three forecast curves
are shown for the tungsten configurations detailed in Table I.
With upgrades to the test mass configuration, the demon-
strated sensitivity can exceed current limits with a source to
atom distance of 10 mm and mass of 1000 kg. Achieving atom
shot noise limited sensitivity and increasing the mass to 5000
kg predicts limits approaching the 10−5 level for source to
atom distances of 10 mm and 1 mm (see Figure 11).

was attained with a short, 2.6-day averaging duration
which can in principle be increased.
We carefully choose the positions of the three measure-

ments in order to optimize the constraint. The reference
measurement ar is taken at position II noted in Figure 7,
while a1 is taken at position I. The optimal constraint
on α occurs when (a2 − ar) = (a1 − a2). This equates to
locating the intermediate point a2 at ∆y = 21 cm offset
from position I which gives roughly half of the accelera-
tion signal when compared to a1. Note that in this pre-
diction the demonstrated experimental precision is rea-
sonably assumed to hold at an intermediate point.
For a Yukawa force, the acceleration is given by

ai =
Gm

r2i

(

1 + αe−ri/λ (1 + ri/λ)
)

. (9)

Using this, Equation 8 may be solved for α to deter-
mine an ISL constraint. However, due to our compli-
cated source mass geometry we numerically evaluate the
terms in Equation 8 for comparison with the value of σm

implied by our precision. Specifically, in our experiment
the Yukawa acceleration is given by:

aYx =
∑

i

Gmixi

r3i

(

1 + αe−ri/λ
(

1 +
ri
λ

))

, (10)

where ri =
(

x2
i + y2i + z2i

)1/2
while the Newtonian accel-
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FIG. 11. (Color online) Proposed cylindrical mass configu-
ration for an improved ISL measurement. The source mass
positions alternate between a null position and configuration
I or II, (a) and (b) respectively. The parameter d1 represents
the distance of closest approach to the atoms and L is chosen
to be much larger than the spatial extent of the source masses.
Parameter values are given in Table I for three configurations.

eration is given by

aNx =
∑

i

Gmixi

r3i
(11)

where the subscript i refers to a particular voxel in the
mass distribution. Figure 10 shows parametric curves for
which Equation 8 would be satisfied for our device, along
with the present limits from [18–20]. We predict a 2σ
statistical constraint on α of 8×10−3 with this apparatus.
This suggests that this experiment is currently within a
factor of six of improving the limits on α near λ = 20
cm.
In future experiments, significant improvements to this

constraint are possible. We explore this by highlighting
an optimized source mass geometry. To begin, we note
that the constraint is limited by the weakest of the two
signals, a1 and a2, since the acceleration uncertainty is
absolute. In an experiment of this type, it is common
practice to increase the source mass with increasing dis-
tance, to mute this effect [38]. Furthermore, we con-
sider an enhanced gravitational signal due to increased
source mass density (tungsten instead of lead) and re-
duced proximity. The proposed setup is shown in Fig-
ure 11. We choose a cylindrical source mass geometry
to allow derivation of an analytic model. For simplicity,
this analysis assumes the ensemble is stationary in time.
We use a bounded minimum search to find optimal

values for all parameters shown in Figure 11. These val-
ues are listed in Table I for three chosen cases: a mass
limit of 1000 kg with a nearest approach of d1 = 1 cm,

Configuration A B C

Position I d1 [cm] 1.0 1.0 0.1

t1 [cm] 12.7 21.5 21.3

R1 [cm] 13.6 22.5 21.4

m1 [kg] 117 660 588

Position II d2 [cm] 15.0 24.3 22.4

t2 [cm] 26.3 45.3 45.8

R2 [cm] 25.1 42.7 42.5

m2 [kg] 1000 5000 5000

TABLE I. Optimized tungsten source mass parameters for
proposed ISL tests in Figure 11 found by limiting the nearest
source mass to atom ensemble distance to either 0.1 cm or 1.0
cm, and limiting the largest mass to either 1000 kg or 5000 kg.
Predictions using these parameters are shown in Figure 10.

and a mass limit of 5000 kg with a nearest approach of
d1 = 1 cm and 0.1 cm. The results of these projections
are shown in Figure 10. We note that the prediction
for configuration A is readily achievable using an opti-
mized geometry with the demonstrated sensitivity of the
apparatus. Plotted also are the constraints achievable us-
ing configurations B and C, and our demonstrated atom
shot noise limited detection [27]. Reducing the atom-
mass proximity to d1 = 0.1 cm significantly extends the
constraint to shorter λ. Further avenues for improvement
as discussed in section VA apply equally here prompting
forecast exclusions of α below 10−5.
Bringing the source to a distance of 0.1 cm from the

atoms represents a significant experimental challenge as
this is equivalent to the size of the cloud in the current
apparatus. However, recent progress in atomic fountains
has demonstrated atom cooling and launch techniques
that can be modified to achieve high localization and low
expansion [39]. Recent theoretical work indicates that
further refinements can provide a measurement at the
10 cm length scale exceeding well beyond the 10−5 level
[40]. At this proposed precision level, many sources of
error can limit the accuracy. Possibilities include edge
effects from the finite source mass extent, surface flatness,
and launch angle with respect to the source mass surface.
Furthermore, the extended baseline of L ≫ 1 m will place
an additional constraint on the frequency stability of the
Raman laser which scales with baseline. Refinements to
both the source mass and source mass modeling will be
necessary for these measurements.

VI. CONCLUSION

We have presented here a horizontal gravity gradiome-
ter for precision gravitational tests. Using this apparatus,
we have demonstrated a statistical uncertainty of 3×10−4

for a proof-of-concept measurement of the gravitational
constant that is competitive with the present limit of
1.2×10−4. Improvements can enable uncertainties falling
well below 10−5. We have also interpreted this work as
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a constraint on a Yukawa-type fifth force and project a
102 improvement over current known constraints near λ
= 10 cm. The horizontal configuration offers the poten-
tial for superior tests of gravitational physics. The free-
fall nature of the atom interferometer technique benefits
from maximizing the inertially-relevant dwell time of the
atoms near the proof mass. As a result, a surface oriented
normal to gravity and probed in the same direction will
achieve this goal. However, this approach presents a new
challenge in implementation, namely a first-order sensi-
tivity to Raman laser beam steering which couples to the
signal from earth’s gravitational force. We have shown
that evacuation of the Raman beam path overcomes this
challenge. We also clearly show the importance of stabi-
lization of the Raman laser frequency for low phase-noise
measurements with meter-scale baselines. Incorporating

the former into a re-imagined test mass geometry as well
as reducing the separation of the atoms and the proof
masses can result in a significant improvement to our
knowledge of gravity.
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