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The unconditionally squeezing of the collective spins of an atomic ensemble in a laser driven
optical cavity [I. D. Leroux, M. H. Schleier-Smith, and V. Vuleti¢, Phys. Rev. Lett 104, 073602
(2010)] is studied and analyzed theoretically. Surprisingly, we find that the largely detuned driving
laser can improve the scaling of cavity squeezing from S~2/% to S~2/3, where S is the total atomic
spin. Moreover, we also demonstrate that the experimental imperfection of photon scattering into
free space can be efficiently suppressed by detuning.

I. INTRODUCTION

Large ensembles of atoms are good platforms for quan-
tum information processing [1-3], due to the long coher-
ence time of atomic energy levels and the collective en-
hanced interaction with light. Therefore, the atomic en-
semble have been studied extensively for both fundamen-
tal physics research [4] and practical applications, such as
quantum memory [1], atomic clocks [5, 6], magnetome-
ters [7, 8] and gravitational wave detectors [9]. For those
metrology applications, it is believed that the classical
limitation of measurement precision can be broken by
using quantum states of the atomic ensemble [10, 11].
The squeezed spin state (SSS) [12] is one type of such
quantum correlated state with reduced fluctuations in
one axis of the collective spin components, therefore at-
tracted considerable attention recently.

To prepare the SSS, a variety of experiment schemes
based on light-matter interaction have been proposed and
demonstrated [10]. One approach is transfer the quan-
tum state of light to the atomic spins directly [13-16],
where the degree of spin squeezing is determined by the
quality of squeezed input light. Another approach is gen-
erate the SSS by the quantum nondemolition measure-
ment on the states of photons coupled with the atomic
ensemble [17-22]. While this method has already been
demonstrated by several groups, the efficiency of SSS
preparation strongly depends on the performance of the
detector. The last and very promising approach is the
cavity squeezing [23-29] without the measurement of the
light field, which based on the off-resonant interaction
between atomic ensemble and light circulating in an op-
tical resonator cavity. The spin states of ensemble im-
print their quantum fluctuations onto the light, which
acts back and reduces the fluctuation of spin states.

In this paper, we theoretically study the detuning de-
pendence of cavity spin squeezing for the experimental
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FIG. 1: (Color online) (a) Schematic illustration of an en-
semble of atoms uniformly coupled to optical cavity mode c,
and a laser field is driving the cavity. (b) Energy diagram of
atom, the transitions between lower states (|{) and |1)) and
excited state |e) are coupled to cavity mode.

scheme demonstrated in Ref. [24] (Fig. 1a). Compar-
ing with the near resonance case [23], it is surprising to
find that the scaling of cavity squeezing on total atomic
spin can be significantly improved from S~2/% to §—2/3
by large laser detuning. In addition, we find that the
spin squeezing will be enhanced if the atoms are weakly
coupled to the cavity or the laser detuning is very large.
From our numerical solutions and analytical analysis, the
large detuning is very important because the squeezing
originates from the laser induced spin state dependent ge-
ometry phase [30, 31]. Finally, we study the influence of
scattering of photon into free space due to imperfect Ra-
man scattering, and demonstrate that the optimal spin
squeezing can be obtained with appropriate detuning.
This improvement of spin squeezing by detuning, which
without the requirement of preparation or post-selection
of photon state, is very feasible for experiments. The
detuning enhanced cavity spin squeezing can also be ap-
plied to other systems, such as nitrogen-vacancy centers
in diamond, to prepare SSS for quantum metrology.



II. MODEL

The system (Fig. 1b) is an ensemble of N identical
three-level atoms trapped inside an optical Febry-Pérot
cavity. There are two stable ground states |1) and ||),
which are coupled to the excited state |e) via optical tran-
sitions of frequencies w,. + w,/2. The cavity resonance
frequency w, is chosen so that the detunings to transi-
tions 1) < |e) and |}) > |e) are opposite in sign but
having the same magnitude A = w,/2. For simplicity,
we only consider the case where the two transitions have
equal single-photon Rabi frequency 2¢g and all atoms are
uniformly coupled to the cavity. The Hamiltonian of the
system reads (h = 1)

N
Hew =weete-+ 3 (5 110 (11, = W0 (4] + e e (el
=1

+glele); (1], + ele, (4, + Hel ). (1)

Here, ¢ and ¢ are the photon annihilation and creation
operators for the cavity mode, and the index i labels the
individual atoms. As we are interested in the linear and
dispersive regime of atom-field interactions, we assume
the excited state population is negligible. The assump-
tion requires a large detuning |A| > k,T, g and suffi-
ciently low intracavity photon number (cfc) < (A/g)?,
where x is the cavity linewidth, I' is the excited state
decay rate. After adiabatically eliminating the excited
state of atom and considering external continuum fields
[32, 33], we obtain the effective Hamiltonian for the sys-

tem
Hﬂ:@+9&p%+/ wh! bdw

+VE [Bi(t)e + ¢t Bin(t)]

Vg;/‘ (ble+ cb,) dw, (2)

where § = w, — w; is the detuning between the resonator
mode and the driving light, S, = %Zf\;lﬂﬂz (M, —
[4); (1];) is the z-component of the total spin, Q =
2¢°/|A| is the dispersive frequency shift due to spin-
photon interaction, 3i,(t) is the driving, and b, (b)) is
the annihilation (creation) operator of the continuum.

Under coherent laser driving, the intracavity field is the
coherent state with spin-dependent phase shift. Assume
the system is in state

_ Z Cpe’ Jo Re(VEBH (t)om (t'))dt |om (), m)
< [ 1Boum(®)) - (3)

Where m is the quantum number associated with S,
which is conserved during the evolution, |, (t)) is the
cavity photon state and the |B, m(t)) is the state of con-
tinuum. By solving the Schrodinger equation i% [) =

Heg |tb) [Appendix A], the time dependent intracavity
field [30] is in the state with the complex amplitude

t ’ ’
om(t) = —z\/E/ Bin(t/)e—i@-i-ﬂm)(t—t )g—r(t—t )/2dt/,
0
(4)

and the continuum modes are in the states with the com-

plex amplitudes
/27T/ (Pm —zwt t)dt (5)

In general, the cavity photon, continuum and atomic
spin states are entangled [Eq. (3)]. If the output field is
not measured, the density matrix of cavity photon and
the atomic spin can be written as

Pin,atom = Z Omc:zequ’n(t) |90m (t)v

m,n

/me

m) (en(t),n[, (6)
by tracing the continuum modes out, where
mn(®) = =1 [ VEROT o (1) ~ a5l
[ lont Pt 2= [ ot at 2
b [ ety (7

The spin squeezing is evaluated by squeezing parame-
ter [12]

min (AS2
Sl B ®)

Where AS 121 is the variance of spin operators along direc-

tion perpendicular to the mean-spin direction ny = \(%j?l’
which is determined by the expectation values (S, ), with
a € {z,y,z}. For an atomic system initialized in a
coherent spin state (CSS) [34] along the z axis, sat-

isfying Su [ (0))stom = S1¥(0))som> We have Cp, =

25,/ % and AS’?n = 5/2. Thus, for squeezed

spin states we have £2 < 1.

III. DETUNING ENHANCED SQUEEZING

Now, we study the cavity spin squeezing with con-
tinuous drive f;,(t) = iv/kBp with a small detuning
d = —k/2. For easier illustration, it is useful to intro-
duce the dimensionless shearing strength [23]

45| Bo|2Q2%t
K
which is proportional to the transformation degree from
the optical field to the atomic spin. In Fig. 2 (a), we
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FIG. 2: (Color online). (a) The squeezing parameter £2 as a
function of shearing strength @ for S = 50, 6 = —k/2 and
various coupling 2 = 0.01, 0.2, 0.4 MHz. (b) The squeezing
parameter £2 as a function of shearing strength Q. for S =
50, Q = 0.2 MHz and various detuning 6 = —zk/2, x =
0.5, 1, 500. (c) The optimal squeezing parameter &2 as a
function of the atomic spin S for Q = 0.01 MHz and the
detuning 6 = —zk/2, x = 1 (black), x = 500 (red). The
other parameters are kK = 4 MHz and 5y = 1.

plot the spin squeezing parameter ¢2 as a function of
shearing strength @ for various coupling €. It clearly
shows that the spin squeezing parameter has a minimal
value for certain optimal @, and it takes longer time for
smaller coupling €2. The minimal value of spin squeezing
parameter increases with the coupling €2, because there
are higher order effects associated with 2 that will limit
the squeezing.

To study the effect of the detuning § on spin squeez-

ing, we set 0 = —xk/2, and the dimensionless shearing
strength can be generalized as
Q= 4Qz /(1 + 2°)°. (10)

In Fig. 2(b), we plot the spin squeezing parameter £2 as
a function of shearing strength @), for various detuning
0 with fixed coupling strength @ = 0.2 MHz. The spin
squeezing can be enhanced for both red and blue large
detuning . Since the larger detuning means that the
driving light is hard to enter into the cavity, the larger
input power or longer interaction time is required. It
can be seen from Figs. 2 (a) and (b) that the atomic
spin can squeezed more than once until the atomic spin
is fully uncorrelated. This oscillation behavior is due
to the competition between the effective spin squeezing
interaction, higher order effects and decoherence.

In Fig. 2(c), we plot the optimal spin squeezing as a
function of the number of spins S, and the optimal spin
squeezing is the minimum value of £2(Q,). The black
line shows the optimal squeezing parameter £2 oc S —2/5
with the small detuning § = —k/2, as obtained in Ref.
[23]. When we chose the large detuning § = —250k, the
optimal squeezing parameter is obtained as the red line,
which satisfies £2 oc S~2/3. Obviously, the spin squeezing

is greatly enhanced by the detuning, approaching the fun-
damental limitation of the one-axis spin squeezing [12].

IV. MECHANISM

The Hamiltonian Eq. (2) implies that the atom-
photon interaction induces a spin state dependent geo-
metric phase [ dt(n (t), m|E [om(t), m) [30, 31]. The
spin squeezing is caused by the accumulated geometric
phase difference ¢,, ,, between the different spin states
|m) and |n). For continuous laser driving and long in-
teraction time t > k!, the intracavity field transient
behavior can be neglected. The steady cavity field for

detuning § = —xx/2 can be written as
Ko
= . 11
m 2+ (0 + Qm) (11)

From Eq. (7), we solve the phase factor as

(n—m)

lomllenl?02t [ 5 +82
mn(t) =
¢ 3 () ? K;Bg X QK/

+% (nz—mQ)—i-%nm(n—m)—l—w}.

(12)

The first term accounts for the coefficient that approx-
imately proportional to @Q,, and the terms within the
brace are the linear, quadratic and higher order couplings
of spin z—component. The quadratic term correspond-
ing to spin squeezing interaction S2, while the last two
terms give rise to disorder and decoherence of spin states.
It’s obvious that the detuning is essential in the cavity
induced spin squeezing, as there is no squeezing at all
for zero detuning 6 = 0. The parameters % should be as
large as possible to make the squeezing effect outperform
the undesired effects, i.e. % > 1 and % > % should be
satisfied. This can explain the results the dependence
of optimal spin squeezing on § and €2 shown in Figs.
2(a) and 2(b): (1) For very large @ or @, the disor-
der and decoherence dominate over the coherent process.
(2) Larger ¢ helps to suppress both disorder and dissipa-
tion. (3) Smaller 2 can suppress the high order terms,
thus can enhance the squeezing.

For more intuitive understanding, we obtain the spin
squeezing parameter £2 from the Heisenberg equation [23]
under certain approximation

Q 1+ z]  Q 1+ |z

- < —4\/S/2 1 1

I€|SZ|1+£C2_I€ S/ 1+:102<< ’ (13)
1 «]Q:] < S, (14)

o_ 1.2 @

== 0. 15
When (5/2)%/41271/45-1/2 < ¢ <« 121/681/3
we obtain the optimal cavity squeezing



2 min = (5/2)1271/58=2/52=4/5 at the point
Q. = 121/58%/5,=1/5 When the detuning is
very large x > 121/681/3  the squeezing limit is
2 i = (3/2)1271/3872/3 with Q, = 12'/65/3. The

detuning is the source of the effect nonlinear interactions
between the atomic spin and the optical mode, and
the part 2/(Q.x) is the photon shot noise [23]. The
large detuning means that the 1/Q2 is the main factor
of spin squeezing rather than the photon shot noise,
and we can improve the scaling of cavity squeezing to
(3/2)121/3872/3 with sufficient detuning by surpressing
the photon shot noise.
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FIG. 3: (Color online). (a) The squeezing parameter £2 as a
function of @, for fixed detuning x = 200, and single-atom co-
operativity n=2, 20, co. (b) The optimal squeezing parameter
€2 as a function of detuning x for the various cooperativity
n =1, 2, 20. (c) The solid lines are optimal squeezing pa-
rameter £2 as a function of the cooperativity n for the fixed
detuning x = 1 (green) and optimized detuning (black), and
the dashed lines are results for ideal condition n = oo for
x =1 (red) and « = 200 (blue). The atomic spin is S = 10*.

V. IMPERFECTIONS

In previous studies, we have neglected the scattering of
photon into free space, which is an unavoidable process
that deteriorates squeezing performance [22]. Any atoms
scattering photon into free space will acquire a random
phase, so that it no longer contributes to the mean spin
length. The Raman transitions | 1) — le) — | |) or
| 1) — |le) — | 1) reduce the correlation between the
time average S, during the cavity squeezing process. The
average photon number emitted into free space per atom
is given by [Appendix B]

Ry = Q. (1+2%)/(8zSn), (16)

which depends on the single-atom cooperativity n =
4g%/(kT). This expression indicates that very large col-
lective cooperativity Sn > 1 is required to suppress the
scattering of cavity photon into free space. We extend
the solution previously obtained in [22] to the large de-
tuning, and obtain the spin squeezing parameter:

Sy )+ 52y = (8,7 = (s2) + w2
YA ¢S< AL

where W = <3’;S’z + S’zg’;> and the mean value of spin

operators S are solved approximately in the rotating
frame as

(5,) = (s =0.(s2) =2, (18)
<f9;2> = ; [1+Se R (1—e )],  (19)
(5,9.+5.8,) =S (1= Ra)Que™ ", (20)

Zs P V= g5 +

with parameters U =
2R, + LSS

Although &2 is a complicated function of 7, x and
Q. due to imperfection, the spin squeezing can be op-
timized for a given 1 by adjusting the laser detuning and
pump power and interacting time. Fig. 3(a) shows the
squeezing parameter £2 as a function of @, for various
values of the cooperativity n and fixed large detuning
2 = 200. And in Fig. 3(b), the optimized spin squeezing
parameters for certain @), is calculated against detuning
x for given cooperativity n. These results indicate that
the squeezing parameter is very sensitive to the value
of the cooperativity 7, and better spin squeezing can be
achieved for larger n and appropriate detuning . Shown
in the Fig. 3(c) is the optimal squeezing parameter £2
as a function of the 1. Green and black solid lines are
the results for fixed detuning (z = 1) and optimized de-
tuning. With increasing 1, &2 is reduced and trend to
be saturated at certain value. Compared with the fixed
detuning, the optimal detuning is always better. When
the cooperativity is not too small n > 0.1, the squeezing
by optimized detuning can be even better than the result
of fixed detuning with n = co.

To lowest order expansion of R, < 1 and ignoring
curvature effects for the moment, the asymptotic solution
of the squeezing parameter [Eq. (17)] can be written as

2 Q. (2% +1)
Qux 6xSn

&€=0,°+

(21)

When the § is very small, the squeezing variance sup-
pressed by the square of the shearing strength is ne-
glected. Consequently, there is an optimum shearing

strength Qscarr = /125n/(2%2 4+ 1), to achieve the op-

4(z241)
3Snz2 *

tuning that satisfies z > 12'/65%/3 we have optimum

timum squeezing &2 = For very large de-
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squeezing £2 = 3 (f;;gzn) for a shearing strength
12xS 1/3 . . .

Qscatt = (5 +x§7 . The squeezing is thus possible even

for very weakly coupled resonator and atoms with single
photon-atom coupling cooperativity n < 1, as long as
the collective cooperativity Sn > 1. Similar results can
also find for spin squeezing with the near-resonance laser
input [23, 35].

In practical, we should also consider the spin dephasing
during the preparation of SSS. For simplicity, we assume
that spin dephasing is Markovian with the pure dephas-
ing rate T-!. Include it in the Master equation [Ap-
pendix C], we obtain the modified squeezing parameter
€2 = €2+ under the approximation % < 1. When the
single spin dephasing rate is large, obviously the larger
input power is the better choice rather than longer inter-
action time. In addition, the large detuning also means
that the second cavity mode [Appendix D] may be acti-
vated, and our analysis shows that the opposite detuning
for the second cavity mode has a bad effect on the spin
squeezing. However, the effective coupling between the
spin and the second cavity mode is very small, and the
bad effect can be ignored. We also verify that the effect
of the second cavity mode can be ignored by an exam-
ple using the achievable parameters [Appendix D] from
Vuletié¢ group’s experiment [24].

VI. CONCLUSION

We have theoretically analyzed unconditionally squeez-
ing of the collective spin of an atomic ensemble in a driven
optical cavity. We find that strong atom-cavity cou-

pling weakens the spin squeezing, while the large detuned
laser driving can improve the scaling of spin squeezing to
S~2/3_ which is the ultimate limit of the ideal one-axis
twisting spin squeezing. The imperfection of light scat-
tering into free space can also be efficiently suppressed
by optimal detuning. The detuning enhanced cavity spin
squeezing which can be tested experimentally and be ap-
plied for quantum metrology based on the SSS.
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Appendix A: Dynamics of quantum states

The dynamics of quantum state satisfy Schrodinger
equation

0
i [0) = He [9). (A1)

Substitute the effective Hamiltonian [Eq. (2)] and quan-
tum state [Eq. (3)] into above equation, the right and left
sides of the equation become

He [¥) = > Con{ (0 + Qm)clc + Vi (B, (t)e + ¢ Bin (1))

m

+/ W/bllbw/dwl+1/£/

bl/c + chw/) dw'}

o Re(VRBL () em(t))dt" | ) ( H 1Bom(t)) (A2)
2 ) = 5 CRelVR, (Dm(B)e MV g, 0, 00) TT (0]
4 Z O, i o Re(/RBL(E om ()t (gt H 1B
_HZO e~ Jo Re(VEBL () om (t))dt! lom (1) 6t H 1Bom(t)) (A3)
where the cavity field follows
om(t) = —iv/ /O o e O+ ) == )2y (A4)



Multiply (¢m (t), m| on both sides of the Schrodinger equation, we have

<<Pm(t), m|HcH |1/}> - O, el I Rc(ﬁﬁ;n(tl)@m(t,))dt’{((s + Qm)|<ﬂm( )|2

+/ w'bl b w/dw+,/ / bl om (t) + %, (£)be, )da/

RGICAOEAOREACEROI ) (DS (A3)
and
(o (0), mli o ) = e B ReVRHDom D (R, (1) o (1)
im0 + i35 TT a0 (A6)
Note that
(om0l lon(0,m) = 5 (er, 02220 o0 22200
= VR (i 0 Bin(t) — m ()55 (1)) — 105 + Om)lm ()P (A7)

is the geometry phase of the system. Since

g L8 (®) = {0+ 0m)ln O o .5 om(0:m)

[ Wb o (o + (00 )l
27

+HVE (B () om (1) + @5, (H)Bin(t)) /2} H B (1)) (A8)
we get
T o) = | [ bl @ (0L om (£) + &5 (£)be)]d'} T ] 1 m (1)) (A9)

Therefore, we obtain the solution of the continuum modes with the phase factor
with the complex amplitudes as

Bom(t) = \/; / o) (AL0)  bmalt) = —ivR / Re(B5, ()0 (t') = Bin(t o3 () dE

t t
Based on these results, the density operator of inner cav- _ /q/ |gpn(t')|2dt’/2 . /1/ lom (t')|2dt’/2
ity and the atomic spin can be calculated by 0
t
Pin,atom = Trout (|1} (¥[) + n/ o () om (t)dt'. (A13)
- ZCmC:;e—iﬁfJ Re(B7, (t')om (t')=Bin (t' )7, () dt’ 0

X |om (1), m) (ou()snl [T (BunlBom) - (AL1)

Appendix B: Scattering into free space

Finally, the density operator of inner cavity and the

atomic spin can be written as By Excluding the continuum modes, we obtain the ef-
. fective Hamiltonian
Pin,atom = Z Cane(bm’n(t) |(pm (t)u m> <(pn (t)u TL| y
m,n

(A12) Heg =(6 +Q8S.)cl e + Ve B, (e + ¢ Bin(t)] . (B1)



The Master equation reads

dp
5 e Heog +ZF i)p + L(); (el;)p]
+ kL(c)p, (B2)
where Lindblad super-operator
1 1
L(6)p = opot — §6+ép - §p6+6. (B3)
The equations of motion are
d
d—j = (5 +Q8.)e — gc —iViBm,  (B4)
ds, I'g%cte
@ = AT (B5)
asy . I'gcte
W =iQc S+C — TS+ (BG)
Then, the steady state solution is
¢ n — VKb (B7)
—i(6 +Q8S,) — %
S, ~ e ?R5.(0), (BY)

St =~ e2m<1+5§?)? [1+x2+—m?m+—m(:+i)]t72RIS+(OX7BQ>
where S, = [S., Bin = ivKBy and R, = Q.(1 +
22)/(82Sn). In the rotating frame by eliminating the
quickly linear rotating along z, we obtain the mean value

of operators as

S, =e <1+B§2>2 [1+$2+me]tS+
—e_Qz/@SI)einS_Z/Se_zRIS_;,_(O), (BlO)
5‘12 :e—Qz(2+i)/(Sw)e2iQmS_z/Se—4Rz 53(0)' (Bll)
These results can be approximated as
~ S
~ _ 2\ _ 2
2 S —4R -U
<Sy>z§[1+86 s (1—-eY)], (B13)
<Zs*ysz n sz§;> ~S(1— Ry)Que Y, (B14)
where U = 29 4 QU2R/5) y _ Qw4 op 4

Q2(1-2R./3)
15 :

Appendix C: Single spin dephasing

If we consider the effect of single spin dephasing, the
Master equation is written as

dp
£ _ . EF
g = e Heps] +

+rL(c p—l——ZL (C1)

)+ L(L); {el;) ]

where the single spin dephasing 7! is assumed to be
Markovian for simplicity. By including the dephasing,
the Eq. (B6) is changed to

ds, T'g%cte
dt A2
With similar approach to derive Eq. (B11), we obtain the
expected value of operators as

3'_7_ — e_Qm/(2Sm)+iQmS_z/S_2Rz_%S’J’_(O),

~2
S+ = e

1Qc +S+C — S+ — %SJ’_ (02)

—Qa(2414)/(ST)+2iQ4 S, /S—4R, — 2t g2

Qz (241)/(S)+2iQ2 S-/ 7 8% (0).(C3)
Usually, the decoherence is very small. Thus, we can
obtain the spin squeezing under the approximation % <
1 as

/27 2 t

Appendix D: Multiple cavity modes

When the detuning is very large that becomes compa-
rable with the free spectral range of the cavity (Awrsgr),
multiple cavity modes should be involved into the inter-
action with atomic ensemble. Assume the n-th cavity
mode as ¢, with resonance frequencyw,,, the full Hamil-
tonian of the system reads

HC&V

= g wnc}:cn
n=1

N
+ Z [0 (11 €11, = 100 (41) + we e Cel,

+> > gleale) (1

n=1 i=1

Under the ordinary condition that |A £ (w, — we) >
k,I[', g, we can obtain the dispersive frequency shift due
to n-th cavity mode

l; + cn le); (H; + H.c.) (D1)

29°A
0 WA 02)
A — (W, — we)
It is easy to obtain the @, [Eq. (10)] for
n-th cavity mode by wusing §, = w, — w.
Then, get the solutions U = %anl Q;’" +

(S Qeun) [1-2(E s Ran) /3], S Qam
S ) - 25 n=1 x,
2 ZnZI Rz,n + (EnZI Qm*") [14_5(2":1 Rm*")/3] 9 and

em 1 202¢
Q s _ Z 6S|BO| . n2 , (D?))
n=1 Tn n=1 Ii(l—f—.’lin)
2|Bo|* 2t
Rm,n = - y D4
2t = gy O
1655|2022t
S @, = 30 MOt gy
n=1

k(1 +a2)°

n=1



If we only consider two cavity modes for w; = w, and
wo satisfy the condition |A £ (w12 —we)[> k,T, g, the
decoherence terms are enhanced due to the additional
cavity mode. For the opposite detuning x1, x2, the spin
squeezing term is weakened. However, due to 1 > Qo
for the second cavity mode |ws —w.| = Awpgr > A. For
Fabry-Perot cavity, Awpsg = w% with C' is the speed of
light and L is the length of the cavity. For practical
experiment, it very easy to engineer the cavity length to
satisfy to the condition Awpgg > A. Then, the ration

2
Qur|_ |l (1+38)° (A2 - (w2 — )]

Qs s (1 + 23)° At

(D6)

If the condition Awrsr > A is not well satisfied, we

should have |z3| > |z1]. So, |g’”;| > 1 satisfied for

practical experiments, and we can neglect the effect of
the second cavity mode.

To verify the feasibility of the single mode approxima-
tion, we take Vuletié¢ group’s experiment [24] as an exam-
ple. In the experiment, the parameters are A = 3.4 GHz,
Awrsr =~ 5.6 GHz, and cavity linewidth x = 4 MHz.
Following the discussion above, the detuning of laser to n-
th cavity mode is w, —w; = —x,k/2. For large detuning
to n-th mode, let z; = 100, and the detuning to (n—1)-th
and (n+ 1)-th modes are z,—1 = 2900 and z,,+1 = 2700.

Therefore, we have |Q€211| ~ 10* > 1, therefore the

effect of other cavity modes can be neglected.
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